

Building an ODROID GameStation Turbo (OGST) Case For Your
ODROID-XU4
 January 1, 2020

The reason why we want to use the larger OGST case is because it comes with an
expansion board that allows you to add power and reset buttons to the case and a

place to hold an external USB harddrive. This will allow you to increase the available storage space

Retro ESP32: The Ultimate Emulation Image for Your ODROID-GO
 January 1, 2020

Retro ESP32 is the ultimate feature-packed launcher for the ODROID-GO. The launcher
includes color schemes and theming by drawing inspiration from the popular
RetroArch emulator front end. We packed 11, at the time of publication, pre-bundled

emulators including ROM / Game manager. Additionally, each emulator includes an in game menu

How To Con�gure And Use The CAN Bus: Using the ODROID-N2 With
Microcontrollers
 January 1, 2020

How to enable the CAN bus on ODROID-N2 via HW SPI interface. Learn detailed
instructions to acquire data via a MCP2515 Bus Monitor board are documented here

ODROID-GO Advance: The Newest Generation of Hardkernel’s Most
Popular Handheld Computer
 January 1, 2020

We continued to hear from users who wanted to play 16-bit or 32-bit retro games on a
handheld device, so we now bring you the ODROID-GO Advance!

Monku R4 With An ODROID-N2 and Batocera Linux: The Best Retro
Gaming Console You Can Build for Around $100
 January 1, 2020

This tutorial covers the process of setting up an ODROID-N2 with 2GB of RAM and
iInstalling Batocera Linux so we can use our ODROID-N2 as a TV retro gaming console.

Kernel 5.4 Development Party
 January 10, 2020

Let's start the 5.4 kernel development party.

The G Spot: Your Goto Destination for All Things That are Android
Gaming: Google Drops the Ball; Giphy is a Ball; and ODROID-N2
Wins it ALL!
 January 1, 2020

Well that was special, wasn’t it? If you’re one of the thousands of Google Stadia
Founder’s Edition subscribers, then you know exactly how Google dropped the ball on launch day. This o�cial
Google Stadia Tweet pretty much sums up the entire mess: “Here’s the latest update: If you ordered and

Kubernetes On An ODROID-N2 Cluster
 January 1, 2020

Overview Kubernetes (or k8s for short) is an extensible open source container
orchestration platform designed for managing containerized workloads and services at
scale. It helps in automated deployment, scaling, and management of container centric

application workloads across a cluster of nodes (bare-metal, virtual, or cloud) by orchestrating compute,
network, and

Pearl Linux Motion Video Surveillance System With Kodi: Advanced
Visual Monitoring Using An ODROID-C2
 January 10, 2020

@pearllinux created a video surveillance image based on Ubuntu 18.04 using the
3.16.75 kernel, featuring pre-installed and active upon �rst boot Motion Video

Surveillance Software running in User Mode. Come check it out!

Android Things
 January 10, 2020

Have you ever tried to connect a peripheral device to the GPIO pins on your ODROID
SBC with the Android OS?

Building an ODROID GameStation Turbo (OGST) Case For Your
ODROID-XU4
 January 1, 2020  By Brian Ree  Gaming, ODROID-XU4, Tinkering

The reason why we want to use the larger OGST case
is because it comes with an expansion board that
allows you to add power and reset buttons to the
case and a place to hold an external USB harddrive.
This will allow you to increase the available storage
space on your harddrive size. This tutorial will show
you how to quickly and easily assemble the case and
secure the harddrive to the case. Needless to say, if
you are building a retro gaming console this really
opens up the door for storing a ton more games.

Parts Needed

- A Working Monku Retro 3 / ODROID-XU4:
https://bit.ly/3658Jrp - An OGST ODROID-XU4 Case:
https://bit.ly/2Q6maC9

Tools Needed

- Small Screwdriver Set - Velcro® Strip Permanent or
Removable Velcro Strip - External USB 3 Hard-drive

Reviewing the Parts

Let us take a look at the parts we will be working with.
The following image shows the hardware needed for
using the ODROID-XU4 with OGST as a retro gaming
case.

Figure 1

https://bit.ly/3658Jrp
https://bit.ly/2Q6maC9

The setup I will be working on, shown above, during
this tutorial is an ODROID-XU4 running Lakka. You can
actually use any setup you want on your ODROID-
XU4. If you want more storage space then the OGST
and this tutorial are for you. A wireless Game Sir
controller. A 64GB micro SD for the boot drive. A KESU
external USB 3 harddrive with 250GB of storage. Now
I could have gone bigger but the drive is $40, so this is
the perfect setup for the retro console builder on a
budget. I will post some links for ODROID-XU4
building tutorials and parts below.

- Wired Game Sir Wired Controller (Hard Kernel) $17 -
Wired Game Sir Wired Controller (Amazon) $17 -
Wired Game Sir Wireless Controller $17 - KESU 250GB
USB 3 External Hard-drive $37

Now to hold the drive securely in the case we need
some Velcro® strips. This will give us a secure but
easily detachable way to store the harddrive in the
case. You have two options, super strong permanent
strips or strong but removable strips. If you want to
potentially reuse the hard-drive without having Velcro
strips on it, then you might want to go for the second
option. Here are the links for the two types of strips.

- Heavy Duty Velcro Strips $3 - Removable Velcro
Strips $3

Figure 2

Once you have got that all sorted out you will be
ready to build your advanced case. Remember you
can always go bigger on the harddrive. As long as it
has a similar size to the link provided above it will �t
in the case �ne. I chose to use the super strong
version of the Velcro tape because I wanted the drive
to be �rmly held in place and have very little chance
of coming o�. I also do not intend to use the
harddrive for something else as it was purchased
solely for this console project. Next let us open up our
OGST case and see what is inside.

Figure 3

In the case you will �nd an expansion board with a
small screen. A set of plastic caps, a ribbon cable, 2
USB cables, and some screws; oh and, of course, a
case. The cables are important! They USB A to USB
Micro B cable is perfect for the external USB drive. 7 It
has a 90 degree connector that will make it much,
much easier to house the drive in the OGST case. Let
us take a look at our ODROID-XU4 hardware.

Figure 4

Again, we are using the ODROID-XU4 with a 64GB
micro SD card. You will need a screwdriver at this
point. A standard electronics screwdriver set should
do the trick. Now if you do not know how to setup
your ODROID-XU4 with an OS you can follow the links
below.

- Munku R3/ODROID-XU4 Ubuntu with Retroarch
Multi-use Console - Tutorial Part 1 - Munku
R3/ODROID-XU4 Lakka Retro Gaming Console -
Tutorial Part 1

From this point on, I will assume you have your
ODROID-XU4 device all setup. Because I am building
this case for a retro gaming console and I want to use
every last drop of the device's resources for
emulation I decided not to setup the second screen
on the expansion board. If you want to set yours up,
this may depend on the OS you are using on your
device. You can �nd more information at these links:

- OGST Case Second Screen Info
(https://bit.ly/2tdvwTl) - OGST Case Second Screen
Info (https://bit.ly/2MCbNDP)

Prepping The Case Top

The board mounts upside down on the top side of the
case. This is perhaps a bit unusual but as you will
soon see the case is wonderfully designed and very
easy to use. The two pictures below depict the
mounted ODROID-XU4 board on the top side of the
OGST case. TIP: Take your time with the screws. The
�t is a little strange due to the larger threading on the
screws. Just take your time and carefully tighten them
until the board is secure. Try not to over tighten them.
The picture shows the ODROID-XU4 board, screws,
case top, and the screwdriver I am using.

Figure 5

The following pictures depict the board in position
and properly screwed into the case top.

Figure 6

Figure 7

Next up we will be setting up the expansion board
and ribbon cable. The picture below depicts the parts
you will need for this step.

Figure 8

We want to connect the ribbon cable to the mounted
board �rst. Make sure you have the direction marker
facing the correct way. The marker requires a slot in
the ribbon cable connector. Line up the slot on the
ribbon cable connector with the mark on the cable
itself. Carefully make sure that the ribbon cable is all
the way into the connector. You may need to take

your time and push it down evenly. TIP: Do not put
too much pressure on the board when you are
attaching the ribbon cable.

Next you will want to attach the expansion board.
Again make sure the ribbon cable mark is properly
aligned with the slot on the ribbon cable connector.
Be extra careful when attaching the ribbon cable to
the expansion board as it is very easy to end up
pressing on the screen and potentially cracking it.
After the ribbon is connected take o� the screen
protection sticker and let the screen sit in the two
guide slots built into the case as shown below. Do not
push it all the way into the case top just yet.

Figure 9

Now we want to connect the USB-to-USB cable. This
splits one USB port on the ODROID-XU4 board into 4
USB ports that are available on the front of the OGST
case. Notice that we want the USB cable to sit on top
of the ribbon cable as shown below. We are working
on the top of the case so everything we are doing will
be �ipped upside down when we are done. The USB
cable should be below the ribbon cable this will make
it easier to access in case you want to take apart the
case.

Figure 10

Finishing Up

Now we are going to prepare the harddrive. Holding
the harddrive upside down use the included drive
USB cable to connect the harddrive to the expansion
board. Notice that we are bending the cable and sort
of visualizing how the harddrive will sit in the case.
This is a good time to make sure that the drive can �t
and that the cables all behave nicely. Take a look at
the picture below. In this shot I'm double checking
how the cable works with the drive's cable
connection. It looks like it will play nicely with the
case.

Figure 11

Figure 12

Ok, so we still have not put anything together yet. We
need to do a little more work to make sure the drive
sits on the bottom of the case properly. While leaving
the top of the case as is, put the bottom of the case
next to it and place, but do not adhere, the Velcro
strips where you want them. I usually put the loop
part on the drive. You can set it up any way you like. If
you use wider strips the hold will be stronger and you
will have more �exibility in how you place the
harddrive on the bottom of the case. The photo below
shows my �rst attempt at placing the velcro strips. I
eventually doubled up on the strips to make the
contact surface bigger. TIP: Make sure that the drive's
cable is taken into account when setting up the Velcro
strips on the case bottom.

Figure 13

Next up you will want to set the expansion board
�rmly in place. Be careful to make sure it goes in
evenly. If one side is farther down the plastic guides
you will not be able to seat the board properly. Resist
the urge to apply a lot of pressure during this step.
Just apply enough force to get it set properly. Now
you can place the top of the case vertically on your
work surface and place the drive and the bottom part
of the case next to it with the USB drive cable
attached as shown below. This should be the �nal
check before we begin to close up the case.

Figure 14

Finally, it is time to close the case! Bring the two sides
together. Make sure the USB cables are below the
expansion board's ribbon cable. Make sure the
harddrive's USB cable is looped and set properly and

that the drive is secured with Velcro strips. Close the
case and put the two grey plastic caps over the front
USB ports. TIP: Make sure to align the two small
ridges on one side of the cap. These line up with small
ridges on the case itself.

Figure 15

Congratulations! You are done. You have now added
larger drive storage to your ODROID-XU4 build! The
pictures below depict the completed setup. Enjoy!

Figure 16

Figure 17

References

http://middlemind.net/tutorials/odroid_go/mfb_buil
d.html

http://middlemind.net/tutorials/odroid_go/mfb_build.html

Retro ESP32: The Ultimate Emulation Image for Your ODROID-GO
 January 1, 2020  By @32teeth  Gaming, ODROID-GO

Retro ESP32 is the ultimate feature-packed launcher
for the ODROID-GO. The launcher includes color
schemes and theming by drawing inspiration from
the popular RetroArch emulator front end. We packed
11, at the time of publication, pre-bundled emulators
including ROM / Game manager. Additionally, each
emulator includes an in game menu for further ROM
management.

Figure 1 - ESP32 Launch in action on the ODROID-GO

Installation

Installation of Retro ESP32 was made to be very
simple.

1. Download the latest release: https://github.com/retro-
esp32/RetroESP32/releases

2. Unzip the �le

3. Copy RetroESP32.fw to the odroid/�rmware folder of
your prepared SD card (https://github.com/retro-
esp32/RetroESP32/blob/Software/SD%20Card/SDCAR
D.zip)

4. Mount the SD Card back into your ODROID-GO

5. Restart and hold down the B button

6. Select Retro ESP32 from the �rmware list

7. Sit back and relax while your ODROID-GO �ashes the
new �rmware

Supported Emulators

Retro ESP32 supports a wide range of emulators for
you to play on the ODROID-GO. Below is a list of all
the support emulators:

Nintendo Entertainment System Nintendo Game Boy
Nintendo Game Boy Color Sega Master System Sega
Game Gear Colecovision Sinclair Zx Spectrum 48k
Atari 2600 Atari 7800 Atari Lynx PC Engine

User Request

Have a great idea? Want to see a feature added to an
upcoming release? Or, you ran into a problem? Use
our Project (https://github.com/retro-
esp32/RetroESP32/projects/1) and Issue
(https://github.com/retro-esp32/RetroESP32/issues)
sections to submit your information.

References

This project was the work done by the following
authors:

Eugene Yevhen Andruszczenko - Initial and Ongoing
Work - 32teeth

Fuji Pebri - Espressif IOT Consultant - pebri86

This overview was adapted from the README.md of
the project’s GitHub page. For more information
please visit the repo at: https://github.com/retro-
esp32/RetroESP32/

https://github.com/retro-esp32/RetroESP32/releases
https://github.com/retro-esp32/RetroESP32/blob/Software/SD%20Card/SDCARD.zip
https://github.com/retro-esp32/RetroESP32/projects/1
https://github.com/retro-esp32/RetroESP32/issues
https://github.com/32teeth
https://github.com/pebri86
https://github.com/retro-esp32/RetroESP32/

How To Con�gure And Use The CAN Bus: Using the ODROID-N2
With Microcontrollers
 January 1, 2020  By Justin Lee, CEO of Hardkernel  ODROID-N2, Tinkering, Tutorial

This article explains how to enable the CAN bus on
ODROID-N2 via HW SPI interface. The detailed
instructions to acquire data via a MCP2515 Bus
Monitor board are documented here, as well.

Fig. 01

H/W connection

The following products are required to con�gure the
hardware:

ODROID-N2

Tinkering kit

MCP2515 CAN module

Fig. 02

Fig. 03

Fig. 04

Reference circuit

Fig. 05

With tinkering kit

Fig. 06

Fig. 07

Software installation

Note:

Operation con�rmed with ODROID-N2 Ubuntu
minimal image on 4.9.205-64 kernel.

The can-bus example uses the same cs-pin as spidev,
so both must not be enabled at the same time.

If spidev is enabled, the can-bus may not work
properly.

Updating of the kernel is highly recommended. This is
available with Linux odroid 4.9.205-64 or higher
version

root@odroid:~# apt update && apt full-upgrade

Enable the modules using **device-tree-compiler**

root@odroid:~# apt install device-tree-compiler

Change the status to **okay** on the SPI nodes of
the device tree.

SPICC0

root@odroid:~# fdtput -t s

/media/boot/meson64_odroidn2.dtb

 /soc/cbus@ffd00000/spi@13000

[status okay

root@odroid:~#

can0

root@odroid:~# fdtput -t s

/media/boot/meson64_odroidn2.dtb

/soc/cbus@ffd00000/spi@13000/can@0

status okay

root@odroid:~#

Check if the status changed.

SPICC0

root@odroid:~# fdtget

/media/boot/meson64_odroidn2.dtb

 /soc/cbus@ffd00000/spi@13000

Status okay

root@odroid:~#

can0

root@odroid:~# fdtget

/media/boot/meson64_odroidn2.dtb

/soc/cbus@ffd00000/spi@13000/can@0

Status okay

root@odroid:~#

Then reboot to apply the changes. you can also check
if the modules were correctly loaded.

root@odroid:~# lsmod | grep spi

spi_meson_spicc 20480 0

root@odroid:~# lsmod | grep mcp251x

mcp251x 24576 0

can_dev 24576 1 mcp251x

root@odroid:~#

Verifying CAN support con�guration

Verify the CAN host driver is registered correctly.

root@odroid:~# ls /sys/class/net/

can0 eth0 lo

root@odroid:~# ifconfig can0

can0: flags=128 mtu 16

 unspec 00-00-00-00-00-00-00-00-00-00-00-00-

00-00-00-00 txqueuelen 10 (UNSPEC)

 RX packets 0 bytes 0 (0.0 B)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 0 bytes 0 (0.0 B)

 TX errors 0 dropped 0 overruns 0 carrier 0

collisions 0

root@odroid:~#

Power on the CAN hardware. Set the bitrate before
performing all operations Example: Set the bitrate of
the can0 interface to 125kbps:

root@odroid:~# ip link set can0 type can bitrate

125000 triple-sampling on

root@odroid:~# ifconfig can0 up

root@odroid:~# ifconfig

can0: flags=193<UP,RUNNING,NOARP> mtu 16

 unspec 00-00-00-00-00-00-00-00-00-00-00-00-

00-00-00-00 txqueuelen 10 (UNSPEC)

 RX packets 0 bytes 0 (0.0 B)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 0 bytes 0 (0.0 B)

 TX errors 0 dropped 0 overruns 0 carrier 0

collisions 0

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>

mtu 1500

 inet 192.168.10.8 netmask 255.255.255.0

broadcast 192.168.10.255

 inet6 fe80::e160:7710:5360:f82a prefixlen

64 scopeid 0x20

 ether 02:00:00:0d:1d:01 txqueuelen 1000

(Ethernet)

 RX packets 24 bytes 6066 (6.0 KB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 54 bytes 6420 (6.4 KB)

 TX errors 0 dropped 0 overruns 0 carrier 0

collisions 0

 device interrupt 22

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536

 inet 127.0.0.1 netmask 255.0.0.0

 inet6 ::1 prefixlen 128 scopeid 0x10

 loop txqueuelen 1 (Local Loopback)

 RX packets 129 bytes 10117 (10.1 KB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 129 bytes 10117 (10.1 KB)

 TX errors 0 dropped 0 overruns 0 carrier 0

collisions 0

root@odroid:~#

Install the SocketCAN utils.

