

Build Your Own Home Server: Storing A Large Amount Of
Multimedia Files
 October 1, 2017

How to build a network attached storage (NAS) at home to automate backup of
smartphone data, manage and share data on the internet, stream videos, download

and manage Torrents on a smartphone, or host a personal blog.

KVM On The ODROID-XU4
 October 1, 2017

This is a step-by-step guide for enabling KVM on an ODROID-XU4. This guide is only
available in u-boot odroidxu4-v2017.05 and Linux kernel 4.9.x versions.

My ODROID-C2 Docker Swarm – Part 2: Deploying a Stack to a
Swarm
 October 1, 2017

Docker 1.13.x introduced the new Docker stack deployment feature to allow
deployment of a complete application stack to the swarm. A stack is a collection of

services that make up an application. This new feature automatically deploys multiple services that are linked
to each other obviating the need to de�ne

Linux Gaming: Mobile Entertainment System
 October 1, 2017

I saw an opportunity to create my own mobile entertainment system using a few
components available through Hardkernel. This project is rather easy and well-suited
for beginners, even children.

How to Install ArchLinux With Full Disk Encryption on an ODROID-
C2
 October 1, 2017

Full Disk Encryption (FDE) protects our data against unauthorised access in case
someone gains physical access to the storage media. In this article, I will describe how

to install ArchLinux with Full Disk Encryption on ODROID-C2. The encryption method is LUKS with XTS key-size
512 bit (AES-256).

I2C LCD Module: Using the TWI 1602 16×2 Serial LCD
 October 1, 2017

The I2C TWI 1602 16×2 Serial LCD Module Display for Arduino JD is the ideal solution
for materializing all those speci�cations and much more.

GamODROID-C0: An ODROID-Based Portable Retro Gaming Console
 October 1, 2017

For this project, I wanted something more powerful to run N64, Dreamcast and PSX
games, but also some native Linux game. There are not a lot of low power
consumption options with su�cient CPU+GPU for that, so I chose an ODROID-C0.

Android Development: Android Content Provider
 October 1, 2017

Like any other operating system, Android internally needs to have persistence storage
for storing system information. In this article we will take a look at some of the content
providers that are used internally by the operating system.

ODROID-MC1 Parallel Programming: Getting Started
 October 1, 2017

This guide is not meant to teach you how to write parallel programs on the ODROID-
MC1. It is meant to provide you with an environment ready for experimenting with MPJ
Express, a reference implementation of the mpiJava 1.2 API.

Home Assistant: Scripts for Customization
 October 1, 2017

In this article, we will delve deeper still into Home Assistant customization, creating our
own scripts to collect data from remote sensors and other control devices. We will also
look into various ways to communicate with the remote sensors.

ODROID-MC1 Docker Swarm: Getting Started Guide
 October 1, 2017

The sta� at Hardkernel built a big cluster computing setup for testing the stability of
Kernel 4.9. The cluster consisted of 200 ODROID-XU4’s (i.e, with a net total of 1600 CPU
cores and 400GB of RAM)

Meet An ODROIDian: Brian Kim, Hardkernel Engineer
 October 1, 2017

Meet An ODROIDian is a monthly column where you can learn more about the people
who enjoy using Hardkernel products.

Build Your Own Home Server: Storing A Large Amount Of
Multimedia Files
 October 1, 2017  By odroidinc.com  Linux, Tinkering

Why would you need a network attached storage
(NAS) server at home?

Automatic backup of smartphone data

Manage and share data on the Internet

Stream saved videos

Download and manage Torrents on a smartphone

Host a personal blog

Enable SSL for security

Required components:

Internet service

A WiFi router

A typical computer or a laptop, such as a MacBook Pro

ODROID-HC1 and its power supply

MicroSD card for the operating system

LAN cable to connect between WiFi router and
ODROID-HC1

Hard Disk Drive (2.5inch) for my multimedia data

Figure 1 – Home server using ODROID-HC1

You also need a little bit of understanding of the
operating system as well as Open Media Vault
(www.openmediavault.org), which will allow
everyone to install and administrate a Network
Attached Storage without deeper knowledge.

