

Selfhosting with ODROID-XU4 CloudShell2: From hardware setup to
up and running with Docker
 June 1, 2020

Easy to spin up and try out new applications, conversely its equally trivial to completely
remove applications one may no longer interested in.

ODROID-GO Advance Black Edition
 June 1, 2020

The GO-Advance on a spi�y new version!

Selfhosting with ODROID-XU4 CloudShell2: From hardware setup
to up and running with Docker
 June 1, 2020 By @ELECTRO.PIZZA Docker, ODROID-XU4

Assembly

I mostly followed the Hardkernel easy install guide on
the wiki with only a couple of changes. Most notably, I
didn’t bother with the IR sensor con�guration, and I
didn’t install the cloudshell-lcd package in favor of
something more custom. Assembly is fairly
straightforward when following the assembly guide.
The only tool required is a Philips head screwdriver.
Go slow and don’t try to force any of the acrylic
�ttings. They should slide together easily, and you
may break tabs if you use too much force, I broke
two.

Drive Setup

After dialing in the RAID controller, you will need to
make some decisions about drive partitioning, �le
system type, and mounting location. Everyone will
have their own preferences on this con�guration, but

I settled on RAID 1 formatted with an ext4 �lesystem
with only 1 partition mounted at /mnt/storage.

I am planning on managing everything on this system
with Docker, leaning on a docker-compose �le that
lives on the eMMC, and backed up in a private repo.
The thinking is that all volumes de�ned in Docker will
be housed on the /mnt/storage RAID drive, and
nothing else. This simpli�es o�site backups and
recovery. A backup script can run across the whole
drive knowing that it will only be getting relevant data
and no OS cruft. Further, if the RAID drive fails and
needs replacement, new drives can be swapped in,
formatted, and mounted. Afterward a simple docker-
compose up command will build a fresh setup, or
o�site backups can be restored, and Docker will chug
along like nothing happened.

nmon on the LCD

CloudShell2 comes with a small (320x240) LCD screen
attached. If you follow the Quick Setup guide from
HardKernel it will be enabled with a simple script
displaying some hardware stats. This is okay, but I’m
much more interested in being able to see activity at a
glance. Dave Burkhardt’s excellent work modifying
nmon for the CloudShell display �ts the bill nicely.
Installation is straight forward, and it is well detailed
in the project readme here:
https://github.com/DaveBurkhardt/cloudshell-
nmon#readme

Figure 1 – example of nmon running

By default, the script will show network activity, which
when using Docker becomes a bit useless due to
clutter. Mostly I want to see CPU and drive activity, so
I’ve modi�ed the nmon options in nmon-xu4 as
follows:

$ export NMON=xtfcdG

These options will show CPU activity, drive activity,
and a short top list of processes.

Fan Upgrade

The fan that ships with the Cloudshell kit is adequate
but noisy. I don’t think this would be much of a
problem if you are keeping the Cloudshell in a closet,
or a good distance from you. However, I have it sitting
on my desk and the fan noise began to slowly erode
my sanity. Time for an upgrade! The kit takes a 92mm
5V 3-Pin fan and there are plenty of high-quality quiet
fan options out there that �t this spec. I settled on a
Noctua NF-A9 and it has been a huge improvement.

Figure 2 – Upgraded Fan

Docker

There is a lot of documentation on the web about
using Docker, and it is a bit out of scope for this
document to detail its use. It has been a good
experience managing things with Docker Compose
and I can recommend doing so. There are a couple of
XU4/ARM related issues I ran across while getting
things installed that are worth mentioning:

Installing Docker

Installing Docker via apt on ARM does not seem
possible at this time, resulting in the following error:

E: Package 'docker-ce' has no installation

candidate

However, using the Docker installation script from
get.docker.com works just �ne.

$ sudo apt install curl

$ curl -fsSL get.docker.com -o get-docker.sh

$ sh get-docker.sh

Once the script has �nished, be sure to add your user
to the Docker group.