The can-utils package is a collection of CAN drivers
and networking tools for Linux. It allows interfacing
with CAN bus devices in a similar fashion as other
network devices.

sudo apt install can-utils

We need to perform the Loopback test on a single
CAN port. Set loopback mode on can0

ifconfig can0 down

ip link set can0 type can bitrate 125000 loopback

on

ifconfig can0 up

ip -details link show can0

root@odroid:~# ifconfig can0 down

root@odroid:~# ip link set can0 type can bitrate

125000 loopback on

root@odroid:~# ifconfig can0 up

root@odroid:~# ip -details link show can0

3: can0: <NOARP,UP,LOWER_UP,ECHO> mtu 16 qdisc

fq_codel state UNKNOWN mode DEFAULT group default

qlen 10

 link/can promiscuity 0

 can <LOOPBACK,TRIPLE-SAMPLING> state ERROR-

ACTIVE restart-ms 0

 bitrate 125000 sample-point 0.850

 tq 400 prop-seg 8 phase-seg1 8 phase-seg2

3 sjw 1

 mcp251x: tseg1 3..16 tseg2 2..8 sjw 1..4

brp 1..64 brp-inc 1

 clock 5000000numtxqueues 1 numrxqueues 1

gso_max_size 65536 gso_max_segs 65535

root@odroid:~#

The following command shows the received message
from the CAN bus

candump can0

On a second terminal, The following command sends
3 bytes on the bus (0x11, 0x22, 0x33) with the
identi�er 500.

cansend can0 500#11.22.33

How to test CAN-bus link between 2
ODROID-N2 boards

Connect CANL, CANH pins between two ODROID-N2
boards

Fig. 08

Power-up both boards and type the following into the
shell of both boards for con�guring the CAN bus
device:

ip link set can0 type can bitrate 125000 triple-

sampling on

ifconfig can0 up

Type the following into the shell of board 1 (which is
used for testing/receiving over the can0 device):

candump can0

Type the following into the shell of board 2 (which is
used for testing/sending data packets over the can0
device):

cansend can0 500#11.22.33

At this point, board 1 will receive the data packet sent
from board 2:

root@odroid:~# candump can0

 can0 500 [3] 11 22 33

 can0 500 [3] 11 22 33

References

https://wiki.odroid.com/odroid-
n2/application_note/gpio/can-bus

https://wiki.odroid.com/odroid-n2/application_note/gpio/can-bus

ODROID-GO Advance: The Newest Generation of Hardkernel’s
Most Popular Handheld Computer
 January 1, 2020  By Justin Lee, CEO of Hardkernel  Gaming, ODROID-GO Advance, ODROID-GO

We announced the ODROID-GO in 2018 June to
celebrate our 10th birthday. It was amazing and fun
to be able to emulate old-school 8-bit retro games
with more than expected performance with only the
MCU, rather than a high-end MPU. The device has
been very popular not only for gaming but also for
education.

Figure 1 - ODROID-GO Advance

Figure 2 - ODROID-GO Advance

We continued to hear from users who wanted to play
16-bit or 32-bit retro games on a handheld device
with more advanced features and capabilities.
Therefore, we researched a new platform this year
and found a suitable solution, so we've spent several
months developing a new 64-bit Linux-powered
device. This new device, called the ODROID-GO
Advance, has a modern 64bit ARM low-power quad-
core processor as well as wide-viewing-angle 3.5inch
LCD.

ODROID-GO Advanced speci�cations

Processor CPU : RockChip
RK3326(Quad-Core ARM
Cortex-A35 1.3GHz) GPU :
Mali-G31 Dvalin

Memory 1GB (DDR3L 786Mhz, 32
Bits bus width)

Storage SPI Flash(16Mbytes Boot),
Micro SD Card slot(UHS-1
Capable interface)

Display 3.5inch 320×480 TFT LCD
(ILI9488, MIPI interface)

Audio Earphone Jack, 0.5Watt 8Ω
Mono

Battery Li-Polymer 3.7V/3000mAh,
Up to 10 hours of
continuous game playing
time

DC Jack 2.5mm diameter DC plug: A
USB charging cable is
included in the package

External I/O USB 2.0 Host x 1, 10Pin
port(I2C, GPIO, IRQ at
3.3Volt)

Input Buttons F1, F2, F3, F4, F5, F6, A, B, X,
Y, Direction Pad, Left
Shoulder, Right Shoulder,
Analog joystick

Power consumption Power consumption Game
emulation: 100~115mA,
Sleep mode: 5.3~5.8mA,
Power o�: 0.1mA

At this moment, the trial BSP image supports the
following systems:

Atari 2600

Atari 5200

Atari 7800

Atari Lynx

Gamegear

Gameboy

Gameboy Advance

Gameboy Color

Sega Master System

Sega Genesis

Nintendo

PC Engine

PC Engine CD

Sony PlayStation

Sega CD

Super Nintendo

Sony PlayStation Portable

You can check out some videos of the ODROID-GO
Advance in action at https://youtu.be/okVJe6ywc4c
and https://youtu.be/im46rlz0Nwg. It will be
available for USD $55 starting at the end of January
2020.

https://youtu.be/okVJe6ywc4c
https://youtu.be/im46rlz0Nwg

Figure 3 - ODROID-GO Advance external annotated
diagram

A PMIC(RK817) including a charger and audio
features. B D-pad buttons C I ~ VI buttons (F1, F2, F3,
F4, F5, F6) D X, Y, A, B buttons

Figure 4 - ODROID-GO Advanced internal annotated
diagram

A CPU : Rockchip RK3326 B RAM : 1GB DDR3L C SPI
Flash(16Mbytes Boot) D MicroSD card slot E Forced
SD card boot(without spirom) F UART port(But not
mounted default) G Speaker connector H Battery
connector I USB 2.0 type-A Host J Statue LED(charger,
alive, power) K DC Power Jack L 10pin expansion port
M Audio jack N 20pin LCD connector O PWR switch P
Analog joystick connector Q Left trigger button R Right
trigger button

How to use it

The following links provide information on how to to
use the ODROID-GO Advance:

Building with ODROID-GO-Advance kit

Installing OS image on your SD card

Transferring game roms via SD card
reader (Linux HOST-PC)

Insert your SD card which you have installed to your
HOST-PC and then copy game ROMs to /roms folder,
as shown in Figure 5.. You can copy your game ROMs
into the /roms folder without any permission.

Figure 5 - The ODROID-GO Advance /roms folder

Since the SD card data partition �le system is EXT4,
you can't access it from a Windows PC, so we need to
prepare a way to transfer ROM �les from a USB
storage on the system. First of all, you can check your
network environment. If you have any USB network
module, follow this instructions at Connecting your
GO-Advance to an wireless network with an extra
USB WiFi adapter. Compatible WiFi dongles are sold
separately (WiFi module 0, WiFi module 3, WiFi
module 5A) After that, you can send your game ROMs
to the GO-Advance with the “scp” command on your
HOST-PC:

$ sudo apt install ssh

$ scp odroid@:/roms//

For example:

$ ping 192.168.0.10

$ scp test.gba odroid@192.168.0.10:/roms/gba/

For more information, please visit the ODROID Wiki at
https://wiki.odroid.com/odroid_go_advance/start.

https://wiki.odroid.com/odroid_go_advance/go_adv_assembling
https://wiki.odroid.com/odroid_go_advance/make_sd_card
https://wiki.odroid.com/odroid_go_advance/wifi
https://wiki.odroid.com/odroid_go_advance/wifi
https://www.hardkernel.com/shop/wifi-module-0/
https://www.hardkernel.com/shop/wifi-module-3/
https://www.hardkernel.com/shop/wifi-module-5a/
https://wiki.odroid.com/odroid_go_advance/start

Monku R4 With An ODROID-N2 and Batocera Linux: The Best
Retro Gaming Console You Can Build for Around $100
 January 1, 2020  By Brian Ree  Gaming, ODROID-N2, Tutorial

Before we begin you need to gather the following
items. All these items can be ordered from
Hardkernel:

- ODROID-N2 (2GB of RAM) - ODROID-N2 Case - 64GB
Micro SD Card x2 - HDMI Cable x1 - Power Supply
12V/2A x1 - GameSir Wired Controller x1 - A 16GB or
32GB eMMC Memory Module - A Micro SD to USB
Adapter - An eMMC to Micro SD Adapter

Introduction and Tutorial Goals

This tutorial covers the process of setting up an
ODROID-N2 with 2GB of RAM and iInstalling Batocera
Linux so we can use our ODROID-N2 as a TV retro
gaming console. I lovingly call this device the Monku
R4. I will cover setting up the operating system,
setting up the ROMs and BIOS �les, and I'll cover
getting box art and screenshots for your ROMs. In my
opinion this is the BEST retro gaming console you can
build for your money. It runs a ton of emulators and it

runs them all very well. Let's take a look at some of
the emulators it will run. I've personally set one up to
run the following emulators.

Atari 2600

Atari 5200

Atari 7800

C64

Colecovision

DOOM

Dreamcast

FBA MAME

Game Boy

Game Boy Advance

Game Boy Color

Intellivision

Jaguar

Lynx

Magnavox Odyssey

MAME

MS-DOS

MSX 1/2

N64

NES

NEO-GEO Pocket

NEO-GEO Pocket Color

PSP

PS1

ScummVM

Sega 32X

Sega CD

Sega GameGear

Sega Genesis

Sega Master System

Sega SG-1000

SNES

Turbo Grafx 16

Turbo Grafx 16 CD

Virtual Boy

WonderSwan

WonderSwan Color

ZX Spectrum

A note about cost: I say in the title that this is the best
retro gaming console you can build for under $100,
however, you would have to get only one 64GB SD
card, and the smaller eMMC module to keep the price
around $100. I do recommend getting the dual pack
of 64GB SD cards because you can make a backup.
Now that you have an idea of what you're working
with, and just to be clear the ODROID-N2 is much
more powerful than the ODROID-XU4 (Sorry ODROID-
XU4 fans), I'm tailoring this tutorial to use an eMMC
module as the bootable OS drive to get even more
performance out of the ODROID-N2. You can decide
to run things entirely o� a micro SD card or a larger
eMMC module, if you see �t. I won't cover these in
detail but you can take di�erent parts of the tutorial
and apply them to an SD-card-only or eMMC-only
implementation. The separation we have between the
OS and the ROMs allows us to keep the SD card
separate from the OS and on a Fat32 �lesystem. This
means we can pop out the SD card and plug it into
any computer and edit it, as needed. It is a bit more

di�cult to do the same thing with a bootable ext4
Linux �lesystem for the Mac OS or Windows PC. TIP: If
you are opting for a single storage install, only eMMC
or only SD, then you will most likely have to login to
your device via SSH at some point in the setup
process to con�gure it. The default root password for
the device is Linux.

Setting Up the eMMC Module

Let's take a look at the hardware we'll need to write to
the eMMC module. Below is a picture of the eMMC to
micro SD adapter. Below that is a picture of the
adapter and the eMMC module. I'll be using a 32GB
module, but you really only need a 16GB module
because we're going to use it to house the OS. If you
want to perform a more advanced setup with ROMs
in multiple locations, eMMC and SD, then you'll
probably want a 32GB or larger eMMC.

Figure 1 - eMMC module and SD adapter

Figure 2 - eMMC module mounted in the SD card adapter

If you are new to eMMC modules I recommend going
through the following tutorial as I'll only cover the
image writing process here and not any eMMC
speci�c steps.

- Working with eMMC Modules Tutorial

You'll want to get a copy of the latest version of
Batocera Linux for the ODROID-N2. Batocera Linux is
based on Recalbox Linux so if you're familiar with
RecalBox then you are ahead of the game. Use the
links below to locate the latest version of Batocera
Linux for the ODROID-N2 and download it. TIP: While
this tutorial focuses on the ODROID-N2 you can use it
as a general guide for installing Batocera Linux on
other hardware like the ODROID-XU4.

- Batocera: General Download Page

- Batocera: ODROID-N2 Speci�c Download Page

Once you've got your image ready it's time to get
some software that you can use to �ash the eMMC
module. If you are using a Mac I recommend getting
Balena Etcher. It works great and I highly recommend
it. If you're using Windows you can grab a copy of
Win32 Disk Imager. Though not as pretty as Balena
Etcher, Win32 Disk Imager gets the job done. For

Linux users you'll have to perform the following steps.
Don't worry it's not too bad.

1. Insert your SD card into your computer. 2. Locate
the device, by running sudo fdisk -l. It will probably be
the only disk about the right size. Note down the
device name; let us suppose it is /dev/sdx. If you are
in any doubt, remove the card, run sudo fdisk -l again
and note down what disks are there. Insert the SD
card again, run sudo fdisk -l and it is the new disk. 3.
Unmount the partitions by running sudo umount
/dev/sdx*. It may give an error saying the disk isn't
mounted - that's �ne. Copy the contents of the image
�le onto the SD card by running

$ sudo dd bs=1M if=your_image_file_name.img

of=/dev/sdx

Of course, you'll need to change the name of the
image �le, as appropriate. You'll also need to adjust
the destination argument, of, to match the target
device in your environment. ALERT: Ensure the drive,
device, drive letter you are �ashing are correct. Make
sure you are not overwriting another important drive!
I'll include images of the process as it looks on Mac.
You may be prompted to gain admin privileges on
Mac and Windows.

Select the image �le that you want to �ash to the
eMMC module. The image �le depicted below is not
the �le you'll be using for this tutorial. You'll be using
your Batocera Linux ODROID-N2 image �le.

Figure 3 - The compressed image �le

http://middlemind.net/tutorials/odroid_go/emmc.html
https://batocera.org/download
https://batocera.org/upgrades/odroidn2/stable/last/batocera-5.24-odroidn2-20191105.img.gz

Figure 4 - Answer any prompts for admin privilege

Figure 5 - Double check that you're indeed �ashing the
correct device and that it is the correct approximate
size.

Figure 6 - Start �ashing the device and wait for the
process to complete.

On a Windows PC, if you're using the software tool
listed above, you would see something like the
following before clicking the Write button. Again wait
for the tool to �nish writing the image to the eMMC
module. Also, the image �le depicted below is not the
�le you'll be using for this tutorial. You'll be using your
Batocera Linux ODROID-N2 image �le. ALERT: Make
sure that you choose the correct drive letter. Triple
check the letter so you don't overwrite another
important drive!!

Figure 7 - Win32 Disk Imager

Next let's boot up the device and test out the OS. The
image below shows the ODROID-N2 with a red arrow
next to the eMMC module slot and a blue arrow next
to the SD card slot. If you're going the micro SD card
route you'll need to remove the card while setting up
the case.

Figure 8 - eMMC in red, and SD Card is blue

Connect the eMMC module to the ODROID-N2 as
shown below and prepare a static free surface for the
device. You'll want to get your 12V/2A power supply
ready.

Figure 9 - 32GB eMMC module loaded onto N2

Make sure you have the white switch on the back of
the ODROID-N2 pushed all the way to the right to
boot o� of the eMMC module. Push it all the way to
the left to boot o� of the micro SD card. In our case
we'll be going with pushing it to the right to boot o�
of the eMMC module. We'll still be able to access the
micro SD card as a drive.

Figure 10 - white switch is set to the right, and SD card is
inserted

Plug in the power supply, plug in the HDMI cable, hold
your breath and with any luck you'll be looking at a
screen similar to the one depicted below. Nice!

Figure 11 - Menu up and running

Turn o� the ODROID-N2 by exiting out of the device
using a keyboard. Or, if you have your game
controller handy you can con�gure it via the Batocera
Linux UI and then power down the device. I'll be
covering how to con�gure things in detail in just a bit.
That brings us to the end of this section of the tutorial
next up we'll be setting up the case and then moving
on to some con�guration and customization topics.

Putting Together the Case

The case is actually ingeniously designed as you'll
come to see. One thing that is cool is that the whole
thing rests on a heat sink. That's right, the bottom of
the N2 is a big heatsink but it also acts as a really solid
base for the device. TIP: Use black electrical tape and
place 4 pieces on the base of the ODROID-N2's
heatsink, the two main pieces of metal that actually
touch the surface it's resting on. Place one piece near
each of the four corners. This will create a softer
contact with di�erent surfaces and also prevents
sliding. Lay out the ODROID-N2 and the parts of the
case as shown below.

There is a little ridge on the left and right edge of the
ODROID-N2, take the smaller case top - the one on
the left in the image above - and slide it onto the
ODROID-N2 being careful to keep it on the guide
ridges. The image below shows the smaller front part
of the case in position and the guide ridges.

Figure 12 - little ridge on the left and right edge of the
N2

Next slide in the larger case top till the two meet.
Make sure to keep it straight while pushing it gently
along the guide ridges. The two case top pieces will
meet and click together with a small clasp. Viola, the
case is done!

Figure 13 - Finished case

Figure 14 - Glamour shot

Case closed, lol. Ok so now that we have the ODROID-
N2 properly housed and protected, replace your SD
card, if you're using that method, in the slot on the
back of the case. Boot up the device one more time to
make sure everything is in order. That brings us to the
end of this section. Next up we're going to work on
con�guring our micro SD card as an external
�lesystem that Batocera Linux uses for accessing
ROMs. I'll also cover setting up controllers, advanced
Batocera Linux con�guration options, and grabbing
ROM box art in this tutorial.