Preparation

First, download Open Media Vault (OMV) for ODROID-
HC1 from http://bit.ly/2xogExP to your computer.
Refer to the readme.txt �le for the username and
password.

web interface username = admin web interface
password = openmediavault

console/ssh username = root console/ssh password
(3.0.75+) = openmediavault

Figure 2 – Downloaded Open Media Vault image

Next, use a USB adapter with an 8GB microSD card,
then open Etcher (etcher.io) to �ash the operating
system, as shown in Figure 3. Make sure to unzip the
.7z �le before selecting it in Etcher.

Figure 3 – Inserting the USB adapter and microSD card in
the computer

Figure 4 – The unzipped image �le has a di�erent
�lename than the .7z �le

Figure 5 – Etcher allows you to write pre-built images to
a microSD card

General con�guration

Insert the completed Open Media Vault image into
the ODROID-HC1, then slide and insert the hard disk
drive to the SATA connector. Connect the LAN cable
from the WiFi router to HC1 and plug the power
supply to turn it on. It will take approximately 10
minutes for the �rst boot. With another LAN cable,
connect the computer to the same WiFi router which
is connected to the HC1.

Next, download and install Angry IP Scanner
(http://bit.ly/2wCMeII) and scan the IP addresses of
the connected devices. The Hostname is shown as
odroidxu4.local. Open a browser and enter the
ODROID-HC1 address.

http://www.openmediavault.org/
http://bit.ly/2xogExP
http://bit.ly/2wCMeII

Figure 6 – Scanning the local IP addresses to locate the
IP address of the ODROID-HC1

Figure 7 – Logging into the web interface of Open Media
Vault

As mentioned above, the default username and
password is in the readme.txt at
http://bit.ly/2xogExP.

web interface username = admin web interface
password = openmediavault

Figure 8 – Home screen of the Open Media Vault web
interface

Go to “System -> Date & Time” and change the
timezone to your current location, then press
“Activate [Use NTP server] -> Save -> Apply”.

Figure 9 – Updating the date and time in Open Media
Vault

You can also change the session timeout to “0” in
order not to be logged out after a certain amount of
idle time by selecting “General Settings -> Session
timeout -> 0 -> Save -> Apply -> Yes”.

http://bit.ly/2xogExP

Figure 10 – Saving the con�guration changes in Open
Media Vault

Next, update the system to the latest version by
selecting “Update Management -> Check Package
information -> Upgrade”, reload the page after the
update completes, then reboot the ODROID-HC1
using the “Reboot” option in the Open Media Vault
web interface.

Figure 11 – Updating to the latest version of Open Media
Vault

Figure 12 – The Open Media Vault update has been
completed

Figure 13 – The page should be reloaded after the Open
Media Vault update completes

Figure 14 – Select “Reboot” from the Open Media Vault
web interface

Figure 15 and 16 – Ignore the error messages after
pressing “Reboot”

Figure 17 – Login to the Open Media Vault web interface
after the reboot has completed

Setting permissions

The hard drive needs to be in ext4 format in order to
be compatible with Open Media Vault. If the �le

system of the hard drive is not ext4, you will need to
create a new �le system, as shown in Figure 17)

Figures 18 – 24 – Formatting the hard drive to ext4
format

After the format has completed, select “Mount” as
shown in Figures 19 and 20.

Figures 25, 26 and 27 – Mounting the newly formatted
hard drive

The next step is to register users who have
permissions to transfer data to/from the server.

Figures 28 and 29 – Registering the “odroid” user to be
able to transfer data to/from the server

After the user has been created, create a shared
folder by selecting “Shared Folders -> Add -> Name ->
Select Device -> Set Permissions -> Save”. Each user
then needs to be granted privileges. Grant the user
“odroid” shared read/write folder privileges and save
the settings.

Figures 30 and 31 – Creating the shared folder and
assigning individual user privileges

ACL is another type of permission that needs to be
granted, as described at http://bit.ly/2xn98sb. The
user “odroid” needs read/write/execute permissions,
and other users can be given permissions as needed.

Figure 32 – Giving ACL permissions to the “odroid” user

Data transfer using Samba

The server can be shared with the workgroup using
Samba (SMB). Click “Apply” to see the shared folder.