$ usermod -aG docker

Docker Compose Installation

Presently there is not a binary release for ARM64. It
appears there is movement to get this into the o�cial
builds, so this may not be necessary in the near
future. For now, however, you can install via pip.

https://github.com/DaveBurkhardt/cloudshell-nmon#readme

$ sudo apt install python-pip libffi-dev

$ pip install docker-compose

$ Portainer

While I don’t wish to detail all of the
containers/applications I have running, I feel that
Portainer is worth mentioning. Portainer provides a
nice web GUI where you can quickly see the status of
all of your containers, volumes, networks, etc. Further,
you can perform actions on them like restarting a
container. I’ve found this very useful to quickly
troubleshoot things without having to shell into the
box to see what’s going on.

Figure 3 – Portainer web-ui

Trae�k with Pi-hole DNS

Another very common application used in a docker
setup is the trae�k reverse proxy. While I have no
intention of exposing this NAS to the greater web, I do
want to be able to access the various applications
using human friendly domain names. Thankfully my
local network has a box running pi-hole for LAN-wide
ad blocking. Pi-hole uses dnsmasq, and if you use pi-
hole on your network you can set a con�g �le to tell
dnsmasq to wildcard a domain su�x. For instance on
the box running pi-hole you can create a conf �le in
/etc/dnsmasq.d/, let’s call it 02-nas.conf, and the �le
should contain the line:

Wildcarding for domains to the NAS

address=/.nas/192.168.xxx.xxx

Where 192.168.xxx.xxx is the local IP of your NAS,
then restart the dnsmasq service.

$ pihole restartdns

What this con�guration does is direct dnsmasq to
point everything on the LAN requesting a domain with
the. nas su�x to the NAS. Now on the trae�k side we
can use. nas domains for our containers. For instance,
we could add this label for Portainer in our Docker
Compose �le:

labels:

 -

"traefik.frontend.rule=Host:portainer.nas"

Now if you navigate to portainer.nas in a browser on
a machine on the LAN, you will be presented with the
Portainer application! I’ve found this to be incredibly
handy, especially as the number of applications with a
web interface I have on the NAS increases.

Impressions

As of this posting I have been using this setup for just
over a year, and I am very pleased with it. The system
itself is on 24/7 and has been very stable. Setting
things up with Docker has also proven to be quite
useful. It’s easy to spin up and try out new
applications, conversely its equally trivial to
completely remove applications I am no longer
interested in. This has made for an excellent self-
hosted testbed.

It has been interesting to see what the standout
applications for me are. There are three I actively use
every day, Nextcloud, Mini�ux RSS reader, and ZNC
IRC bouncer. I have my phone syncing images,
contacts, and calendars with NextCloud and this
feature alone has become indispensable for me. Since
the demise of Google Reader I had been using Feedly
to handle all of my RSS subscriptions. Happily,
importing an opml �le containing my subscriptions
and tags from Feedly was simple. I was able to
seamlessly begin using mini�ux, and I haven’t looked
back. Lastly, I went down a small rabbit hole after
getting frustrated having multiple chat windows open
to converse with people across various chat platforms
(hangouts, slack, discord, irc). I wound up being able
to let ZNC not only stay logged into IRC, but through

the use of BitlBee, all of my other chat accounts as
well. This means all of my chats can be consolidated
into one IRC client connecting to my self-hosted ZNC
instance.

This setup has also been useful in exploring new
projects and experimentation. For instance, I’ve been
working on local �rst/only home automation. Running
node-red, Telegraf/In�uxDB, Grafana, and
HomeAssistant has worked out very well in this box,
and so far has proven to be an excellent ‘hub’
communicating to other SBCs running these
automation projects.

The question that always seems to come up when I
talk about this device is about performance. While I
have not run any serious performance tests, for my
somewhat modest needs, it has been more than
adequate. The only place I’ve noticed any lag is when
viewing very large NextCloud galleries, which I believe
is more of a software issue. I have not setup
something like Plex, Emby, or Jelly�n (though I have
been considering it), so I cannot speak to the
application performance there.

Overall the XU4 CloudShell2 has proven to be a
capable little home server, especially for the price. I’ve
learned a lot during its setup and use, and it has
comfortably become a part of my daily work�ow. If I
were to do it all again, I think I may attempt a cluster
of ARM devices much like Nikhil Jha has detailed. This
is not because I’m in any way disappointed with this
device, but rather you can build up to a very robust

machine one piece at a time. However, I am in no
hurry to move o� the XU4 CloudShell2, and I fully
expect it to continue serving my needs for the
foreseeable future.