Con�guring the Controller and Micro SD Card

First let's get the controller con�gured. If your
controller isn't working the way you expect, you can
use a USB keyboard to navigate the main menu. Try
pressing the start button or equivalent on your
controller this will bring up the main menu. You can
also use a keyboard and press the spacebar to bring
up the main menu. The GameSir controller we
recommend here has a start button. You should see
something similar to what's depicted in the image
below. Select the Controller Settings menu option.
TIP: If you are using a keyboard to navigate the menu

system, the enter key is used to make selections, the
esc key is used to go back to a previous menu, and
the space bar is used to close/open the menu system.
Next you'll want to select the Con�gure a Controller
menu option. Selecting this option will bring up a
controller con�guration screen. You can exit this
screen by hitting the start button or the space bar a
second time if you already have your controller
con�gured or you accidentally selected this option
again after con�guration. You will be prompted to hit
certain buttons on the controller in series and then
you're all set. That's it. It's very easy to do. Below is a
picture of the controller con�guration prompt. TIP:
Pressing the blue GameSir controller button and the
start button at the same time will exit out of the
current running emulator. You may need to con�gure
this di�erently for di�erent controllers. TIP: If your
wired GameSir controller isn't being recognized by the
system hold the blue button down for a few seconds
until the little red square on the front of the controller
moves over to the second position. If it still isn't
recognized try position three, then position four.

Figure 15

Figure 16

Next thing we're going to do is setup the micro SD
card to work with Batocera Linux. I recommend using
a 64GB card and getting a pack of two. There are links

above for the ones I use. They are a�ordable and
reliable. Plug in the micro SD card and then bring up
the main menu using the start button or space bar.
Select the System Settings options as depicted below.

Figure 17 - Navigate down to the Storage Device menu
option as depicted below.

Figure 18

This will bring up a selection box that lets you choose
from a few di�erent storage locations. Pick the entry
that has the same name as the micro SD card you put
into the ODROID-N2. The system will now reboot after
you select the drive. During this reboot Batocera
Linux will create, on your micro SD card, a new
�lesystem that will hold all the ROMs, BIOS �les, and
con�gurations for the emulators you want to set up.
That brings us to the conclusion of this section of the
tutorial. We now have a bootable version of Batocera
Linux running on our ODROID-N2 device. We have a
con�gured game controller, and we know how to
navigate the menu system. We also have an external
�le system, our micro SD card, prepped and ready for
ROMs and BIOS �les.

Adding ROMs and BIOS Files

Now we are ready to add ROMs and BIOS �les to the
micro SD card that we set up with the Batocera Linux
external �lesystem in the last section of the tutorial.
You will need an adapter to connect the micro SD

card to your PC or Mac so that you can copy and
paste the �les into the proper directory. Below is a
picture of the contents of the root folder which is
named batocera.

Figure 19

Notice that you have some other options to use on
your Batocera Linux device like Kodi for music and
videos. For our purposes though we're mostly
concerned with the ROMs folder. Open up the ROMs
folder and you will see a directory for each supported
system. Now I'm not 100% sure if every emulator runs
on every piece of hardware that Batocera Linux can
be installed on but certainly all the best ones do. Copy
and paste your ROMs into their corresponding
directory. If you have a question about where to place
ROMs for a certain system just look it up online and
you should be able to locate the proper folder. You
can also read the _info.txt �le in each ROM folder to
see what system it supports.

Figure 20

Next you're going to have to locate the proper BIOS
�les for each system. I can't post them here but they
are easy enough to �nd online with a little searching.
Back out of the roms folder and open up the bios
folder. In the folder there will be a text �le called
readme.txt. Open it up to see what BIOS �les go

where in the bios folder. Most should be placed
directly into the bios folder, some will be placed into
the same directory as the ROMs, the readme.txt �le
will tell where to place them and what �les you need.
TIP: Not every emulator is �nicky about BIOS �les and
will run �ne with good �les even if they don't have the
same MD5 hash. Test each system to see which ones
are having a problem. For the problem systems,
carefully review your BIOS �les. You'll have to �nd an
online tool or utility to get an MD5 hash, Mac and
Linux users should have an MD5 CLI command. Once
you locate the correct �les place them into the proper
folder and retry that system until it works.

Figure 21

You can actually ask Batocera Linux which BIOS �les
are missing. Go to the Game Settings option of the
main menu as shown below.

Figure 22

Scroll down the Game Settings menu option and
locate the Missing Bios menu option as shown below.

A popup will appear with a break down of the missing
BIOS �les for each system. You can use it as a
reference for the systems that you are having trouble
with.

Figure 24

There is just one other thing I want to cover in this
section of the tutorial, advanced system settings. If
you navigate back to the System Settings menu.
Navigate down to the Developer menu and select it
and you'll be taken to a menu where you can adjust
some lower level settings. I recommend the following
settings.

VRAM: 50MB Show Framerate: OFF VSYNC: OFF
Preload UI: OFF Threaded Loading: OFF Async Image
Loading: OFF Optimize Images VRAM Use: ON
Optimize Video VRAM Use: ON

The images below show the Developer menu and the
advanced con�guration options.

Figure 25

Figure 26

I've found that without using some of the above
settings the system can crash sometimes during fast
scrolling. Also I decided to use a smaller amount of
RAM so that the emulators have more RAM to use.
The UI seems to run �ne with 50MB, background
music and ROM art work great.

Getting ROM Box Art and Screenshots

The next step in our project is to setup all the ROM
box art and screenshots. Go to
https://www.skraper.net/ and download the latest
copy of the software. You'll also need to get an
account at https://www.screenscraper.fr/. Please
donate to both sites, if possible. They are awesome
and really help make retro gaming consoles even
more amazing by providing access to box art and
screenshots for a ton of games. Once you have your
account setup �re up the Skraper UI program and
enter in your screenscraper.fr account information.
Test the account to make sure that it is working
properly. You should have a screen similar to the one
depicted below.

https://www.skraper.net/
https://www.screenscraper.fr/

Figure 27

Click on the wizard button on the lower right hand
side of the program's UI. You will be prompted to
enter in your screenscraper.fr, and select the target
ROMs folder you want to process. You should have
your micro SD card connected to your computer and
you'll want to �nd and select the roms folder where
you pasted in your ROM �les. The software will
automatically determine each system that has ROMs
and run a check against each game to see if there is
any artwork available for that game. TIP: Don't run the
wizard against all your systems. Things can break and
then you won't get the proper results. Run the
software one system at a time. Sometimes if you
don't get ROM art results wait a few hours and try
that system again. This approach worked for me and I
was able to get nice results for all of my systems. The
wizard button is depicted below.

Figure 28

The type of artwork that the software builds is really
quite awesome. Take a look below at a sample of the
default graphic it will generate for you.

Figure 29

Once you have collected all the ROM box art and
screenshots you have to adjust one UI Settings
option. Select the UI Settings main menu option and
scroll down to the Parse Gamelists Only option and
set it to on. This will make it so that the UI only shows
the games in the gamelist.xml �le. If you use the box
art scraping software you will have good XML �les and
should use this option. You can always adjust the
games in the XML �les by hand if necessary.

Figure 30

That wraps up our build tutorial for the Monku R4 /
ODROID-N2 retro gaming console. A screenshot of
what the UI looks like is shown below. I hope you
enjoyed it and that it helps you to build an awesome
retro gaming system. For advanced emulator
con�gurations look at the next section in the tutorial.

Figure 31

Advanced Emulator Settings

This section is an add on and contains information on
how to get speci�c emulators up and running and
ensure they are stable.

Sega CD
Problem: Games start to load up and then crash after a
few seconds.
Solution: Get the US set of BIOS �les and make sure
they have the same hash code as required by
Batocera Linux. You can check BIOS issues using the
menu options listed in the tutorial above to see which
�les the system expects.

Atari 5200
Problem: Games either crash with no display or they get
to an emulator error screen saying there was a loading
issue.
Solution: Use a single game to get into the emulator
menu where you can then load di�erent ROMs and
change the cartridge type. For me the game that
worked the best was Asteroids. It will error out but in
the emulator menu you can select the directory to
look for ROMs, this should be a separate directory
than the Batocera Linux one. You should only have
your launch title in the Batocera aware directory. You
can also change what cartridge type should be used
to load in a ROM using the emulator options.
Choosing the Atari standard usually �xes any ROM
loading issues. It is a bit strange but setting it up this
way will ensure that games load and you have control
over how they are loaded up.

Commodore 64
Problem: The emulator runs in a small square on the
bottom left hand side of the screen.
Solution: Cancel out the game load by hitting the B
button. You should be able to get into the emulator
options. Under the video/screen settings choose full

screen. Then back out to the main menu and go to
the settings management option to save your
settings. This will ensure that the emulator will start
o� in full screen mode every time.

Sega Genesis
Problem: Your Sega Genesis games are crashing and are
not stable.
Solution: Load up the SD card on a Windows machine
or a Mac. Go to the folder
batocera/system/batocera.conf. Scroll to the bottom
of the �le until you see megadrive entries. Add in the
following lines: megadrive.core=picodrive
megadrive.emulator-libretro This will force the system
to run the ROMs using a di�erent emulator that isn't
selectable from the UI menus. Your games will be
more stable and you should have no more issues.

Nintendo 64
Problem: Your Nintendo 64 emulator crashes on exit and
Batocera Linux fails to load up again.
Solution: Set the default emulator and core for
Nintendo 64 ROMs to emulator libretro and core
parallel_n64. This combination has worked great for
me. I can exit out of the N64 emulator and get back
into Batocera Linux to choose a new system to run.

SSH Login
You can login into your box over the network using
the default root login, username: root, password:
linux.

This article was adapted from middlemind.net, for
more information or to view the original source
please see:
http://middlemind.net/tutorials/odroid_go/mr4_buil
d.html

http://middlemind.net/tutorials/odroid_go/mr4_build.html

Kernel 5.4 Development Party
 January 10, 2020  By @memeka  Development, Linux, ODROID-XU4

Let's start the 5.4 kernel development party. I pushed
my 5.4 branch based on 5.4.0 at
https://github.com/mihailescu2m/linux/tree/odroid
xu4-5.4.y.

HC-1 sd-card test: * write

64+0 records in

64+0 records out

536870912 bytes (537 MB, 512 MiB) copied, 22.0655

s, 24.3 MB/s

* read

64+0 records in

64+0 records out

536870912 bytes (537 MB, 512 MiB) copied, 6.36601

s, 84.3 MB/s

HC-1 SSD test: * write

64+0 records in

64+0 records out

536870912 bytes (537 MB, 512 MiB) copied, 5.72404

s, 93.8 MB/s

* read

64+0 records in

64+0 records out

536870912 bytes (537 MB, 512 MiB) copied, 1.39248

s, 386 MB/s

1. Download the o�cial Ubuntu image from either of
the following two links:

Mate: https://wiki.odroid.com/odroid-xu4/os_i ...
4/20190929

Minimal: https://wiki.odroid.com/odroid-
xu4/os_images/linux/ubuntu_4.14/20190910-minimal

2. Flash the image using Etcher to your SD card /
eMMC.

3. Insert that card to your Odroid XU4 for the initial
boot sequence. It will resize its root �le system to �t
into your �ash memory capacity. Then, do the
package upgrade:

https://github.com/mihailescu2m/linux/tree/odroidxu4-5.4.y
https://wiki.odroid.com/odroid-xu4/os_i%20...%204/20190929
https://wiki.odroid.com/odroid-xu4/os_images/linux/ubuntu_4.14/20190910-minimal

$ apt update && apt full-upgrade -y

If it fails with a message mentioning a locking
problem, wait for about 5~10 minutes and try again.

4. Mark the linux-kernel-5422 package as “not to be
upgraded”:

$ apt-mark hold linux-odroid-5422.

5. Reboot, then power o� and connect your SD card /
eMMC to your PC.

Building the 5.4 kernel

1. Setup build environment by referring to this guide:
https://wiki.odroid.com/odroid-xu4/soft ... ross-
build, then download the proper toolchain. Export the
environment variables using the toolchain.

2. Mount boot, rootfs partitions of SD card / eMMC to
your PC. It should be mounted automatically on
Ubuntu.

3. Clone @memeka's 5.4 kernel:

$ git clone

https://github.com/mihailescu2m/linux.git --depth

1 -b odroidxu4-5.4.y linux-kernel-odroidxu4-5.4.y.

4. Move to the cloned directory:

$ cd linux-kernel-odroidxu4-5.4.y.

5. Build 5.4 kernel:

$ make odroidxu4_defconfig

$ make -j $(nproc)

6. Copy kernel image and device tree blob to the
media card's boot partition. Replace target path with
yours:

$ sudo cp -f arch/arm/boot/zImage

/media/joshua/boot

$ sudo cp -f arch/arm/boot/dts/exynos5422-

odroidxu4.dtb /media/joshua/boot

7. Install modules:

$ sudo make -j $(nproc) modules_install ARCH=arm

INSTALL_MOD_PATH=/media/joshua/rootfs

$ sync

8. Unmount your boot media card and insert it into
the ODROID-XU4:

uname -a

Linux odroid 5.4.0+ #2 SMP Wed Nov 27 08:17:23 UTC

2019 armv7l armv7l armv7l GNU/Linux

lsb_release -a

No LSB modules are available.

Distributor ID: Ubuntu

Description: Ubuntu 18.04.3 LTS

Release: 18.04

Codename: bionic

For comments, questions, and suggestions, please
visit the original article at
https://forum.odroid.com/viewtopic.php?
f=184&t=36947.

https://wiki.odroid.com/odroid-xu4/software/building_kernel#cross-build
https://forum.odroid.com/viewtopic.php?f=184&t=36947

The G Spot: Your Goto Destination for All Things That are
Android Gaming: Google Drops the Ball; Giphy is a Ball; and
ODROID-N2 Wins it ALL!
 January 1, 2020  By Dave Prochnow  Android, Gaming

Well that was special, wasn’t it? If you’re one of the
thousands of Google Stadia Founder’s Edition
subscribers, then you know exactly how Google
dropped the ball on launch day. This o�cial Google
Stadia Tweet pretty much sums up the entire mess:

“Here’s the latest update: If you ordered and paid for
Founder’s Edition, you should now have your Stadia
access code. Pre-orders and access codes for
Premiere Edition will start shipping early next week.
Thanks for sticking with us!”

Figure 1 - A game logo with a bright future. Image
courtesy of Google Stadia.

On the surface, that sounds innocuous enough, but
this Tweet was issued three days after launch day. As
you probably have now learned, or might have
guessed from reading this article’s title, a huge swath
of early Stadia adopters were left holding the
streaming game service bag with no games to stream.
Sure everything eventually worked out, but this wasn’t
the only hiccup to mar Google’s attempt at “providing
AAA gaming on any device, any time, anywhere.”

In another Tweet (later deleted) from the o�cial
Google Stadia there was a claim that the upcoming
AAA thriller, Red Dead Redemption 2, would run at 4K
quality. Likewise, Google Stadia head honcho, Phil
Harrison has stated in previous comments to this
column, that ALL games would be running in 4K
quality at 60 fps. The only catch here is that at least
two game developers (Destiny 2 and Red Dead
Redemption 2) have clearly and explicitly stated that
their titles do NOT run at those speci�cations. In fact,
these two titles are actually upscaled to mimic 4K at
60fps.

While this isn’t a smoking gun for conspiracy mongers
to embrace, it does clearly indicate how this type of
technology is in its infancy and, as such, there will be
some growing pangs and hiccups along the path to a
viable streaming gaming service that truly works on
any device, any time, and anywhere.

Giphy Gaming

If you’re looking for an alternative to streamed 4K, 60
fps gaming, then how about some retro-like arcade-
like gaming? Sponsored by the online GIF search
engine website, Giphy, a new game service features
short, micro-sized versions of some arcade classics.
For example, a Giphy version of Asteroids (called
“Blast 20 Asteroids” inside the “Gimme Space”
Featured Playlist) accompanied by music and sound
e�ects can be played inside most browsers on any
web-connected device.

Figure 2 - GIF arcade gaming.

Called Giphy Arcade, the game-play on this new
service is ridiculously short and the graphics are

heavily in�uenced by GIFs and emojis. For example,
returning to the previously mentioned “Blast 20
Asteroids” game, the movable laser-�ring cannon
found in Asteroids is replaced by a spacewalking
astronaut GIF with a laser-�ring �st.

Figure 3 - Roll your own arcade game with the help of
some templates.

Figure 4 - When you’ve �nished your game masterpiece,
share it with the world.

Once you get tired of playing these playlist-featured
games, you can try your hand at making your own
game. More like a mashup of GIFs, music, emojis, and
templates, these handmade masterpieces can be
played and shared with other Giphy visitors.
Currently, the options for game making are a little
rough around the edges, but you can get in on the
ground �oor of retro-like, arcade-like gaming right
now and become a “rockstar” in Giphy Arcade gaming.

An ODROID Gaming Honor

Anyone who follows retro-gaming, gaming emulators,
and handheld gaming devices knows the name ETA
Prime. Operating as a major gaming presence on
YouTube and with over 350K subscribers, ETA Prime is
also one of the most proli�c video publishers on
YouTube with multiple uploads every week.

Figure 5 - ETA Prime is a video powerhouse for SBC
commentary.

Su�ce it to say, that when ETA Prime publishes a
video, a LOT of people pay attention. This was the
case in mid-November when a video titled, “What’s
the Best Single Board Computer for Android”
appeared on his channel.

Although the video’s title mentioned “… for Android,”
this is ETA Prime-speak for generalized “Android
Gaming” or more speci�cally, Android multimedia
consumption—a one-stop video, movie, and gaming
marketplace operating under the guise of Android.