Figures 33, 34 and 35 – Sharing the server using Samba

http://bit.ly/2xn98sb

Note that if you have two or more of the same shared
devices or folders, your computer may rename one
for you. For example, if you have two ODROID-HC1s
attached to the router, it will recognize the �rst as
odroidxu4 and name the second one, odroidxu4–2, to
di�erentiate the two. If you do not see the two
automatically, try rebooting your computer.

Figure 36 – Accessing the shared folder from a
networked computer

Open Finder and check “Shared” to see the odroidxu4
shared server, which is the ODROID-HC1. Click
“Connect As” and enter the name and password
which matches the username and password that was
created on the server. After connecting, �les and
folders can be transferred to and from the ODROID-
HC1 server.

Figure 37 – Copying �les and folders to the ODROID-HC1
using Samba

Data transfer using FTP

File Transfer Protocol (FTP) is a standard network
protocol used for the transfer of coputer �les
between a client and server on a computer network.
First, enable FTP on Open Media Vault as shown in
Figure 38.

Figure 38 – Enabling FTP in Open Media Vault

Next, enable the shared folder by selecting “Services -
> FTP -> Shares -> Add -> Enable -> select Shared
folder -> Save”.

Figure 39 – Selecting the shared FTP folder in Open
Media Vault

After FTP is enabled, �les can be transferred to/from
the server by visiting ftp://192.168.0.111 in a browser,
using the address of the ODROID-HC1 server in place
of 192.168.0.111.

Figures 40 and 41 – Visiting the Open Media Vault server
via FTP using Firefox

Figure 42 – Visiting the Open Media Vault server via FTP
using Chrome

Next, install FTP on your smartphone, using an app
such as FTP Sprite for iPhone, or ES File Explorer for
Android.

Figures 43 and 44 – Accessing the Open Media Vault
server using FTP on a smartphone Shutdown

On your Open Media Vault web interface, below the
banner, click the three vertical dots on the right, and
select “Shutdown”.

Figures 45 and 46 – Shutting down the server via the
Open Media Vault menu

When the screen shown in Figure 47 appears, your
operating system has stopped running, and the blue
blinking LED should be o� on the ODROID-HC1. A this
point, you can unplug the power supply and remove
the microSD card. Follow this shutdown procedure
anytime you need to change the hard drive, update
the operating system on the microSD card, or unplug

the power. This will help avoid damaging the ODROID-
HC1.

Figure 47 – Post-shutdown screen in Open Media Vault

For comments, questions, or suggestions, please visit
the original article at
https://medium.com/p/6a3771d9172.

https://medium.com/p/6a3771d9172

KVM On The ODROID-XU4
 October 1, 2017  By Brian Kim  ODROID-XU4, Tutorial

This is a step-by-step guide for enabling KVM on an
ODROID-XU4. This guide is only available in u-boot
odroidxu4-v2017.05 and Linux kernel 4.9.x versions.
The �rst step is to rebuild the kernel. KVM needs the
arch timer instead of MCT (Multi-Core Timer), which is
the default timer of ODROID-XU4 (by exynos5422-
odroidxu4-kvm.dtb). And there are the virtualization
related con�gurations in odroidxu4_kvm_defcon�g
�le.

$ sudo apt update

$ sudo apt install git

$ git clone ­­depth 1

https://github.com/hardkernel/linux ­b

odroidxu4­4.9.y

$ cd linux

$ make odroidxu4_kvm_defconfig

$ make ­j8

$ sudo make modules_install

$ sudo cp arch/arm/boot/zImage

/media/boot/zImage_kvm

$ sudo cp arch/arm/boot/dts/exynos5422­

odroidxu4­kvm.dtb /media/boot/

Modify the boot.ini �le by changing “zImage” to
“zImage_kvm”, and “exynos5422-odrooidxu4.dtb” to
“exynos5422-odrooidxu4-kvm.dtb”

/media/boot/boot.ini

(......)

Load kernel, initrd and dtb in that sequence

fatload mmc 0:1 0x40008000 zImage_kvm

(......)

if test "${board_name}" = "xu4"; then fatload

mmc 0:1 0x44000000 exynos5422­odrooidxu4­

kvm.dtb; setenv fdtloaded "true"; fi

(......)