Resources

The o�cial ODROID Cloudshell-2 wiki.
https://wiki.odroid.com/accessory/add-
on_boards/xu4_cloudshell2/xu4_cloudshell2

Dave Burkhardt’s excellent modi�cations to nmon
for the XU4 and CloudShell LCD
https://github.com/DaveBurkhardt/cloudshell-
nmon

Nikhil Jha’s blog post about self-hosting on an
ARM cluster.
https://nikhiljha.com/posts/armclustertutorial/

A great self-hosting rundown from s-ol using
Docker and some cool automatic deployment with
git. https://mmm.s-ol.nu/blog/self-
hosted_virtual_home/

Awesome-Selfhosted is a curated list of
applications and services that can be hosted
locally. https://github.com/Kickball/awesome-
selfhosted

The Self-Hosted Podcast is a fantastic source of
ideas and inspiration. https://selfhosted.show/

The original article can be found at the following
like: https://electro.pizza/2020/05/selfhosting-
cloudshell2/index.html

https://wiki.odroid.com/accessory/add-on_boards/xu4_cloudshell2/xu4_cloudshell2
https://github.com/DaveBurkhardt/cloudshell-nmon
https://nikhiljha.com/posts/armclustertutorial/
https://mmm.s-ol.nu/blog/self-hosted_virtual_home/
https://github.com/Kickball/awesome-selfhosted
https://selfhosted.show/
https://electro.pizza/2020/05/selfhosting-cloudshell2/index.html

ODROID-GO Advance Black Edition
 June 1, 2020 By Justin Lee, CEO of Hardkernel ODROID-GO Advance

On May 24, 2020, Hardkernel announced the
availability of the upgraded ODROID-GO Advance
Black Edition. The upgraded version is also available is
the legacy Clear White edition.

Fig 01 - Black edition

The upgrade enhances usability and covers the
following areas:

1) The power input port has changed to a USB Type-C
connector. This allows common smartphone chargers
and cables to be used. However, there are a few
limitations. The Type-C port is not a fully featured USB-
PD (Power Delivery) protocol interface. There is no USB

data communication feature either. It is just a “dumb”
power input used for battery charging only.
Additionally, one or two pins of the 10pin GPIO port
may be obstructed when charging the device.

2) A 802.11n SDIO WiFi module has been mounted on
the PCB by default. You can download ROMs via the
wireless connection, and multi-player features would
be feasible sometime in the future without requiring
an external USB WiFi dongle. Tested throughput with
the “iperf” tool was about 40~50Mbps and SMB/NFS
�le transfer speed was around 4~6MiB/s.

3) L2 and R2 shoulder buttons added. Many users
requested it, and we added it. It is hoped that many
PSX game fans will enjoy it. We are aware the shape of
the new L2 and R2 buttons is not perfect, but it is
better than nothing.

4) A new shell case color is available. There will be two
options for shell cases: Aura Black and Clear White.
Both shells are made with transparent resins allowing
the status LEDs to be visible on the back side. The color
of the PCB also changed to black from white.

The front and back of the PCB looks like so:

Fig 02 - Front

Fig 03 - Back

Note that there are two additional tact switches on
the edge side for L2 and R2 buttons. You can also �nd
the USB Type-C connector and the SDIO WiFi module
easily.

Fig 04 - Top

Linux device drivers for the SDIO WiFi module and the
L2/R2 buttons are already included in our Kernel
source repo. A new Ubuntu 20.04 based OS image
including this support will be provided by in the near
future. The new OS image and Kernel will be fully
compatible with the original ODROID-GO Advance

The various components of the package are shown
below:

Assembly details can be found at the link listed in the
reference section below.

Reference

https://www.hardkernel.com/shop/odroid-go-
advance-black-edition/
https://forum.odroid.com/viewtopic.php?
f=187&t=38629
https://wiki.odroid.com/odroid_go_advance/start

https://www.hardkernel.com/shop/odroid-go-advance-black-edition/
https://forum.odroid.com/viewtopic.php?f=187&t=38629
https://wiki.odroid.com/odroid_go_advance/start