During the course of this video, ETA Prime compares
12 di�erent single board computers (SBCs). Each of
these models are powerful contemporary SBCs that
are popular with today’s hobbyists, system designers,
and industrial-grade researchers. Watching the 7

minute 33 second video is a great high-level summary
of the current state of SBCs. There are a total of 12
SBCs that ETA Prime highlights and each one is
topnotch in its speci�cations and performance.

Figure 6 - The 12 featured SBCs; can you ID them all?

The excitement mounts as the video nears its midway
point, where at about the 3 minute 38 second mark,
the “2019, best board for running Android” is
announced. And that SBC is the ODROID-N2. In his
typical and methodical fashion, ETA Prime then
devotes the remainder of the video to supporting his
claim with benchmarks, third-party OS releases, and
game testing.

Figure 7 - And the winner is … ODROID-N2.

(Figure 7 - And the winner is … ODROID-N2.)

Therefore, if you’re looking for an Android SBC look
no further than the ODROID-N2.

What's the Best Single Board ComputerWhat's the Best Single Board Computer……

https://www.youtube.com/watch?v=ZALvlOVTfKU

Kubernetes On An ODROID-N2 Cluster
 January 1, 2020  By Swaminathan Bhaskar  Development, ODROID-N2, Tutorial

Overview

Kubernetes (or k8s for short) is an extensible open
source container orchestration platform designed for
managing containerized workloads and services at
scale. It helps in automated deployment, scaling, and
management of container centric application
workloads across a cluster of nodes (bare-metal,
virtual, or cloud) by orchestrating compute, network,
and storage infrastructure on behalf of those user
workloads.

The two main types of nodes in a Kubernetes cluster
are:

Master: this node acts as the Control Plane for the
cluster. It is responsible for all application workload
deployment, scheduling, and placement decisions as
well as detecting and managing changes to the state
of deployed applications. It is comprised of a Key-
Value Store, an API Server, a Scheduler, and a
Controller Manager.

Worker Node(s): node(s) that actually run the
application containers. They are also on occasions
referred to as Minion(s). The Master is also a node,
but is not targeted for application deployment. It is
comprised of an agent called kubelet, a network proxy
called kube-proxy, and a Container Engine.

The following Figure-1 illustrates the high-level
architectural overview of Kubernetes:

Figure 1

The core components that make a Kubernetes cluster
are described as follows:

KV Store: a highly reliable, distributed, and consistent
key-value data store used for persisting and
maintaining state information about the various
components of the Kubernetes cluster. By default,
Kubernetes uses etcd as the key-value store.

API Server: acts as the entry point for the Control
Plane by exposing an API endpoint for all interactions
with and within the Kubernetes cluster. It is through
the API Server that requests are made for
deployment, administration, management, and
operation of container based applications. It uses the
key-value store to persist and maintain state
information about all the components of the
Kubernetes cluster.

Pod(s): it is the smallest unit of deployment in
Kubernetes . One or more containers run inside it.
Think of it as a logical host with shared network and
storage. Application pods are scheduled to run on
di�erent worker nodes of the Kubernetes cluster
based on the resource needs and application
constraints. Every pod within the cluster gets its own
unique ip-address. The application containers within a
pod communicate with each other using localhost.
Pod(s) are also the smallest unit of scaling in
Kubernetes. In addition, Pod(s) are ephemeral - they
can come and go at any time.

Scheduler: responsible for scheduling application
pod(s) to run on the selected worker node(s) of the
Kubernetes cluster based on the application resource
requirements as well as application speci�c a�nity
constraints.

Service: provides a stable, logical networking endpoint
for a group of pod(s) (based on a label related to an
application pod) running on the wor2ker node(s) of
the Kubernetes cluster. They enable access to an
application via service-discovery and spread the
requests through simple load-balancing. To access an
application, each service is assigned a cluster-wide
internal ip-address:port.

Controller Manager: manages di�erent types of
controllers that are responsible for monitoring and
detecting changes to the state of the Kubernetes

cluster (via the API server) and ensuring that the
cluster is moved to the desired state. The di�erent
types of controllers are:

Node Controller => responsible for monitoring and
detecting the state & health (up or down) of the worker
node(s) in the Kubernetes cluster.

ReplicaSet => previously referred to as the Replication
Controller and is responsible for maintaining the
desired number of pod replicas in the cluster.

Endpoints Controller => responsible for detecting and
managing changes to the application service access
endpoints (list of ip-address:port).

Plugin Network: acts as the bridge (overlay network)
that enables communication between the pod(s)
running on di�erent worker node(s) of the cluster.
There are di�erent implementations of this
component by various 3rd-parties such as calico,
�annel, weave-net, etc. They all need to adhere to a
common speci�cation called the Container Network
Interface or CNI for short.

kubelet: an agent that runs on every worker node of
the Kubernetes cluster. It is responsible for creating
and starting an application pod on the worker node
and making sure all the application containers are up
and running within the pod. In addition, it is also
responsible for reporting the state and health of the
worker node, as well as all the running pods to the
master via the API server.

kube-proxy: a network proxy that runs on each of the
worker node (s) of the Kubernetes cluster and acts as
an entry point for access to the various application
service endpoints. It routes requests to the
appropriate pod (s) in the cluster.

Container Engine: a container runtime that runs on
each of the worker node(s) to manage the lifecycle of
containers such as getting the images, starting and
stopping containers, etc. The commonly used
container engine is Docker.

kubectl: command line tool used for interfacing with
the API Server. Used by administrators (or operators)
for deployment and scaling of applications, as well as
for the management of the Kubernetes cluster.

Installation and System Setup

The installation will be on a 5-node ODROID-N2
Cluster running Armbian Ubuntu Linux.

The following Figure-2 illustrates the 5-node ODROID-
N2 cluster in operation:

Figure 2

For this tutorial, let us assume the 5-nodes in the
cluster to have the following host names and ip
addresses: Host name IP Address

my-n2-1 192.168.1.51

my-n2-2 192.168.1.52

my-n2-3 192.168.1.53

my-n2-4 192.168.1.54

my-n2-5 192.168.1.55

Open a Terminal window and open a tab for each of
the 5 nodes my-n2-1 thru my-n2-5. In each of the
Terminal tabs, ssh into the corresponding node.

Each of the nodes my-n2-1 thru my-n2-5 need to have
a unique identi�er for the cluster to operate without
any collisions. The unique node identi�er is located in
the �le /etc/machine-id and we see all the nodes my-
n2-1 thru my-n2-5 having the same value. This needs
to be * FIXED*. On each of the nodes my-n2-1 thru
my-n2-5, execute the following commands:

$ sudo rm -f /etc/machine-id

$ sudo dbus-uuidgen --ensure=/etc/machine-id

$ sudo rm /var/lib/dbus/machine-id

$ sudo dbus-uuidgen --ensure

$ sudo reboot now

Once again, in each of the Terminal tabs, ssh into the
corresponding node.

Next, we need to setup the package repository for
Docker. On each of the nodes my-n2-1 thru my-n2-5,
execute the following commands:

$ sudo apt-get update

$ sudo apt-get install apt-transport-https ca-

certificates curl

software-properties-common -y

$ curl -fsSL

https://download.docker.com/linux/ubuntu/gpg |

sudo

apt-key add -

$ sudo apt-get update

$ sudo add-apt-repository "deb [arch=arm64]

-https://download.docker.com/linux/ubuntu xenial

stable"

$ sudo apt-get update

For version 1.16 of Kubernetes (the version at the
time of this article), the recommended Docker version
is 18.09.

ATTENTION: For Docker CE 19.xx (and above) Ensure
the version of Docker installed is *18.09*. Else will
encounter the following error: [ERROR
SystemVeri�cation]: unsupported docker version:
19.xx

We need to check for the latest package of Docker
18.09 in the repository. On any of the nodes (we will
pick my-n2-1), execute the following command:

$ apt-cache madison docker-ce

The following would be a typical output:

Output.1

docker-ce |

5:19.03.5~3-0~ubuntu-xenial |

https://download.docker.com/linux/ubuntu

xenial/stable arm64 Packages

docker-ce |

5:19.03.4~3-0~ubuntu-xenial |

https://download.docker.com/linux/ubuntu

xenial/stable arm64 Packages

docker-ce |

5:19.03.3~3-0~ubuntu-xenial |

https://download.docker.com/linux/ubuntu

xenial/stable arm64 Packages

docker-ce |

5:19.03.2~3-0~ubuntu-xenial |

https://download.docker.com/linux/ubuntu

xenial/stable arm64 Packages

docker-ce |

5:19.03.1~3-0~ubuntu-xenial |

https://download.docker.com/linux/ubuntu

xenial/stable arm64 Packages

docker-ce |

5:19.03.0~3-0~ubuntu-xenial |

https://download.docker.com/linux/ubuntu

xenial/stable arm64 Packages

docker-ce |

5:18.09.9~3-0~ubuntu-xenial |

https://download.docker.com/linux/ubuntu

xenial/stable arm64 Packages

docker-ce |

5:18.09.8~3-0~ubuntu-xenial |

https://download.docker.com/linux/ubuntu

xenial/stable arm64 Packages

docker-ce |

5:18.09.7~3-0~ubuntu-xenial |

https://download.docker.com/linux/ubuntu

xenial/stable arm64 Packages

docker-ce |

5:18.09.6~3-0~ubuntu-xenial |

https://download.docker.com/linux/ubuntu

xenial/stable arm64 Packages

docker-ce |

5:18.09.5~3-0~ubuntu-xenial |

https://download.docker.com/linux/ubuntu

xenial/stable arm64 Packages

docker-ce |

5:18.09.4~3-0~ubuntu-xenial |

https://download.docker.com/linux/ubuntu

xenial/stable arm64 Packages

docker-ce |

5:18.09.3~3-0~ubuntu-xenial |

https://download.docker.com/linux/ubuntu

xenial/stable arm64 Packages

docker-ce |

5:18.09.2~3-0~ubuntu-xenial |

https://download.docker.com/linux/ubuntu

xenial/stable arm64 Packages

docker-ce |

5:18.09.1~3-0~ubuntu-xenial |

https://download.docker.com/linux/ubuntu

xenial/stable arm64 Packages

docker-ce |

5:18.09.0~3-0~ubuntu-xenial |

https://download.docker.com/linux/ubuntu

xenial/stable arm64 Packages

docker-ce |

18.06.3~ce~3-0~ubuntu |

https://download.docker.com/linux/ubuntu

xenial/stable arm64 Packages

docker-ce |

18.06.2~ce~3-0~ubuntu |

https://download.docker.com/linux/ubuntu

xenial/stable arm64 Packages

docker-ce |

18.06.1~ce~3-0~ubuntu |

https://download.docker.com/linux/ubuntu

xenial/stable arm64 Packages

docker-ce |

18.06.0~ce~3-0~ubuntu |

https://download.docker.com/linux/ubuntu

xenial/stable arm64 Packages

docker-ce |

18.03.1~ce-0~ubuntu |

https://download.docker.com/linux/ubuntu

xenial/stable arm64 Packages

docker-ce |

18.03.0~ce-0~ubuntu |

https://download.docker.com/linux/ubuntu

xenial/stable arm64 Packages

docker-ce |

17.12.1~ce-0~ubuntu |

https://download.docker.com/linux/ubuntu

xenial/stable arm64 Packages

docker-ce |

17.12.0~ce-0~ubuntu |

https://download.docker.com/linux/ubuntu

xenial/stable arm64 Packages

docker-ce |

17.09.1~ce-0~ubuntu |

https://download.docker.com/linux/ubuntu

xenial/stable arm64 Packages

docker-ce |

17.09.0~ce-0~ubuntu |

https://download.docker.com/linux/ubuntu

xenial/stable arm64 Packages

From the Output.1 above, we see the latest package
for Docker 18.09 is 5:18.09.9~3-0~ubuntu-xenial.

Next, we need to install the chosen version of Docker.
On each of the nodes my-n2-1 thru my-n2-5, execute
the following command:

$ sudo apt-get install docker-ce=5:18.09.9~3-

0~ubuntu-xenial -y

The following would be a typical output:

Output.2

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be

installed:

aufs-tools cgroupfs-mount containerd.io docker-ce-

cli git git-man liberror-perl pigz

Suggested packages:

git-daemon-run | git-daemon-sysvinit git-doc git-

el git-email git-gui gitk gitweb git-cvs git-

mediawiki git-svn

The following NEW packages will be installed:

aufs-tools cgroupfs-mount containerd.io docker-ce

docker-ce-cli git git-man liberror-perl pigz

0 upgraded, 9 newly installed, 0 to remove and 0

not upgraded.

Need to get 61.3 MB of archives.

After this operation, 325 MB of additional disk

space will be used.

Get:1 https://download.docker.com/linux/ubuntu

xenial/stable arm64 containerd.io arm64 1.2.10-3

[14.5 MB]

Get:2 http://ports.ubuntu.com/ubuntu-ports

bionic/universe arm64 pigz arm64 2.4-1 [47.8 kB]

Get:3 http://ports.ubuntu.com/ubuntu-ports

bionic/universe arm64 aufs-tools arm64

1:4.9+20170918-1ubuntu1 [101 kB]

Get:4 http://ports.ubuntu.com/ubuntu-ports

bionic/universe arm64 cgroupfs-mount all 1.4 [6320

B]

Get:5 http://ports.ubuntu.com/ubuntu-ports

bionic/main arm64 liberror-perl all 0.17025-1

[22.8 kB]

Get:6 http://ports.ubuntu.com/ubuntu-ports bionic-

updates/main arm64 git-man all 1:2.17.1-1ubuntu0.4

[803 kB]

Get:7 http://ports.ubuntu.com/ubuntu-ports bionic-

updates/main arm64 git arm64 1:2.17.1-1ubuntu0.4

[2941 kB]

Get:8 https://download.docker.com/linux/ubuntu

xenial/stable arm64 docker-ce-cli arm64

5:19.03.5~3-0~ubuntu-xenial [29.6 MB]

Get:9 https://download.docker.com/linux/ubuntu

xenial/stable arm64 docker-ce arm64 5:18.09.9~3-

0~ubuntu-xenial [13.3 MB]

Fetched 61.3 MB in 5s (11.6 MB/s)

Selecting previously unselected package pigz.

(Reading database ... 156190 files and directories

currently installed.)

Preparing to unpack .../0-pigz_2.4-1_arm64.deb ...

Unpacking pigz (2.4-1) ...

Selecting previously unselected package aufs-

tools.

Preparing to unpack .../1-aufs-

tools_1%3a4.9+20170918-1ubuntu1_arm64.deb ...

Unpacking aufs-tools (1:4.9+20170918-1ubuntu1) ...

Selecting previously unselected package cgroupfs-

mount.

Preparing to unpack .../2-cgroupfs-

mount_1.4_all.deb ...

Unpacking cgroupfs-mount (1.4) ...

Selecting previously unselected package

containerd.io.

Preparing to unpack .../3-containerd.io_1.2.10-

3_arm64.deb ...

Unpacking containerd.io (1.2.10-3) ...

Selecting previously unselected package docker-ce-

cli.

Preparing to unpack .../4-docker-ce-

cli_5%3a19.03.5~3-0~ubuntu-xenial_arm64.deb ...

Unpacking docker-ce-cli (5:19.03.5~3-0~ubuntu-

xenial) ...

Selecting previously unselected package docker-ce.

Preparing to unpack .../5-docker-ce_5%3a18.09.9~3-

0~ubuntu-xenial_arm64.deb ...

Unpacking docker-ce (5:18.09.9~3-0~ubuntu-xenial)

...

Selecting previously unselected package liberror-

perl.

Preparing to unpack .../6-liberror-perl_0.17025-

1_all.deb ...

Unpacking liberror-perl (0.17025-1) ...

Selecting previously unselected package git-man.

Preparing to unpack .../7-git-man_1%3a2.17.1-

1ubuntu0.4_all.deb ...

Unpacking git-man (1:2.17.1-1ubuntu0.4) ...

Selecting previously unselected package git.

Preparing to unpack .../8-git_1%3a2.17.1-

1ubuntu0.4_arm64.deb ...

Unpacking git (1:2.17.1-1ubuntu0.4) ...

Setting up aufs-tools (1:4.9+20170918-1ubuntu1)

...

Setting up git-man (1:2.17.1-1ubuntu0.4) ...

Setting up containerd.io (1.2.10-3) ...

Created symlink /etc/systemd/system/multi-

user.target.wants/containerd.service â†’

/lib/systemd/system/containerd.service.

Setting up liberror-perl (0.17025-1) ...

Setting up cgroupfs-mount (1.4) ...

Setting up docker-ce-cli (5:19.03.5~3-0~ubuntu-

xenial) ...

Setting up pigz (2.4-1) ...

Setting up git (1:2.17.1-1ubuntu0.4) ...

Setting up docker-ce (5:18.09.9~3-0~ubuntu-xenial)

...

update-alternatives: using /usr/bin/dockerd-ce to

provide /usr/bin/dockerd (dockerd) in auto mode

Created symlink /etc/systemd/system/multi-

user.target.wants/docker.service â†’

/lib/systemd/system/docker.service.

Created symlink

/etc/systemd/system/sockets.target.wants/docker.so

cket â†’ /lib/systemd/system/docker.socket.

Processing triggers for systemd (237-3ubuntu10.33)

...

Processing triggers for man-db (2.8.3-2ubuntu0.1)

...

Processing triggers for libc-bin (2.27-3ubuntu1)

...

Next, we need to ensure we are able to execute the
Docker commands as the logged in user without the
need for sudo. On each of the nodes my-n2-1 thru
my-n2-5, execute the following commands:

$ sudo usermod -aG docker $USER

$ sudo reboot now

Once again, in each of the Terminal tabs, ssh into the
corresponding node.