Reboot the ODROID-XU4, then check whether KVM is
enabled after the booting process is �nished:

$ dmesg | grep HYP

[0.096589] CPU: All CPU(s) started in HYP

mode.

https://magazine.odroid.com/category/odroid-xu4/

[0.777814] kvm [1]: HYP VA range:

c0000000:ffffffff

$ dmesg | grep kvm

[0.777771] kvm [1]: 8­bit VMID

[0.777793] kvm [1]: IDMAP page: 40201000

[0.777814] kvm [1]: HYP VA range:

c0000000:ffffffff

[0.778642] kvm [1]: Hyp mode initialized

successfully

[0.778713] kvm [1]: vgic­v2@10484000

[0.779091] kvm [1]: vgic interrupt IRQ16

[0.779127] kvm [1]: virtual timer IRQ60

$ cat /proc/interrupts | grep arch_timer

58: 0 0 0 0 0 0 0 0 GIC­0 29 Level arch_timer

59: 0 1857 1412 1345 16986 6933 5162 3145 GIC­

0 30 Level arch_timer

Figure 1 Virtual Machine architecture

Figure 2 – Virtual Machine architecture

Ubuntu Minimal 16.04.3 Running using QEMU and
KVM/ARM

To follow this section, make sure that KVM is already
enabled, with 4GB or more storage space available. In
this section, we will run the Ubuntu Minimal 16.04.3

image on the virtual machine using QEMU and
KVM/ARM.

To begin, Install qemu-system-arm which is to
virtualize the arm machine and required packages:

$ sudo apt update

$ sudo apt install qemu­system­arm kpartx

Next, prepare the guest OS kernel and dtb images. It
is needed to set clock frequency for timer in dts �le by
adding a “clock-frequency = <100000000>;” line in the
timer node).

$ wget

https://www.kernel.org/pub/linux/kernel/v4.x/l

inux­4.13.tar.xz

$ tar Jxvf linux­4.13.tar.xz

$ cd linux

$ nano arch/arm/boot/dts/vexpress­v2p­ca15­

tc1.dts

arch/arm/boot/dts/vexpress-v2p-ca15-tc1.dts

timer {

compatible = "arm,armv7­timer";

interrupts = <1 13 0xf08>,

<1 14 0xf08>,

<1 11 0xf08>,

<1 10 0xf08>;

clock­frequency = <100000000>;

};

Build and copy zImage and dtb images to the working
directory:

$ make vexpress_defconfig

$ make menuconfig

Enable the block layer —> [*] Support for large (2TB+)
block devices and �les

$ make zImage dtbs ­j8

$ cp arch/arm/boot/zImage ../

$ cp arch/arm/boot/dts/vexpress­v2p­ca15­

tc1.dtb ../

$ cd ..

Prepare Ubuntu minimal root �lesystem image by
downloading the Ubuntu minimal 16.04.3 image and
generate the root �lesystem image from the image.

$ wget

https://odroid.in/ubuntu_16.04lts/ubuntu­

16.04.3­4.9­minimal­odroid­xu4­20170824.img.xz

$ unxz ubuntu­16.04.3­4.9­minimal­odroid­xu4­

20170824.img.xz

$ sudo kpartx ­a ubuntu­16.04.3­4.9­minimal­

odroid­xu4­20170824.img

$ sudo dd if=/dev/mapper/loop0p2 of=ubuntu­

minimal­16.04.3.img

$ sudo kpartx ­d ubuntu­16.04.3­4.9­minimal­

odroid­xu4­20170824.img

Modify the root �lesystem for the guest environment
by removing the ODROID-speci�c �le and
con�guration:

$ mkdir rootfs

$ sudo mount ubuntu­minimal­16.04.3.img rootfs

$ cd rootfs

$ sudo rm ./first_boot

$ sudo rm ./etc/fstab

$ sudo touch ./etc/fstab

$ cd ..