To verify the Docker installation, on each of the nodes
my-n2-1 thru my-n2-5, execute the following
command:

$ docker info

The following would be a typical output:

Output.3

Client:

Debug Mode: false

Server:

Containers: 0

Running: 0

Paused: 0

Stopped: 0

Images: 0

Server Version: 18.09.9

Storage Driver: overlay2

Backing Filesystem: extfs

Supports d_type: true

Native Overlay Diff: true

Logging Driver: json-file

Cgroup Driver: cgroupfs

Plugins:

Volume: local

Network: bridge host macvlan null overlay

Log: awslogs fluentd gcplogs gelf journald json-

file local logentries splunk syslog

Swarm: inactive

Runtimes: runc

Default Runtime: runc

Init Binary: docker-init

containerd version:

b34a5c8af56e510852c35414db4c1f4fa6172339

runc version:

3e425f80a8c931f88e6d94a8c831b9d5aa481657

init version: fec3683

Security Options:

seccomp

Profile: default

Kernel Version: 4.9.196-meson64

Operating System: Ubuntu 18.04.3 LTS

OSType: linux

Architecture: aarch64

CPUs: 6

Total Memory: 3.623GiB

Name: my-n2-1

ID:

QF32:QDZN:IQDM:34HX:NK3C:O3AP:Y6JZ:74DV:XXXL:KCBL:

7K5D:36B4

Docker Root Dir: /var/lib/docker

Debug Mode: false

Registry: https://index.docker.io/v1/

Labels:

Experimental: false

Insecure Registries:

127.0.0.0/8

Live Restore Enabled: false

Product License: Community Engine

Next, we need to setup the package repository for
Kubernetes. On each of the nodes my-n2-1 thru my-
n2-5, execute the following commands:

$ curl -s

https://packages.cloud.google.com/apt/doc/apt-

key.gpg | sudo apt-key add -

$ echo "deb http://apt.kubernetes.io/ kubernetes-

xenial main" | sudo tee

/etc/apt/sources.list.d/kubernetes.list

$ sudo apt-get update

Next, we need to install Kubernetes. On each of the
nodes my-n2-1 thru my-n2-5, execute the following
command:

$ sudo apt-get install -y kubeadm

The following would be a typical output:

Output.4

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be

installed:

conntrack cri-tools ebtables kubectl kubelet

kubernetes-cni socat

The following NEW packages will be installed:

conntrack cri-tools ebtables kubeadm kubectl

kubelet kubernetes-cni socat

0 upgraded, 8 newly installed, 0 to remove and 1

not upgraded.

Need to get 48.3 MB of archives.

After this operation, 280 MB of additional disk

space will be used.

Get:2 http://ports.ubuntu.com/ubuntu-ports

bionic/main arm64 conntrack arm64

1:1.4.4+snapshot20161117-6ubuntu2 [27.3 kB]

Get:7 http://ports.ubuntu.com/ubuntu-ports bionic-

updates/main arm64 ebtables arm64 2.0.10.4-

3.5ubuntu2.18.04.3 [74.2 kB]

Get:8 http://ports.ubuntu.com/ubuntu-ports

bionic/main arm64 socat arm64 1.7.3.2-2ubuntu2

[322 kB]

Get:1 https://packages.cloud.google.com/apt

kubernetes-xenial/main arm64 cri-tools arm64

1.13.0-00 [7965 kB]

Get:3 https://packages.cloud.google.com/apt

kubernetes-xenial/main arm64 kubernetes-cni arm64

0.7.5-00 [5808 kB]

Get:4 https://packages.cloud.google.com/apt

kubernetes-xenial/main arm64 kubelet arm64 1.16.3-

00 [18.5 MB]

Get:5 https://packages.cloud.google.com/apt

kubernetes-xenial/main arm64 kubectl arm64 1.16.3-

00 [8025 kB]

Get:6 https://packages.cloud.google.com/apt

kubernetes-xenial/main arm64 kubeadm arm64 1.16.3-

00 [7652 kB]

Fetched 48.3 MB in 5s (9383 kB/s)

Selecting previously unselected package conntrack.

(Reading database ... 157399 files and directories

currently installed.)

Preparing to unpack .../0-

conntrack_1%3a1.4.4+snapshot20161117-

6ubuntu2_arm64.deb ...

Unpacking conntrack (1:1.4.4+snapshot20161117-

6ubuntu2) ...

Selecting previously unselected package cri-tools.

Preparing to unpack .../1-cri-tools_1.13.0-

00_arm64.deb ...

Unpacking cri-tools (1.13.0-00) ...

Selecting previously unselected package ebtables.

Preparing to unpack .../2-ebtables_2.0.10.4-

3.5ubuntu2.18.04.3_arm64.deb ...

Unpacking ebtables (2.0.10.4-3.5ubuntu2.18.04.3)

...

Selecting previously unselected package

kubernetes-cni.

Preparing to unpack .../3-kubernetes-cni_0.7.5-

00_arm64.deb ...

Unpacking kubernetes-cni (0.7.5-00) ...

Selecting previously unselected package socat.

Preparing to unpack .../4-socat_1.7.3.2-

2ubuntu2_arm64.deb ...

Unpacking socat (1.7.3.2-2ubuntu2) ...

Selecting previously unselected package kubelet.

Preparing to unpack .../5-kubelet_1.16.3-

00_arm64.deb ...

Unpacking kubelet (1.16.3-00) ...

Selecting previously unselected package kubectl.

Preparing to unpack .../6-kubectl_1.16.3-

00_arm64.deb ...

Unpacking kubectl (1.16.3-00) ...

Selecting previously unselected package kubeadm.

Preparing to unpack .../7-kubeadm_1.16.3-

00_arm64.deb ...

Unpacking kubeadm (1.16.3-00) ...

Setting up conntrack (1:1.4.4+snapshot20161117-

6ubuntu2) ...

Setting up kubernetes-cni (0.7.5-00) ...

Setting up cri-tools (1.13.0-00) ...

Setting up socat (1.7.3.2-2ubuntu2) ...

Setting up ebtables (2.0.10.4-3.5ubuntu2.18.04.3)

...

Created symlink /etc/systemd/system/multi-

user.target.wants/ebtables.service â†’

/lib/systemd/system/ebtables.service.

update-rc.d: warning: start and stop actions are

no longer supported; falling back to defaults

Setting up kubectl (1.16.3-00) ...

Setting up kubelet (1.16.3-00) ...

Created symlink /etc/systemd/system/multi-

user.target.wants/kubelet.service â†’

/lib/systemd/system/kubelet.service.

Setting up kubeadm (1.16.3-00) ...

Processing triggers for man-db (2.8.3-2ubuntu0.1)

...

Processing triggers for systemd (237-3ubuntu10.33)

...

We need to reboot all the nodes. On each of the
nodes my-n2-1 thru my-n2-5, execute the following
command:

$ sudo reboot now

Once again, in each of the Terminal tabs, ssh into the
corresponding node.

To verify the Kubernetes installation, on each of the
nodes my-n2-1 thru my-n2-5, execute the following
command:

$ kubeadm version

The following would be a typical output:

Output.5

kubeadm version: &version.Info{Major:"1",

Minor:"16", GitVersion:"v1.16.3",

GitCommit:"b3cbbae08ec52a7fc73d334838e18d17e851274

9", GitTreeState:"clean", BuildDate:"2019-11-

13T11:20:25Z", GoVersion:"go1.12.12",

Compiler:"gc", Platform:"linux/arm64"}

Next, we need to ensure the packages for Docker and
Kubernetes are not updated in the future by the
software update process. On each of the nodes my-
n2-1 thru my-n2-5, execute the following command:

$ sudo apt-mark hold kubelet kubeadm kubectl

docker-ce

The following would be a typical output:

Output.6

kubelet set on hold.

kubeadm set on hold.

kubectl set on hold.

docker-ce set on hold.

By default, Docker uses cgroupfs as the cgroup driver.
Kubernetes prefers systemd as the cgroup driver. We
need to modify the Docker daemon con�guration by
specifying options in a JSON �le called
/etc/docker/daemon.json. On each of the nodes my-
n2-1 thru my-n2-5, create the con�guration �le
/etc/docker/daemon.json with the following contents:

/etc/docker/daemon.json

{

"exec-opts": ["native.cgroupdriver=systemd"],

"log-driver": "json-file",

"log-opts": {

"max-size": "100m"

},

"storage-driver": "overlay2"

}

Next, we need to restart the Docker daemon for the
con�guration to take e�ect. On each of the nodes my-
n2-1 thru my-n2-5, execute the following commands:

$ sudo mkdir -p

/etc/systemd/system/docker.service.d

$ sudo systemctl daemon-reload

$ sudo systemctl restart docker

Note: Not using the systemd cgroup driver will cause
the following error: [pre�ight] Running pre-�ight
checks [WARNING IsDockerSystemdCheck]: detected
"cgroupfs" as the Docker cgroup driver. The
recommended driver is "systemd". Please follow the
guide at https://kubernetes.io/docs/setup/cri/

To verify the Docker daemon started ok, on each of
the nodes my-n2-1 thru my-n2-5, execute the
following command:

$ journalctl -u docker

The following would be a typical output:

Output.7

-- Logs begin at Sat 2019-12-14 21:14:19 EST, end

at Sat 2019-12-14 21:49:26 EST. --

Dec 14 21:14:26 my-n2-1 systemd[1]: Starting

Docker Application Container Engine...

Dec 14 21:14:27 my-n2-1 dockerd[3347]: time="2019-

12-14T21:14:27.806496732-05:00" level=info

msg="systemd-resolved is running, so using

resolvconf: /run/systemd/res

Dec 14 21:14:27 my-n2-1 dockerd[3347]: time="2019-

12-14T21:14:27.821800611-05:00" level=info

msg="parsed scheme: "unix"" module=grpc

Dec 14 21:14:27 my-n2-1 dockerd[3347]: time="2019-

12-14T21:14:27.822661404-05:00" level=info

msg="scheme "unix" not registered, fallback to

default scheme" module

Dec 14 21:14:27 my-n2-1 dockerd[3347]: time="2019-

12-14T21:14:27.824226106-05:00" level=info

msg="parsed scheme: "unix"" module=grpc

Dec 14 21:14:27 my-n2-1 dockerd[3347]: time="2019-

12-14T21:14:27.824838344-05:00" level=info

msg="scheme "unix" not registered, fallback to

default scheme" module

Dec 14 21:14:27 my-n2-1 dockerd[3347]: time="2019-

12-14T21:14:27.828116839-05:00" level=info

msg="ccResolverWrapper: sending new addresses to

cc: [{unix:///run/cont

Dec 14 21:14:27 my-n2-1 dockerd[3347]: time="2019-

12-14T21:14:27.828945714-05:00" level=info

msg="ClientConn switching balancer to

"pick_first"" module=grpc

Dec 14 21:14:27 my-n2-1 dockerd[3347]: time="2019-

12-14T21:14:27.828101672-05:00" level=info

msg="ccResolverWrapper: sending new addresses to

cc: [{unix:///run/cont

Dec 14 21:14:27 my-n2-1 dockerd[3347]: time="2019-

12-14T21:14:27.830093104-05:00" level=info

msg="ClientConn switching balancer to

"pick_first"" module=grpc

Dec 14 21:14:27 my-n2-1 dockerd[3347]: time="2019-

12-14T21:14:27.832076285-05:00" level=info

msg="pickfirstBalancer: HandleSubConnStateChange:

0x400014e610, CONNECT

Dec 14 21:14:27 my-n2-1 dockerd[3347]: time="2019-

12-14T21:14:27.844251802-05:00" level=info

msg="pickfirstBalancer: HandleSubConnStateChange:

0x40001343a0, CONNECT

Dec 14 21:14:27 my-n2-1 dockerd[3347]: time="2019-

12-14T21:14:27.846949059-05:00" level=info

msg="pickfirstBalancer: HandleSubConnStateChange:

0x40001343a0, READY"

Dec 14 21:14:27 my-n2-1 dockerd[3347]: time="2019-

12-14T21:14:27.851896887-05:00" level=info

msg="pickfirstBalancer: HandleSubConnStateChange:

0x400014e610, READY"

Dec 14 21:14:27 my-n2-1 dockerd[3347]: time="2019-

12-14T21:14:27.857097768-05:00" level=info msg="

[graphdriver] using prior storage driver:

overlay2"

Dec 14 21:14:27 my-n2-1 dockerd[3347]: time="2019-

12-14T21:14:27.886090322-05:00" level=info

msg="Graph migration to content-addressability

took 0.00 seconds"

Dec 14 21:14:27 my-n2-1 dockerd[3347]: time="2019-

12-14T21:14:27.893602818-05:00" level=info

msg="Loading containers: start."

Dec 14 21:14:28 my-n2-1 dockerd[3347]: time="2019-

12-14T21:14:28.821256841-05:00" level=info

msg="Default bridge (docker0) is assigned with an

IP address 172.17.0.0

Dec 14 21:14:29 my-n2-1 dockerd[3347]: time="2019-

12-14T21:14:29.134364234-05:00" level=info

msg="Loading containers: done."

Dec 14 21:14:29 my-n2-1 dockerd[3347]: time="2019-

12-14T21:14:29.374311397-05:00" level=info

msg="Docker daemon" commit=039a7df

graphdriver(s)=overlay2 version=18.0

Dec 14 21:14:29 my-n2-1 dockerd[3347]: time="2019-

12-14T21:14:29.376444960-05:00" level=info

msg="Daemon has completed initialization"

Dec 14 21:14:29 my-n2-1 systemd[1]: Started Docker

Application Container Engine.

Dec 14 21:14:29 my-n2-1 dockerd[3347]: time="2019-

12-14T21:14:29.444607195-05:00" level=info

msg="API listen on /var/run/docker.sock"

Dec 14 21:49:11 my-n2-1 dockerd[3347]: time="2019-

12-14T21:49:11.323542665-05:00" level=info

msg="Processing signal 'terminated'"

Dec 14 21:49:11 my-n2-1 dockerd[3347]: time="2019-

12-14T21:49:11.328379659-05:00" level=info

msg="stopping event stream following graceful

shutdown" error="" m

Dec 14 21:49:11 my-n2-1 systemd[1]: Stopping

Docker Application Container Engine...

Dec 14 21:49:11 my-n2-1 systemd[1]: Stopped Docker

Application Container Engine.

Dec 14 21:49:11 my-n2-1 systemd[1]: Starting

Docker Application Container Engine...

Dec 14 21:49:11 my-n2-1 dockerd[9629]: time="2019-

12-14T21:49:11.499488062-05:00" level=info

msg="systemd-resolved is running, so using

resolvconf: /run/systemd/res

Dec 14 21:49:11 my-n2-1 dockerd[9629]: time="2019-

12-14T21:49:11.502141612-05:00" level=info

msg="parsed scheme: "unix"" module=grpc

Dec 14 21:49:11 my-n2-1 dockerd[9629]: time="2019-

12-14T21:49:11.502209240-05:00" level=info

msg="scheme "unix" not registered, fallback to

default scheme" module

Dec 14 21:49:11 my-n2-1 dockerd[9629]: time="2019-

12-14T21:49:11.502278577-05:00" level=info

msg="parsed scheme: "unix"" module=grpc

Dec 14 21:49:11 my-n2-1 dockerd[9629]: time="2019-

12-14T21:49:11.502295786-05:00" level=info

msg="scheme "unix" not registered, fallback to

default scheme" module

Dec 14 21:49:11 my-n2-1 dockerd[9629]: time="2019-

12-14T21:49:11.505887217-05:00" level=info

msg="ccResolverWrapper: sending new addresses to

cc: [{unix:///run/cont

Dec 14 21:49:11 my-n2-1 dockerd[9629]: time="2019-

12-14T21:49:11.506035600-05:00" level=info

msg="ClientConn switching balancer to

"pick_first"" module=grpc

Dec 14 21:49:11 my-n2-1 dockerd[9629]: time="2019-

12-14T21:49:11.506181190-05:00" level=info

msg="ccResolverWrapper: sending new addresses to

cc: [{unix:///run/cont

Dec 14 21:49:11 my-n2-1 dockerd[9629]: time="2019-

12-14T21:49:11.506446245-05:00" level=info

msg="ClientConn switching balancer to

"pick_first"" module=grpc

Dec 14 21:49:11 my-n2-1 dockerd[9629]: time="2019-

12-14T21:49:11.506671465-05:00" level=info

msg="pickfirstBalancer: HandleSubConnStateChange:

0x40007a2230, CONNECT

Dec 14 21:49:11 my-n2-1 dockerd[9629]: time="2019-

12-14T21:49:11.506255319-05:00" level=info

msg="pickfirstBalancer: HandleSubConnStateChange:

0x40008b0710, CONNECT

Dec 14 21:49:11 my-n2-1 dockerd[9629]: time="2019-

12-14T21:49:11.509814706-05:00" level=info

msg="pickfirstBalancer: HandleSubConnStateChange:

0x40008b0710, READY"

Dec 14 21:49:11 my-n2-1 dockerd[9629]: time="2019-

12-14T21:49:11.511738887-05:00" level=info

msg="pickfirstBalancer: HandleSubConnStateChange:

0x40007a2230, READY"

Dec 14 21:49:11 my-n2-1 dockerd[9629]: time="2019-

12-14T21:49:11.525913142-05:00" level=info

msg="Graph migration to content-addressability

took 0.00 seconds"

Dec 14 21:49:11 my-n2-1 dockerd[9629]: time="2019-

12-14T21:49:11.529808838-05:00" level=info

msg="Loading containers: start."

Dec 14 21:49:12 my-n2-1 dockerd[9629]: time="2019-

12-14T21:49:12.258591473-05:00" level=info

msg="Default bridge (docker0) is assigned with an

IP address 172.17.0.0

Dec 14 21:49:12 my-n2-1 dockerd[9629]: time="2019-

12-14T21:49:12.540886055-05:00" level=info

msg="Loading containers: done."

Dec 14 21:49:12 my-n2-1 dockerd[9629]: time="2019-

12-14T21:49:12.614462758-05:00" level=info

msg="Docker daemon" commit=039a7df

graphdriver(s)=overlay2 version=18.0

Dec 14 21:49:12 my-n2-1 dockerd[9629]: time="2019-

12-14T21:49:12.614718313-05:00" level=info

msg="Daemon has completed initialization"

Dec 14 21:49:12 my-n2-1 dockerd[9629]: time="2019-

12-14T21:49:12.640530153-05:00" level=info

msg="API listen on /var/run/docker.sock"

Dec 14 21:49:12 my-n2-1 systemd[1]: Started Docker

Application Container Engine.

Next, we need to disable disk based swap. For that we
need to perform two actions.

First action, on each of the nodes my-n2-1 thru my-
n2-5, edit the �le /etc/default/armbian-zram-con�g
and change the line ENABLED=true to ENABLED=false.

Second action, on each of the nodes my-n2-1 thru my-
n2-5, execute the following commands:

$ sudo systemctl disable armbian-zram-config

$ sudo reboot now

Once again, in each of the Terminal tabs, ssh into the
corresponding node.

This completes the installation and system setup of
the cluster nodes. Next stop - Kubernetes setup.

Kubernetes Setup

To get started, we will designate the node my-n2-1 as
the master node and setup the control plane. To do
that, execute the following command on my-n2-1:

$ sudo kubeadm init

The following would be a typical output:

Output.8

[init] Using Kubernetes version: v1.16.3

[preflight] Running pre-flight checks

[preflight] Pulling images required for setting up

a Kubernetes cluster

[preflight] This might take a minute or two,

depending on the speed of your internet connection

[preflight] You can also perform this action in

beforehand using 'kubeadm config images pull'

[kubelet-start] Writing kubelet environment file

with flags to file "/var/lib/kubelet/kubeadm-

flags.env"

[kubelet-start] Writing kubelet configuration to

file "/var/lib/kubelet/config.yaml"

[kubelet-start] Starting the kubelet

[certs] Using certificateDir folder

"/etc/kubernetes/pki"

[certs] Generating "ca" certificate and key

[certs] Generating "apiserver" certificate and key

[certs] apiserver serving cert is signed for DNS

names [my-n2-1 kubernetes kubernetes.default

kubernetes.default.svc

kubernetes.default.svc.cluster.local] and IPs

[10.96.0.1 192.168.1.51]

[certs] Generating "apiserver-kubelet-client"

certificate and key

[certs] Generating "front-proxy-ca" certificate

and key

[certs] Generating "front-proxy-client"

certificate and key

[certs] Generating "etcd/ca" certificate and key

[certs] Generating "etcd/server" certificate and

key

[certs] etcd/server serving cert is signed for DNS

names [my-n2-1 localhost] and IPs [192.168.1.51

127.0.0.1 ::1]

[certs] Generating "etcd/peer" certificate and key

[certs] etcd/peer serving cert is signed for DNS

names [my-n2-1 localhost] and IPs [192.168.1.51

127.0.0.1 ::1]

[certs] Generating "etcd/healthcheck-client"

certificate and key

[certs] Generating "apiserver-etcd-client"

certificate and key

[certs] Generating "sa" key and public key

[kubeconfig] Using kubeconfig folder

"/etc/kubernetes"

[kubeconfig] Writing "admin.conf" kubeconfig file

[kubeconfig] Writing "kubelet.conf" kubeconfig

file

[kubeconfig] Writing "controller-manager.conf"

kubeconfig file

[kubeconfig] Writing "scheduler.conf" kubeconfig

file

[control-plane] Using manifest folder

"/etc/kubernetes/manifests"

[control-plane] Creating static Pod manifest for

"kube-apiserver"

[control-plane] Creating static Pod manifest for

"kube-controller-manager"

W1215 11:58:08.359442 4811 manifests.go:214] the

default kube-apiserver authorization-mode is

"Node,RBAC"; using "Node,RBAC"

[control-plane] Creating static Pod manifest for

"kube-scheduler"

W1215 11:58:08.366477 4811 manifests.go:214] the

default kube-apiserver authorization-mode is

"Node,RBAC"; using "Node,RBAC"

[etcd] Creating static Pod manifest for local etcd

in "/etc/kubernetes/manifests"

[wait-control-plane] Waiting for the kubelet to

boot up the control plane as static Pods from

directory "/etc/kubernetes/manifests". This can

take up to 4m0s

[apiclient] All control plane components are

healthy after 25.513764 seconds

[upload-config] Storing the configuration used in

ConfigMap "kubeadm-config" in the "kube-system"

Namespace

[kubelet] Creating a ConfigMap "kubelet-config-

1.17" in namespace kube-system with the

configuration for the kubelets in the cluster

[upload-certs] Skipping phase. Please see --

upload-certs

[mark-control-plane] Marking the node my-n2-1 as

control-plane by adding the label "node-

role.kubernetes.io/master=''"

[mark-control-plane] Marking the node my-n2-1 as

control-plane by adding the taints [node-

role.kubernetes.io/master:NoSchedule]

[bootstrap-token] Using token:

zcp5a6.w03lcuhx068wvkqv

[bootstrap-token] Configuring bootstrap tokens,

cluster-info ConfigMap, RBAC Roles

[bootstrap-token] configured RBAC rules to allow

Node Bootstrap tokens to post CSRs in order for

nodes to get long term certificate credentials

[bootstrap-token] configured RBAC rules to allow

the csrapprover controller automatically approve

CSRs from a Node Bootstrap Token

[bootstrap-token] configured RBAC rules to allow

certificate rotation for all node client

certificates in the cluster

[bootstrap-token] Creating the "cluster-info"

ConfigMap in the "kube-public" namespace

[kubelet-finalize] Updating

"/etc/kubernetes/kubelet.conf" to point to a

rotatable kubelet client certificate and key

[addons] Applied essential addon: CoreDNS

[addons] Applied essential addon: kube-proxy

Your Kubernetes control-plane has initialized
successfully!

To start using your cluster, you need to run the
following as a regular user:

mkdir -p $HOME/.kube

sudo cp -i /etc/kubernetes/admin.conf

$HOME/.kube/config

sudo chown $(id -u):$(id -g) $HOME/.kube/config

You should now deploy a pod network to the cluster.
Run "kubectl apply -f [podnetwork].yaml" with one of

the options listed at:
https://kubernetes.io/docs/concepts/cluster-
administration/addons/

Then you can join any number of worker nodes by
running the following on each as root:

kubeadm join 192.168.1.51:6443 --token
zcp5a6.w03lcuhx068wvkqv --discovery-token-ca-cert-
hash
sha256:d2e38957f46a9eb089671924bca78ac4e02cdc
c8db27e89677a014fe587b67c6

In order to use the kubectl command-line tool as a
non-root user on the master node (my-n2-1), execute
the following commands on my-n2-1:

$ mkdir -p $HOME/.kube

$ sudo cp -i /etc/kubernetes/admin.conf

$HOME/.kube/config

$ sudo chown $(id -u):$(id -g) $HOME/.kube/config

To list all the node(s) in Kubernetes cluster, execute
the following command on the master node (my-n2-
1):

$ kubectl get nodes

The following would be a typical output:

Output.9

NAME STATUS ROLES AGE VERSION

My-n2-1 NotReady master 2m37s v1.16.3

To verify the Kubernetes cluster started ok, execute
the following command on the master node (my-n2-
1):

$ kubectl get pods -n kube-system -o wide

The following would be a typical output (This one for
example, Rob. A lot of "none"s that get edited out):

Output.10

NAME READY STATUS RESTARTS AGE IP NODE NOMINATED

NODE READINESS GATES

coredns-6955765f44-4gk4f 1/1 Running 0 40m

10.32.0.3 my-n2-1

coredns-6955765f44-wskl4 1/1 Running 0 40m

10.32.0.2 my-n2-1

etcd-my-n2-1 1/1 Running 0 40m 192.168.1.51 my-n2-

1

kube-apiserver-my-n2-1 1/1 Running 0 40m

192.168.1.51 my-n2-1

kube-controller-manager-my-n2-1 1/1 Running 0 40m

192.168.1.51 my-n2-1

kube-proxy-tklp7 1/1 Running 0 40m 192.168.1.51

my-n2-1

kube-scheduler-my-n2-1 1/1 Running 0 40m

192.168.1.51 my-n2-1

From the Output.10 above, we can see all the core
components (api server, controller manager, etcd,
and scheduler) are all up and running.

Now, we need to install an overlay Plugin Network for
inter-pod communication. For our cluster, we will
choose the weave-net implementation. To install the
overlay network on the master node (my-n2-1),
execute the following command:

$ kubectl apply -f

"https://cloud.weave.works/k8s/net?k8s-

version=$(kubectl version | base64 | tr -d '

')"

The following would be a typical output:

Output.11

serviceaccount/weave-net created

clusterrole.rbac.authorization.k8s.io/weave-net

created

clusterrolebinding.rbac.authorization.k8s.io/weave

-net created

role.rbac.authorization.k8s.io/weave-net created

rolebinding.rbac.authorization.k8s.io/weave-net

created

daemonset.apps/weave-net created

To verify the Weave overlay network started ok,
execute the following command on the master node
(my-n2-1):

$ kubectl get pods -n kube-system -l name=weave-

net -o wide

The following would be a typical output:

Output.12

NAME READY STATUS RESTARTS AGE IP NODE NOMINATED

NODE READINESS GATES

weave-net-2sjh4 2/2 Running 0 10m 192.168.1.51 my-

n2-1

Additionally, to check the logs for the Weave overlay
network, execute the following command on the
master node (my-n2-1):

$ kubectl logs -n kube-system weave-net-ktjnv

weave

The following would be a typical output:

Output.13

INFO: 2019/12/08 17:07:12.422554 Command line

options: map[conn-limit:200 datapath:datapath db-

prefix:/weavedb/weave-net docker-api: expect-

npc:true host-root:/host http-addr:127.0.0.1:6784

ipalloc-init:consensus=0 ipalloc-

range:10.32.0.0/12 metrics-addr:0.0.0.0:6782

name:9a:59:d0:9a:83:f0 nickname:my-n2-1 no-

dns:true port:6783]

INFO: 2019/12/08 17:07:12.422876 weave 2.6.0

INFO: 2019/12/08 17:07:12.780249 Bridge type is

bridged_fastdp

INFO: 2019/12/08 17:07:12.780350 Communication

between peers is unencrypted.

INFO: 2019/12/08 17:07:12.804023 Our name is

9a:59:d0:9a:83:f0(my-n2-1)

INFO: 2019/12/08 17:07:12.804267 Launch detected -

using supplied peer list: []

INFO: 2019/12/08 17:07:12.844222 Unable to fetch

ConfigMap kube-system/weave-net to infer unique

cluster ID

INFO: 2019/12/08 17:07:12.844324 Checking for pre-

existing addresses on weave bridge

INFO: 2019/12/08 17:07:12.853900 [allocator

9a:59:d0:9a:83:f0] No valid persisted data

INFO: 2019/12/08 17:07:12.866497 [allocator

9a:59:d0:9a:83:f0] Initialising via deferred

consensus

INFO: 2019/12/08 17:07:12.866684 Sniffing traffic

on datapath (via ODP)

INFO: 2019/12/08 17:07:12.872570 Listening for

HTTP control messages on 127.0.0.1:6784

INFO: 2019/12/08 17:07:12.873074 Listening for

metrics requests on 0.0.0.0:6782

INFO: 2019/12/08 17:07:13.540248 [kube-peers]

Added myself to peer list &{[{9a:59:d0:9a:83:f0

my-n2-1}]}

DEBU: 2019/12/08 17:07:13.558983 [kube-peers]

Nodes that have disappeared: map[]

INFO: 2019/12/08 17:07:13.661165 Assuming quorum

size of 1

10.32.0.1

DEBU: 2019/12/08 17:07:13.911144 registering for

updates for node delete events

For this tutorial, we designate that nodes my-n2-2
thru my-n2-5 to be the worker nodes of this

Kubernetes cluster. From Output.8 above, we can
determine the kubeadm join command to use on
each worker node . For each of the nodes my-n2-2
thru my-n2-5 (in their respective Terminal tab),
execute the following command:

$ sudo kubeadm join 192.168.1.51:6443 --token

zcp5a6.w03lcuhx068wvkqv --discovery-token-ca-cert-

hash

sha256:d2e38957f46a9eb089671924bca78ac4e02cdcc8db2

7e89677a014fe587b67c6

The following would be a typical output:

Output.14

[preflight] Running pre-flight checks

[preflight] Reading configuration from the

cluster...

[preflight] FYI: You can look at this config file

with 'kubectl -n kube-system get cm kubeadm-config

-oyaml'

[kubelet-start] Downloading configuration for the

kubelet from the "kubelet-config-1.17" ConfigMap

in the kube-system namespace

[kubelet-start] Writing kubelet configuration to

file "/var/lib/kubelet/config.yaml"

[kubelet-start] Writing kubelet environment file

with flags to file "/var/lib/kubelet/kubeadm-

flags.env"

[kubelet-start] Starting the kubelet

[kubelet-start] Waiting for the kubelet to perform

the TLS Bootstrap...

This node has joined the cluster: * Certi�cate signing
request was sent to apiserver and a response was
received. * The Kubelet was informed of the new
secure connection details.

Run 'kubectl get nodes' on the control-plane to see
this node join the cluster.

To list all the active nodes in this Kubernetes cluster,
execute the following command on the master node
(my-n2-1) (after waiting for about 30 secs):

$ kubectl get nodes -o wide

The following would be a typical output:

Output.15

NAME STATUS ROLES AGE VERSION INTERNAL-IP

EXTERNAL-IP OS-IMAGE KERNEL-VERSION CONTAINER-

RUNTIME

my-n2-1 Ready master 51m v1.17.0 192.168.1.51

Ubuntu 18.04.3 LTS 4.9.196-meson64 docker://18.9.9

my-n2-2 Ready 2m58s v1.17.0 192.168.1.52 Ubuntu

18.04.3 LTS 4.9.196-meson64 docker://18.9.9

my-n2-3 Ready 2m38s v1.17.0 192.168.1.53 Ubuntu

18.04.3 LTS 4.9.196-meson64 docker://18.9.9

my-n2-4 Ready 2m35s v1.17.0 192.168.1.54 Ubuntu

18.04.3 LTS 4.9.196-meson64 docker://18.9.9

my-n2-5 Ready 2m21s v1.17.0 192.168.1.55 Ubuntu

18.04.3 LTS 4.9.196-meson64 docker://18.9.9

That is it! This completes all the necessary setup for
this Kubernetes cluster.

Hands-on with Kubernetes

To list all the pod(s) running in Kubernetes cluster
(including the system pods), execute the following
command on the master node (my-n2-1):

$ kubectl get pods --all-namespaces -o wide

The following would be a typical output:

Output.16

NAMESPACE NAME READY STATUS RESTARTS AGE IP NODE

NOMINATED NODE READINESS GATES

kube-system coredns-6955765f44-4gk4f 1/1 Running 0

52m 10.32.0.3 my-n2-1

kube-system coredns-6955765f44-wskl4 1/1 Running 0

52m 10.32.0.2 my-n2-1

kube-system etcd-my-n2-1 1/1 Running 0 52m

192.168.1.51 my-n2-1

kube-system kube-apiserver-my-n2-1 1/1 Running 0

52m 192.168.1.51 my-n2-1

kube-system kube-controller-manager-my-n2-1 1/1

Running 0 52m 192.168.1.51 my-n2-1

kube-system kube-proxy-9zxfj 1/1 Running 0 3m36s

192.168.1.55 my-n2-5

kube-system kube-proxy-c7mns 1/1 Running 0 3m53s

192.168.1.53 my-n2-3

kube-system kube-proxy-dv52p 1/1 Running 0 4m13s

192.168.1.52 my-n2-2

kube-system kube-proxy-mpwkb 1/1 Running 0 3m50s

192.168.1.54 my-n2-4

kube-system kube-proxy-tklp7 1/1 Running 0 52m

192.168.1.51 my-n2-1

kube-system kube-scheduler-my-n2-1 1/1 Running 0

52m 192.168.1.51 my-n2-1

kube-system weave-net-2sjh4 2/2 Running 0 21m

192.168.1.51 my-n2-1

kube-system weave-net-68lcd 2/2 Running 0 3m50s

192.168.1.54 my-n2-4

kube-system weave-net-7fh98 2/2 Running 1 4m13s

192.168.1.52 my-n2-2

kube-system weave-net-krdtz 2/2 Running 1 3m36s

192.168.1.55 my-n2-5

kube-system weave-net-ljm6k 2/2 Running 0 3m53s

192.168.1.53 my-n2-3

As is evident from Output.16 above, we see an
instance for API Server, etcd, Controller Manager,
Scheduler, and Plugin Network (weave-net) all up and
running.