$ sudo umount rootfs

Run qemu, where the host is Ubuntu Mate 16.04.3 /
4.9.50 kernel, and the guest is Ubuntu Minimal

16.04.3 / 4.13 kernel

$ qemu­system­arm ­M vexpress­a15 ­smp 2 ­cpu

host

­enable­kvm ­m 512 ­kernel zImage ­dtb

vexpress­v2p­ca15­tc1.dtb

­device virtio­blk­device,drive=virtio­blk

­drive file=ubuntu­minimal­

16.04.3.img,id=virtio­blk,if=none

­netdev user,id=user ­device virtio­net­

device,netdev=user

­append "console=tty1 root=/dev/vda rw

rootwait fsck.repair=yes"

Figure 3 – The Host operating system runs the LTS Kernel
4.9.50 while the guest operating system runs the
upstream Kernel 4.13

My ODROID-C2 Docker Swarm – Part 2: Deploying a Stack to a
Swarm
 October 1, 2017  By Andy Yuen  Docker

In Part 1, I deployed services in my ODROID-C2 cluster
using the Docker command line. It works, but there
must be a better way to do deployment, especially
when an application requires multiple components
working together. Docker 1.13.x introduced the new
Docker stack deployment feature to allow
deployment of a complete application stack to the
Docker swarm. A stack is a collection of services that
make up an application. This new feature
automatically deploys multiple services that are linked
to each other obviating the need to de�ne each one
separately. In other words, this is docker-compose in
swarm mode. To do this, I have to upgrade my Docker
Engine from V1.12.6 that I installed using apt-get from
the Ubuntu software repository to V1.13.x. Having
already built V1.13.1 on my ODROID-C2 when I was
experimenting unsuccessfully with swarm mode
months ago, as documented in my previous article, it

is just a matter of upgrading all my ODROID-C2 nodes
to V1.13.1 and I am in business.

The httpd-visualizer stack

The �rst thing I did was to deploy the same
applications (httpd and Visualizer) as in my previous
article using ‘docker stack deploy’. To do this, I need to
create a yaml �le. This is actually docker-compose
yaml �le version “3”. This is relative easy to do as data
persistence is not required. Here is the yaml �le:

version: "3"

services:

 httpd:

 # simple httpd demo

 image: mrdreambot/arm64­busybox­httpd

 deploy:

 replicas: 3

 restart_policy:

 condition: on­failure

 resources:

 limits:

 cpus: "0.1"

 memory: 20M

 ports:

 ­ "80:80"

 networks:

 ­ httpd­net

 visualizer:

 image: mrdreambot/arm64­docker­swarm­

visualizer

 ports:

 ­ "8080:8080"

 volumes:

 ­

"/var/run/docker.sock:/var/run/docker.sock"

 deploy:

 placement:

 constraints: [node.role == manager]

 networks:

 ­ httpd­net

networks:

 httpd­net:

Note that the use of “Networks” in the yaml �le is not
strictly necessary. If omitted, dDocker will create a
default overlay network as you will see in a later
section. The 2 applications, in this case, do not need
to talk to each other anyway! To deploy it, just change
to the directory where the yaml �le is located and
issue the command:

$ docker stack deploy ­c simple­stacks.yml

httpd­dsv

This creates a stack named httpd-dsv. You can �nd
out regarding the state of the stack by issuing a
number of stack commands as shown in Figure 1.

Figure 1 – httpd dsv stack commands

You can point your browser to the Docker swarm
manager or any swarm node at port 8080 to visualize

the deployment using the Visualizer. Figure 2 shows a
screenshot of the VuShell display for visualization
taken from a previous stack deployment:

Figure 2 – VuShell Visualizer

To undeploy the stack, issue the following command:

$ docker stack rm httpd­dsv

Migrating my WordPress blog to the swarm

To illustrate a more realistic stack deployment, I
decided that a good test is to migrate my blog to the
swarm. This is useful to me as it enables me to bring
up my blog easily to another environment when
disaster strikes. To do this, I have to do some
preparation work:

Create a dump of the WordPress database using
mysqldump to create: mysql.dmp.

Use a text editor to replace all references of my
domain name (mrdreambot.ddns.net) in the .dmp �le
with the swarm manager’s IP address which is
192.168.1.100.

Tar up /var/www/html directory which contains scripts
and uploaded assets

Pick the docker images to use: mrdreambot/arm64-
mysql and arm64v8/wordpress.

Armed with the above, I can proceed to create a
docker stack deployment for my WordPress blog.