To display detailed information about any pod (say
the Controller Manager) in the Kubernetes cluster,
execute the following command on the master node
(my-n2-1):

$ kubectl describe pod kube-controller-manager-my-

n2-1 -n kube-system

The following would be a typical output (Rob, I �rst
noticed output seventeen missing "none"):

Output.17

Name: kube-controller-manager-my-n2-1

Namespace: kube-system

Priority: 2000000000

Priority Class Name: system-cluster-critical

Node: my-n2-1/192.168.1.51

Start Time: Sun, 15 Dec 2019 11:58:39 -0500

Labels: component=kube-controller-manager

tier=control-plane

Annotations: kubernetes.io/config.hash:

536dc7132dfd0d2ca1d968c9ede1e024

kubernetes.io/config.mirror:

536dc7132dfd0d2ca1d968c9ede1e024

kubernetes.io/config.seen: 2019-12-

15T11:58:35.86446527-05:00

kubernetes.io/config.source: file

Status: Running

IP: 192.168.1.51

IPs:

IP: 192.168.1.51

Controlled By: Node/my-n2-1

Containers:

kube-controller-manager:

Container ID:

docker://63b0d105457f52849afa38d2e914b53e68b7e2178

6fc41cda322bb21bc5b86a4

Image: k8s.gcr.io/kube-controller-manager:v1.17.0

Image ID: docker-pullable://k8s.gcr.io/kube-

controller-

manager@sha256:0438efb5098a2ca634ea8c6b0d804742b73

3d0d13fd53cf62c73e32c659a3c39

Port:

Host Port:

Command:

kube-controller-manager

--authentication-

kubeconfig=/etc/kubernetes/controller-manager.conf

--authorization-

kubeconfig=/etc/kubernetes/controller-manager.conf

--bind-address=127.0.0.1

--client-ca-file=/etc/kubernetes/pki/ca.crt

--cluster-signing-cert-

file=/etc/kubernetes/pki/ca.crt

--cluster-signing-key-

file=/etc/kubernetes/pki/ca.key

--controllers=*,bootstrapsigner,tokencleaner

--kubeconfig=/etc/kubernetes/controller-

manager.conf

--leader-elect=true

--requestheader-client-ca-

file=/etc/kubernetes/pki/front-proxy-ca.crt

--root-ca-file=/etc/kubernetes/pki/ca.crt

--service-account-private-key-

file=/etc/kubernetes/pki/sa.key

--use-service-account-credentials=true

State: Running

Started: Sun, 15 Dec 2019 11:58:22 -0500

Ready: True

Restart Count: 0

Requests:

cpu: 200m

Liveness: http-get https://127.0.0.1:10257/healthz

delay=15s timeout=15s period=10s #success=1

#failure=8

Environment:

Mounts:

/etc/ca-certificates from etc-ca-certificates (ro)

/etc/kubernetes/controller-manager.conf from

kubeconfig (ro)

/etc/kubernetes/pki from k8s-certs (ro)

/etc/ssl/certs from ca-certs (ro)

/usr/libexec/kubernetes/kubelet-

plugins/volume/exec from flexvolume-dir (rw)

/usr/local/share/ca-certificates from usr-local-

share-ca-certificates (ro)

/usr/share/ca-certificates from usr-share-ca-

certificates (ro)

Conditions:

Type Status

Initialized True

Ready True

ContainersReady True

PodScheduled True

Volumes:

ca-certs:

Type: HostPath (bare host directory volume)

Path: /etc/ssl/certs

HostPathType: DirectoryOrCreate

etc-ca-certificates:

Type: HostPath (bare host directory volume)

Path: /etc/ca-certificates

HostPathType: DirectoryOrCreate

flexvolume-dir:

Type: HostPath (bare host directory volume)

Path: /usr/libexec/kubernetes/kubelet-

plugins/volume/exec

HostPathType: DirectoryOrCreate

k8s-certs:

Type: HostPath (bare host directory volume)

Path: /etc/kubernetes/pki

HostPathType: DirectoryOrCreate

kubeconfig:

Type: HostPath (bare host directory volume)

Path: /etc/kubernetes/controller-manager.conf

HostPathType: FileOrCreate

usr-local-share-ca-certificates:

Type: HostPath (bare host directory volume)

Path: /usr/local/share/ca-certificates

HostPathType: DirectoryOrCreate

usr-share-ca-certificates:

Type: HostPath (bare host directory volume)

Path: /usr/share/ca-certificates

HostPathType: DirectoryOrCreate

QoS Class: Burstable

Node-Selectors: < none >

Tolerations: :NoExecute

Events: < none >

To list all the application pod(s) running in Kubernetes
cluster, execute the following command on the
master node (my-n2-1):

$ kubectl get pods

The following would be a typical output:

Output.18

No resources found in default namespace.

To list all the service(s) running in Kubernetes cluster,
execute the following command on the master node
(my-n2-1):

$ kubectl get services

The following would be a typical output:

Output.19

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kubernetes ClusterIP 10.96.0.1 443/TCP 64m

We will create a simple Python web application to
display the host name as well as the ip-address when
invoked via HTTP. The following are the contents of
the simple Python web application stored under the
/tmp directory on the master node (my-n2-1):

web-echo.py

from flask import Flask

import socket

app = Flask(__name__)

@app.route("/")

def index():

host_name = socket.gethostname()

host_ip = socket.gethostbyname(host_name)

return 'Hello from container -> ' + host_name + '

[' + host_ip + ']'

if __name__ == "__main__":

app.run(host='0.0.0.0', port=8888)

The following are the contents of the Docker�le to
create a Docker image for the the simple Python web
application stored under the /tmp directory on the
master node (my-n2-1):

Dockerfile

FROM python:3.7.5-alpine3.9

RUN pip install flask

ADD web-echo.py /web-echo.py

CMD ["python", "/web-echo.py"]

To build a Docker image called py-web-echo with the
tag v1.0, execute the following commands on the
master node (my-n2-1):

cd /tmp

docker build -t "py-web-echo:v1.0" .

The following would be a typical output:

Output.20

Sending build context to Docker daemon 3.072kB

Step 1/4: FROM python:3.7.5-alpine3.9

3.7.5-alpine3.9: Pulling from library/python

0362ad1dd800: Pull complete

9b941924aae3: Pull complete

fd7b3613915d: Pull complete

078d60b9b97e: Pull complete

7059e1dd9bc4: Pull complete

Digest:

sha256:064d9ce3e91a59535c528bc3c38888023791d9fc78b

a9e5070f5064833f326ff

Status: Downloaded newer image for python:3.7.5-

alpine3.9

---> 578ec6233872

Step 2/4: RUN pip install flask

---> Running in d248e23dd161

Collecting flask

Downloading

https://files.pythonhosted.org/packages/9b/93/6285

09b8d5dc749656a9641f4caf13540e2cdec85276964ff8f43b

bb1d3b/Flask-1.1.1-py2.py3-none-any.whl (94kB)

Collecting Jinja2>=2.10.1

Downloading

https://files.pythonhosted.org/packages/65/e0/eb35

e762802015cab1ccee04e8a277b03f1d8e53da3ec3106882ec

42558b/Jinja2-2.10.3-py2.py3-none-any.whl (125kB)

Collecting Werkzeug>=0.15

Downloading

https://files.pythonhosted.org/packages/ce/42/3aed

a98f96e85fd26180534d36570e4d18108d62ae36f87694b476

b83d6f/Werkzeug-0.16.0-py2.py3-none-any.whl

(327kB)

Collecting itsdangerous>=0.24

Downloading

https://files.pythonhosted.org/packages/76/ae/44b0

3b253d6fade317f32c24d100b3b35c2239807046a4c953c7b8

9fa49e/itsdangerous-1.1.0-py2.py3-none-any.whl

Collecting click>=5.1

Downloading

https://files.pythonhosted.org/packages/fa/37/4518

5cb5abbc30d7257104c434fe0b07e5a195a6847506c074527a

a599ec/Click-7.0-py2.py3-none-any.whl (81kB)

Collecting MarkupSafe>=0.23

Downloading

https://files.pythonhosted.org/packages/b9/2e/64db

92e53b86efccfaea71321f597fa2e1b2bd3853d8ce658568f7

a13094/MarkupSafe-1.1.1.tar.gz

Building wheels for collected packages: MarkupSafe

Building wheel for MarkupSafe (setup.py): started

Building wheel for MarkupSafe (setup.py): finished

with status 'done'

Created wheel for MarkupSafe: filename=MarkupSafe-

1.1.1-cp37-none-any.whl size=12629

sha256=8a200864ca113d03b4de2d951ae4a1d0806a3ff8412

8349770dfe3fb018a6458

Stored in directory:

/root/.cache/pip/wheels/f2/aa/04/0edf07a1b8a5f5f1a

ed7580fffb69ce8972edc16a505916a77

Successfully built MarkupSafe

Installing collected packages: MarkupSafe, Jinja2,

Werkzeug, itsdangerous, click, flask

Successfully installed Jinja2-2.10.3 MarkupSafe-

1.1.1 Werkzeug-0.16.0 click-7.0 flask-1.1.1

itsdangerous-1.1.0

Removing intermediate container d248e23dd161

---> 4ee40e66a655

Step 3/4: ADD web-echo.py /web-echo.py

---> 31a0341bf9d7

Step 4/4: CMD ["python", "/web-echo.py"]

---> Running in 1ee52ea10ad3

Removing intermediate container 1ee52ea10ad3

---> 7cd037d24ef7

Successfully built 7cd037d24ef7

Successfully tagged py-web-echo:v1.0

To list all the Docker images on the master node (my-
n2-1), execute the following command on the master
node (my-n2-1):

$ docker images

The following would be a typical output:

Output.21

REPOSITORY TAG IMAGE ID CREATED SIZE

py-web-echo v1.0 7cd037d24ef7 3 minutes ago 119MB

k8s.gcr.io/kube-proxy v1.17.0 ac19e9cffff5 7 days

ago 114MB

k8s.gcr.io/kube-apiserver v1.17.0 aca151bf3e90 7

days ago 166MB

k8s.gcr.io/kube-controller-manager v1.17.0

7045158f92f8 7 days ago 156MB

k8s.gcr.io/kube-scheduler v1.17.0 0d5c120f87f3 7

days ago 93.7MB

python 3.7.5-alpine3.9 578ec6233872 4 weeks ago

109MB

weaveworks/weave-npc 2.6.0 1c672c2f5870 5 weeks

ago 36.6MB

weaveworks/weave-kube 2.6.0 81393394d17d 5 weeks

ago 111MB

k8s.gcr.io/coredns 1.6.5 f96217e2532b 5 weeks ago

39.3MB

k8s.gcr.io/etcd 3.4.3-0 ab707b0a0ea3 7 weeks ago

363MB

k8s.gcr.io/pause 3.1 6cf7c80fe444 24 months ago

525kB

Note that we built the Docker image on the master
node (my-n2-1). Since the pod(s) will be deployed on
the worker node(s), we need to ensure the requisite
docker images are present in the worker node(s).

For each of the worker nodes my-n2-2 thru my-n2-5
(in their respective Terminal tab), execute the

following command:

$ docker pull python:3.7.5-alpine3.9

For each of the worker nodes my-n2-2 thru my-n2-5,
execute the following command on the master node
(my-n2-1):

$ docker save py-web-echo:v1.0 | bzip2 | ssh

polarsparc@192.168.1.52 'bunzip2 | docker load'

$ docker save py-web-echo:v1.0 | bzip2 | ssh

polarsparc@192.168.1.53 'bunzip2 | docker load'

$ docker save py-web-echo:v1.0 | bzip2 | ssh

polarsparc@192.168.1.54 'bunzip2 | docker load'

$ docker save py-web-echo:v1.0 | bzip2 | ssh

polarsparc@192.168.1.55 'bunzip2 | docker load'

!!! WARNING !!!

Not having the Docker images in the worker node(s)
will cause the pod(s) to be stuck in the
ContainerCreating status

In Kubernetes, a pod is what encapsulates Docker
container(s). To deploy our web application Docker
image py-web-echo:v1.0 in our Kubernetes cluster, we
need a pod manifest �le in YAML format .

The following are the contents of the pod manifest �le
called web-echo-pod.yaml stored under the /tmp
directory on the master node (my-n2-1):

web-echo-pod.yaml

apiVersion: v1

kind: Pod

metadata:

name: web-echo-pod

labels:

app: web-echo

spec:

containers:

- name: web-echo

image: py-web-echo:v1.0

imagePullPolicy: Never

ports:

- containerPort: 8888

The following section explains the elements of the
web-echo-pod.yaml manifest �le:

apiVersion: speci�es the version of the API (v1 in this
example)

kind: speci�es the type of Kubernetes object to deploy
(Pod in this example)

metadata: associates a name (web-echo-pod in this
example) with the type of Kubernetes object. Also,
allows one to tag some labels, which are simple key-
value pairs, with the Kubernetes

object. In this example, we have one label with the key
app that has a value of web-echo

spec: speci�es what is in the pod. In this example, we
want to deploy the Docker image py-web-echo:v1.0
which is exposed via the network port 8888

imagePullPolicy: indicates to Kubernetes not to pull the
container image

To deploy the pod to our Kubernetes cluster, execute
the following command on the master node (my-n2-
1):

$ kubectl apply -f /tmp/web-echo-pod.yaml

The following would be a typical output:

Output.22

pod/web-echo-pod created

To list all the application pod(s) running in Kubernetes
cluster, execute the following command on the
master node (my-n2-1):

$ kubectl get pods -o wide

The following would be a typical output:

Output.23

1

From Output.23, we see that our application pod have
been deployed on the node my-n2-2 of our
Kubernetes cluster.

To display detailed information about the deployed
application pod web-echo-pod, execute the following
command on the master node (my-n2-1):

$ kubectl describe pods web-echo-pod

The following would be a typical output:

Output.24

Name: web-echo-pod

Namespace: default

Priority: 0

Node: my-n2-2/192.168.1.52

Start Time: Sun, 15 Dec 2019 14:58:21 -0500

Labels: app=web-echo

Annotations: kubectl.kubernetes.io/last-applied-

configuration:

{"apiVersion":"v1","kind":"Pod","metadata":

{"annotations":{},"labels":{"app":"web-

echo"},"name":"web-echo-

pod","namespace":"default"},"spe...

Status: Running

IP: 10.44.0.1

IPs:

IP: 10.44.0.1

Containers:

web-echo:

Container ID:

docker://0af2c99fd074b5ee3c0b9876eb9ad44ca446400c2

190b4af6fa1a18543bff723

Image: py-web-echo:v1.0

Image ID:

docker://sha256:7cd037d24ef7c842ffe005cfcb548a802f

c13661c08c8bb4635c365f77e5a3aa

Port: 8888/TCP

Host Port: 0/TCP

State: Running

Started: Sun, 15 Dec 2019 14:58:23 -0500

Ready: True

Restart Count: 0

Environment:

Mounts:

/var/run/secrets/kubernetes.io/serviceaccount from

default-token-tvl5x (ro)

Conditions:

Type Status

Initialized True

Ready True

ContainersReady True

PodScheduled True

Volumes:

default-token-tvl5x:

Type: Secret (a volume populated by a Secret)

SecretName: default-token-tvl5x

Optional: false

QoS Class: BestEffort

Node-Selectors:

Tolerations: node.kubernetes.io/not-

ready:NoExecute for 300s

node.kubernetes.io/unreachable:NoExecute for 300s

Events:

Type Reason Age From Message

---- ------ ---- ---- -------

Normal Scheduled 7m39s default-scheduler

Successfully assigned default/web-echo-pod to my-

n2-2

Normal Pulled 7m38s kubelet, my-n2-2 Container

image "py-web-echo:v1.0" already present on

machine

Normal Created 7m38s kubelet, my-n2-2 Created

container web-echo

Normal Started 7m37s kubelet, my-n2-2 Started

container web-echo

From the Output.23 (as well as Output.24) above, we
see the ip-address of the deployed web application to
be 10.44.0.1.

To test the deployed web application using the curl
command, execute the following command on any of
the nodes my-n2-1 through my-n2-5:

$ curl http://10.44.0.1:8888

The following would be a typical output:

Output.25

Hello from container -> web-echo-pod [10.44.0.1]

To display the logs of the deployed web application
web-echo-pod, execute the following command on
the master node (my-n2-1):

$ kubectl logs web-echo-pod

The following would be a typical output:

Output.26

* Serving Flask app "web-echo" (lazy loading)

* Environment: production

WARNING: This is a development server. Do not use

it in a production deployment.

Use a production WSGI server instead.

* Debug mode: off

* Running on http://0.0.0.0:8888/ (Press CTRL+C to

quit)

10.32.0.1 - - [15/Dec/2019 20:11:33] "GET /

HTTP/1.1" 200 -

10.36.0.0 - - [15/Dec/2019 20:11:58] "GET /

HTTP/1.1" 200 -

To delete the deployed web application web-echo-
pod, execute the following command on the master
node (my-n2-1):

$ kubectl delete pod web-echo-pod

The following would be a typical output:

Output.27

pod "web-echo-pod" deleted

It is *NOT* that common to deploy a single Pod. It is
more common to deploy a higher level Kubernetes
object called a ReplicaSet . A ReplicaSet de�nes how
many replicas of a Pod need to be deployed and
maintained in the Kubernetes cluster.

The following are the contents of the ReplicaSet
manifest �le called web-echo-rs.yaml stored under
the /tmp directory on the master node (my-n2-1):

web-echo-rs.yaml

apiVersion: apps/v1

kind: ReplicaSet

metadata:

name: web-echo-rs

spec:

replicas: 3

selector:

matchLabels:

app: web-echo

template:

metadata:

labels:

app: web-echo

spec:

containers:

- name: web-echo

image: py-web-echo:v1.0

imagePullPolicy: Never

ports:

- containerPort: 8888

The following section explains some of the elements
of the web-echo-rs.yaml manifest �le:

apiVersion: speci�es the version of the API (apps/v1 in
this example) replicas: indicates the desired instances
of the Pod to be running in the Kubernetes cluster
selector: identi�es and selects a group of Kubernetes
objects with the same key-value label (key app and
value web-echo in this example) template: is the
embedded speci�cation for a Pod

To deploy the ReplicaSet to our Kubernetes cluster,
execute the following command on the master node
(my-n2-1):

$ kubectl apply -f /tmp/web-echo-rs.yaml

The following would be a typical output:

Output.28

replicaset.apps/web-echo-rs created

To list all the deployed ReplicaSet(s) running in
Kubernetes cluster, execute the following command
on the master node (my-n2-1):

$ kubectl get replicasets -o wide

The following would be a typical output:

Output.29

NAME DESIRED CURRENT READY AGE CONTAINERS IMAGES

SELECTOR

web-echo-rs 3 3 3 7m web-echo py-web-echo:v1.0

app=web-echo

To display detailed information about the deployed
ReplicaSet named web-echo-rs, execute the following
command on the master node (my-n2-1):

$ kubectl describe replicasets web-echo-rs

The following would be a typical output:

Output.30

Name: web-echo-rs

Namespace: default

Selector: app=web-echo

Labels:

Annotations: kubectl.kubernetes.io/last-applied-

configuration:

{"apiVersion":"apps/v1","kind":"ReplicaSet","metad

ata":{"annotations":{},"name":"web-echo-

rs","namespace":"default"},"spec":

{"replicas":3,...

Replicas: 3 current / 3 desired

Pods Status: 3 Running / 0 Waiting / 0 Succeeded /

0 Failed

Pod Template:

Labels: app=web-echo

Containers:

web-echo:

Image: py-web-echo:v1.0

Port: 8888/TCP

Host Port: 0/TCP

Environment:

Mounts:

Volumes:

Events:

Type Reason Age From Message

---- ------ ---- ---- -------

Normal SuccessfulCreate 14m replicaset-controller

Created pod: web-echo-rs-xn94l

Normal SuccessfulCreate 14m replicaset-controller

Created pod: web-echo-rs-9x9b9

Normal SuccessfulCreate 14m replicaset-controller

Created pod: web-echo-rs-tbd49

To list all the application pod(s) running in Kubernetes
cluster, execute the following command on the
master node (my-n2-1):

$ kubectl get pods -o wide

The following would be a typical output:

Output.31

NAME READY STATUS RESTARTS AGE IP NODE NOMINATED

NODE READINESS GATES

web-echo-rs-9x9b9 1/1 Running 0 63s 10.42.0.1 my-

n2-4

web-echo-rs-tbd49 1/1 Running 0 63s 10.44.0.1 my-

n2-2

web-echo-rs-xn94l 1/1 Running 0 63s 10.36.0.1 my-

n2-3

From Output.31, we see that our application pod(s)
have been deployed on the 3 nodes my-n2-2, my-n2-
3, and my-n2-4 with unique ip-addresses of 10.44.0.1,
10.36.0.1, and 10.42.0.1 respectively.

As indicated early on, application pod(s) are
ephemeral. They can come up and go at any time.
This means their ip-address(es) can change any time.
We need a higher level abstraction that provides a
stable ip-address for other application pod(s) to use.
This is where a Service object comes in handy. It
provides a single stable ip-address for other
applications to use and distributes the load across the
di�erent backend application pod(s) it is fronting.

There are 3 types of Service(s) in Kubernetes:

ClusterIP: exposes the Service on an ip-address that is
internal to the Kubernetes cluster. This means the
Service is accessible from *ONLY* within the
Kubernetes cluster. This is the default type

NodePort: exposes the Service on each worker node's
ip-address at a high port in the range 30000 to 32767.
Applications external to the Kubernetes cluster are be
able to access the Service at the worker node's ip-
address and the assigned node port

LoadBalancer: 1exposes the Service externally using a
cloud providers Load Balancer such as AWS, Azure, or
Google Cloud

The following are the contents of the ClusterIP based
Service manifest �le called web-echo-svc-cip.yaml
stored under the /tmp directory on the master node
(my-n2-1):

web-echo-svc-cip.yaml

apiVersion: v1

kind: Service

metadata:

name: web-echo-svc-cip

spec:

selector:

app: web-echo

ports:

- name: http

protocol: TCP

port: 8888

To deploy the Service to our Kubernetes cluster,
execute the following command on the master node
(my-n2-1):

$ kubectl apply -f /tmp/web-echo-svc-cip.yaml

The following would be a typical output:

Output.32

service/web-echo-svc created

To list all the Service(s) running in Kubernetes cluster,
execute the following command on the master node
(my-n2-1):

$ kubectl get services -o wide

The following would be a typical output:

Output.33

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

SELECTOR

kubernetes ClusterIP 10.96.0.1 443/TCP 9h

web-echo-svc ClusterIP 10.96.238.16 8888/TCP 105s

app=web-echo

From the Output.33 above, we see the application
web-echo can be accessed from anywhere in the
cluster via the ip-address 10.96.238.16 and port 8888.

To test the deployed Service endpoint using the curl
command, execute the following command 5 times
on any of the nodes my-n2-1 through my-n2-5:

$ curl http://10.96.238.16:8888

The following would be a typical output:

Output.34

Hello from container -> web-echo-rs-xn94l

[10.36.0.1]

Hello from container -> web-echo-rs-9x9b9

[10.42.0.1]

Hello from container -> web-echo-rs-tbd49

[10.44.0.1]

Hello from container -> web-echo-rs-9x9b9

[10.42.0.1]

Hello from container -> web-echo-rs-tbd49

[10.44.0.1]

To display detailed information about the Service
endpoint labeled web-echo-svc, execute the following
command on the master node (my-n2-1):

$ kubectl describe service web-echo-svc

The following would be a typical output:

Output.35

Name: web-echo-svc

Namespace: default

Labels:

Annotations: kubectl.kubernetes.io/last-applied-

configuration:

{"apiVersion":"v1","kind":"Service","metadata":

{"annotations":{},"name":"web-echo-

svc","namespace":"default"},"spec":{"ports":

[{"name":"ht...

Selector: app=web-echo

Type: ClusterIP

IP: 10.96.238.16

Port: http 8888/TCP

TargetPort: 8888/TCP

Endpoints:

10.36.0.1:8888,10.42.0.1:8888,10.44.0.1:8888

Session Affinity: None

Events:

To delete the deployed web-echo-svc object, execute
the following command on the master node (my-n2-
1):

$ kubectl delete service web-echo-svc

The following would be a typical output:

Output.36

service "web-echo-svc" deleted

The following are the contents of the NodePort based
Service manifest �le called web-echo-svc-nop.yaml
stored under the /tmp directory on the master node
(my-n2-1):

web-echo-svc-nop.yaml

apiVersion: v1

kind: Service

metadata:

name: web-echo-svc

spec:

type: NodePort

selector:

app: web-echo

ports:

- name: http

protocol: TCP

port: 8888

To deploy the Service to our Kubernetes cluster,
execute the following command on the master node
(my-n2-1):

$ kubectl apply -f /tmp/web-echo-svc-nop.yaml

The following would be a typical output:

Output.37

service/web-echo-svc created

To list all the Service(s) running in Kubernetes cluster,
execute the following command on the master node
(my-n2-1):

$ kubectl get services -o wide

The following would be a typical output:

Output.38

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

SELECTOR

kubernetes ClusterIP 10.96.0.1 443/TCP 9h

web-echo-svc NodePort 10.96.144.75 8888:32546/TCP

38m app=web-echo

To display detailed information about the Service
endpoint labeled web-echo-svc, execute the following
command on the master node (my-n2-1):

$ kubectl describe service web-echo-svc

The following would be a typical output:

Output.39

Name: web-echo-svc

Namespace: default

Labels:

Annotations: kubectl.kubernetes.io/last-applied-

configuration:

{"apiVersion":"v1","kind":"Service","metadata":

{"annotations":{},"name":"web-echo-

svc","namespace":"default"},"spec":{"ports":

[{"name":"ht...

Selector: app=web-echo

Type: NodePort

IP: 10.96.144.75

Port: http 8888/TCP

TargetPort: 8888/TCP

NodePort: http 32546/TCP

Endpoints:

10.36.0.1:8888,10.42.0.1:8888,10.44.0.1:8888

Session Affinity: None

External Traffic Policy: Cluster

Events:

From the Output.39 above, we see the deployed
Service node port is 32546.

Open a browser and access the url
http://192.168.1.53:32546. The following illustration in
Figure-3 below would be a typical browser display:

Figure 3

BINGO - it works as expected!

And this concludes the basic exercises we performed
on our Kubernetes cluster.

References

https://kubernetes.io/docs/home/?path=browse
https://www.weave.works/docs/net/latest/overview/
https://docs.docker.com/
https://www.polarsparc.com/xhtml/Practical-K8S-
N2.html

Pearl Linux Motion Video Surveillance System With Kodi:
Advanced Visual Monitoring Using An ODROID-C2
 January 10, 2020  By @pearllinux  ODROID-C2, Tutorial

I created a video surveillance image based on Ubuntu
18.04 using the 3.16.75 kernel, featuring pre-installed
and active upon �rst boot Motion Video Surveillance
Software running in User Mode not root. It includes a
pre-installed Apache Web Server and WebMin to
manage your system through web interface, and
boots into Pearl's Lightweight MATE desktop with
most features from Pearl's 7.0 release.

Features

Odroid C2 Pearl Linux Image with Kernel 3.16.75

Motion Video Surveillance preinstalled and active upon
boot

Webmin and Apache Web Server precon�gured and
active upon boot

latest MATE desktop envirnoment

First, download the image then use Etcher
(https://etcher.io) to write the image to your SD card

or eMMC module. Upon �rst boot, the system will
automatically resize and use all of the available space
of your device. Give the system 2-3 minutes after the
screen goes blank, then remove power to C2 then
reapply power.

To use KODI, logout and log back into a Kodi session
rather than Mate. No password is required to log in
under the lightdm display manager. The username is
either “root” or “odroid”, and the password is “odroid”.
You may change the password from the command
prompt or in control panel.

Video Surveillance

This Pearl release comes with Motion Video
Surveillance version 4.2.2-1pearl7.3 We made a
Debian .deb package and added a Basic Camera
Viewer (one 2 up, and one for 4 up). The image is
ready out of the box, with the only exception that
your actual IP address for your computer may not be

https://etcher.io/

the same as the one set up on our LAN. We are using
the 192.168.1.0 network, which is one of the most
common (others are may be 10.0.0.1 or 192.168.0.1).

The location of the camera monitor is at
/opt/pearl/mcm. There, you will �nd 2 �les for the 2
up monitor and 2 �les for the 4 up. The HTML �le is
where you will change the IP address if it is not the
same. The 2 up and 4 up monitoring are both set to
monitor only one camera that is attached to the
ODROID-C2 itself. The others are being pulled from
other computers on your LAN running the motion
software. You can download and install our version of
Motion from our repositories at
http://apt.pearllinux.com/pool/main/m/motion/mot
ion_4.2.2-1pearl7.3_arm64.deb. Other images are
available at
http://apt.pearllinux.com/pool/main/m/motion/.

Release notes

Because the video surveillance starts at boot, the
directory /var/lib/motion will be Add pictures and
short video clips to that directory automatically. If
using a 16GB Micro SD card, you will want to watch
that directory because it can �ll up the card quickly.
You can change any directives including turning the
automatic creation of these �les in the main Motion
con�g �le located at /etc/motion/montion.conf.

For comments, questions, and suggestions, please
visit the original post at
https://sourceforge.net/projects/odroid-c2-
motionvideo/ or the Pearl Linux website at
https://www.pearllinux.com.

http://apt.pearllinux.com/pool/main/m/motion/motion_4.2.2-1pearl7.3_arm64.deb
http://apt.pearllinux.com/pool/main/m/motion/
https://sourceforge.net/projects/odroid-c2-motionvideo/
https://www.pearllinux.com/

Android Things
 January 10, 2020  By @Luke.go  Android, Development, Tutorial

Have you ever tried to connect a peripheral device to
the GPIO pins on your ODROID SBC with the Android
OS? For example, you wished to connect a switch to
launch an application or you wanted to connect a
dimming sensor. The �rst problem you will face would
be the di�culty to handle the GPIO pins from your
Android application or service and maybe you would
be faced with permission problems to access a GPIO,
PWM or I2C, since a general Android application is
denied access to a hardware resource. The alternative
solution is to port a low-level library such as wiringPi
based on C/C++, but it will be required to interface to
your application through JNI (Java Native Interface)
using NDK. Still, you have to �gure out the permission
problem.

Google has introduced yet another Operating System
(OS) known as “Android Things”, that is designed to
run on light embedded devices and o�ers the
framework with Java to handle peripherals. My idea
was to incorporate the Android Things framework

into ODROID software and let users use the
expansion pins easily. However, the problem is that
this OS is not open source, therefore, I had to
implement the code in the Android for ODROID.
Fortunately, Google opens the framework APIs with
its document and Android Things SDK. This fact
encouraged me to implement the full stack of the
framework that works like Android Things, from
bottom to top.

I used some APIs from the Android Things’ Peripheral
managing parts. It has many other features, but these
are not needed for our task. I made interfaces for
using the Android Things API. For processing and
managing the request from user-layer via API, I built
the server and client architecture and connected it to
the hardware layer via wiringPi to control real
hardware. Initially, GPIO, I2C and PWM features were
implemented, because people use them more often
than other features like SPI and UART. Explaining all

of the implementation is best, but I will just show you
how to use it. This tact will be more useful.

Since I utilized the process of reverse engineering. My
solution can become incompatible with the real
Android Things OS and/or degrade its performance.
However, I expect that users who previously wanted
to use GPIO pins on Android will be relieved from
some of the di�culty of working in C through my
work. Let me show you an example of Android Things
about GPIO, I2C and PWM to learn how to use it.

Fig. 01 - Architecture

There is nothing as simple as using the Android
Studio to create, compile, and test an application or
service that contains Android Things. You just need to
install the Android Studio, and add o�cial option and
o�cial code to use Android Things, and install a
package to ODROID via otg port. and execute a
package. It just works! That is all. you do not need to
do anything else.

I uploaded all of the example code to my github
repository
(https://github.com/xiane/thingsGpioExample). And
each of the examples is separated by branches. On
the master branch, you can control the GPIO pin. On
the i2c_16x4 branch, you can use 16x4 lcd through
I2C. On the PWM branch, you can control the PWM.
and on the i2c_weather_board branch, you can use a

weatherboard. Please use and test it for your own
projects.

All of the behind code is based on the Android Things
o�cial site. Please check the o�cial site at:
https://developer.android.com/things.

Manifest

Before you try my examples, you should add the
following lines to your manifest:

For example, in here, https://bit.ly/2spndDW.

You should add dependencies to a build.gradle �le:

compileOnly

'com.google.android.things:androidthings:1.0'

GPIO

Following is the GPIO Pin # and Pin Map.

Fig. 02 - GPIO Pin map

The above map table is based on the wiki at:
https://bit.ly/37dXwFi.

First, you should get PeripheralManager. You can get
a GPIO instance and available list of GPIO from the
manager instance.

import

com.google.android.things.pio.PeripheralManager;

https://github.com/xiane/thingsGpioExample
https://developer.android.com/things
https://bit.ly/2spndDW
https://bit.ly/37dXwFi

import com.google.android.things.pio.Gpio;

…

PeripheralManager manager =

PeripheralManager.getInstance();

You can get an available GPIO list via the getGpioList
method. This method provides an available GPIO
name list. So you can select from the list to use. Each
pin has a name that comes from a physical pin
number. Yes, the GPIO pin name is pin number. You
can get GPIO instance through openGpio method with
pin name by parameter.

List gpioList = manager.getGpioList();

Gpio gpio = manager.openGpio(gpioList.get(0));

// or Gpio gpio = manager.openGpio(“7”);

In this example, I will introduce to you how to use a
GPIO pin as an output. In the example, I want to use
pin #7 as output and if I push the button in my
application, an LED that is connected to GPIO pin #7
will be lit. Like above, after getting a GPIO instance,
you can set the direction IO of the GPIO pin. You can
set direction by setDirection method and direction
values are DIRECTION_IN,
DIRECTION_OUT_INITIALLY_HIGH and
DIRECTION_OUT_INITIALLY_LOW. I chose
DIRECTION_OUT_INITIALLY_LOW to make the GPIO
value low.

Then you can set value via the setValue method. If
you want to make output value high or 1, you should
pass the True parameter or you can pass the false
parameter as low or 0. In this example, I get input
from the application's button. So when you click the
button an LED lights up.

gpio.setDirection(Gpio.DIRECTION_OUT_INITIALLY_LOW

);

Switch gpioSwitch = find

ViewById(R.id.gpio_switch);

gpioSwitch.setOnClickListener(new

View.OnClickListener() {

 @Override

 public void onClick(View v) {

 try {

 Switch gpioSwitch = (Switch) v;

 if (gpioSwitch.isChecked()) {

 gpio.setValue(true);

 } else {

 gpio.setValue(false);

 }

 } catch (IOException io) {

 io.printStackTrace();

 }

 }

});

Android Things also provides other methods like
getValue, setActiveType, setEdgeTriggerType and
registerGpioCallback. You can learn about it from the
o�cial web page. However, the ODROID still does not
provide registerGpioCallback properly. In particular,
Callback con�guration using Handler has not been
implemented yet. I hope it will be implemented.

GPIO method reference - https://bit.ly/2tXHUHI.

Fig. 03

Fig. 04

https://bit.ly/2tXHUHI

Fig. 05

Fig. 06

Fig. 07

You can control I2C and PWM by checking an example
from my github. Also, you can learn about each
peripheral API from the Web site.

I2C -
https://developer.android.com/things/sdk/pio/i2c
PWM -
https://developer.android.com/things/sdk/pio/pwm

I hope it will help you better utilize your Android
peripherals!

References

https://developer.android.com/things
https://forum.odroid.com/viewtopic.php?
f=178&t=37101

https://developer.android.com/things/sdk/pio/i2c
https://developer.android.com/things/sdk/pio/pwm
https://developer.android.com/things
https://forum.odroid.com/viewtopic.php?f=178&t=37101