State persistence using bind-mount volumes

The �rst approach I took was to use host directories
as data volumes (also called bind-mount volumes) for
data persistence. The yaml �le is shown below:

version: '3'

services:

 db:

 image: mrdreambot/arm64­mysql

 volumes:

 ­

/nfs/common/services/wordpress/db_data:/u01/my

3306/data

 ­

/nfs/common/services/wordpress/db_root:/root

 environment:

 MYSQL_ROOT_PASSWORD: Password456

 MYSQL_DATABASE: wordpress

 MYSQL_USER: wordpressuser

 MYSQL_PASSWORD: Password456

 deploy:

 restart_policy:

 condition: on­failure

 placement:

 constraints: [node.role == manager]

 wordpress:

 depends_on:

 ­ db

 image: arm64v8/wordpress

 volumes:

 ­

/nfs/common/services/wordpress/www_src/html:/u

sr/src/wordpress

 ­

/nfs/common/services/wordpress/www_data:/var/w

ww/html

 ports:

 ­ 80:80

 environment:

 WORDPRESS_DB_HOST: db:3306

 WORDPRESS_DB_USER: wordpressuser

 WORDPRESS_DB_PASSWORD: Password456

 WORDPRESS_DB_NAME: wordpress

 deploy:

 replicas: 3

 restart_policy:

 condition: on­failure

 placement:

 constraints: [node.role == manager]

Figures 3 and 4 show the screenshots for the stack
deployment.

Figure 3 – WordPress bind mount volume deployment

Figure 4 – WordPress running

You have probably noticed that the WordPress site
has lost some of its customized look as the
arm64v8/wordpress docker image does not provide
any PHP customization or libraries. As mentioned
earlier, if you do not de�ne Networks in your yaml �le,
docker creates a ‘wordpress_default’ overlay network
for the deployment automatically. The overlay
network is required such that WordPress can
reference the MySQL database using its name “db” as
de�ned in the yaml �le:

WORDPRESS_DB_HOST: db: 3306

The data volumes warrant some explanation. First
thing to note is that all the host directories used as
data volumes are NFS mounted and accessible to all
swarm nodes.

/nfs/common/services/wordpress/db_data:/u01/m
y3306/data

The host directory
/nfs/common/services/wordpress/db_data is an
empty directory. It is mapped to the container’s
/u01/my3306/data directory where the MySQL
database is located. How its content is created will be
described next.

/nfs/common/services/wordpress/db_root:/root

I pre-populated the host directory
/nfs/common/services/wordpress/db_root with 2 �les:

run.sh – the MySQL startup script which replaces the
one located in the container’s /root directory. This
script is the entry point to the MySQL container. I
changed the script to look for the mysql.dmp �le
located also in /root. If it is there, import the dump �le
into MySQL which will populate the /u01/my3306/data
directory with data. If there is no mysql.dmp �le, it will
do nothing in additional to the usual processing.

mysql.dmp – the dump �le of my Blog’s MySQL
database

The changes in the run.sh �le compared to the one
that comes with the MySQL docker image are shown
below:

...

DMP_FILE=/root/mysql.dmp

...

if ["$MYSQL_DATABASE"]; then

 mysql ­uroot ­e "CREATE DATABASE IF NOT

EXISTS `$MYSQL_DATABASE`"

 if [­f "$DMP_FILE"]; then

 mysql ­uroot $MYSQL_DATABASE < $DMP_FILE

 fi

fi

...

Note that this is required only when you run the
container for the �rst time. Subsequent deployment
will not require this volume mapping as the database
will have been set up during the �rst run. This means
that you can comment out this line in the yaml �le
after successfully deploying this stack once:

­

/nfs/common/services/wordpress/db_root:/root

/nfs/common/services/wordpress/www_src/html:/
usr/src/wordpress

arm64v8/wordpress initializes WordPress by copying
the contents in its /usr/src/wordpress directory to its
/var/www/html directory on startup if /var/www/html
has no content. By pre-populating the host directory
/nfs/common/services/wordpress/www_src/html with
the content from the tar �le created earlier,
arm64v8/wordpress will initialize WordPress with my
Blog’s content. This is required only when you run the
container for the �rst time. This means that you can
comment out this line in the yaml �le after
successfully deploying this stack once:

­

/nfs/common/services/wordpress/www_src/html:/u

sr/src/wordpress

/nfs/common/services/wordpress/www_data:/var/
www/html

The host directory
/nfs/common/services/wordpress/www_data is an
empty directory whose content will be initialized by
the arm64v8/wordpress script as described above.

Why not use docker-compose?

You may be wondering why I did not use docker-
compose to run the yaml �le, for example, using
once-o� commands as the docker documentation
suggests? The reason for it is that the docker-
compose I installed using apt-get is version 1.8.0
which does not understand docker-compose yaml �le
version 3 which is required for “docker stack deploy”! I
tried to build the latest version of docker-compose
from source without success. This is the reason I am
not using docker-compose.

State Persistence Using Shared-storage Volumes

Using bind-mount volumes is host-dependent. Use of
shared volumes has the bene�t of being host-
independent. A shared volume can be made available
on any host that a container is started on as long as it
has access to the shared storage backend, and has
the proper volume plugin (driver) installed that allow
you to use di�erent storage backends such as:
Amazon EC2, GCE, Isilon, ScaleIO, Glusterfs, just to
name a few. There are lots of volume plugins or
drivers available such as Flocker, Rex-Ray, etc.
Unfortunately, no binaries for those plugins are

available for ARM64 machines such as ODROID-C2.
Fortunately, the inbuilt ‘local’ driver supports NFS. And
it is the driver I am using for shared volume
deployment. The yaml �le for this is shown below:

version: '3'

services:

 db:

 image: mrdreambot/arm64­mysql

 volumes:

 ­ db_data:/u01/my3306/data

­

/nfs/common/services/wordpress/db_root:/root

 environment:

 MYSQL_ROOT_PASSWORD: Password456

 MYSQL_DATABASE: wordpress

 MYSQL_USER: wordpressuser

 MYSQL_PASSWORD: Password456

 deploy:

 placement:

 constraints: [node.role == manager]

 replicas: 1

 restart_policy:

 condition: on­failure

 wordpress:

 depends_on:

 ­ db

 image: arm64v8/wordpress

 volumes:

­

/nfs/common/services/wordpress/www_src/html:/u

sr/src/wordpress

 ­ www_html:/var/www/html

 ports:

 ­ "80:80"

 environment:

 WORDPRESS_DB_HOST: db:3306

 WORDPRESS_DB_USER: wordpressuser

 WORDPRESS_DB_PASSWORD: Password456

 WORDPRESS_DB_NAME: wordpress

 deploy:

placement:

constraints: [node.role == manager]

 replicas: 3

 restart_policy:

 condition: on­failure

volumes:

 db_data:

 external:

 name: db_data

 www_html:

 external:

 name: www_html

Again, the volumes warrant some explanation:

/nfs/common/services/wordpress/db_root:/root

It serves the same purpose as in the bind-mount
volume section. It is needed only when you run the
stack for the �rst time to initialize the MySQL
database.

/nfs/common/services/wordpress/www_src/html:/
usr/src/wordpress

It serves the same purpose as in the bind-mount
volume section. It is needed only when you run the
stack for the �rst time to initialize the WordPress
content.

db_data:/u01/my3306/data

db_data is a shared volume created outside of the
stack deployment meaning it is created before the
yaml �le is deployed. It is used to store the MySQL
database content and is uninitialized on creation.

www_html:/var/www/html

www_html is a shared volume created outside of the
stack deployment meaning it is created before the
yaml �le is deployed. It is used to store the WordPress
content and is uninitialized on creation.

Creating the shared volumes

You have probably noticed the section in the yaml �le
that reads:

volumes:

 db_data:

 external:

 name: db_data

 www_html:

 external:

 name: www_html

The db_data and www_html shared volumes are
created using the following commands:

docker volume create ­­driver local

 ­­opt type=nfs

 ­­opt o=addr=192.168.1.100,rw

 ­­opt

device=:/media/sata/nfsshare/www_html

 www_html

docker volume create ­­driver local

 ­­opt type=nfs

 ­­opt o=addr=192.168.1.100,rw

 ­­opt device=:/media/sata/nfsshare/db_data

 db_data

The directories /media/sata/nfsshare/db_data and
/media/sata/nfsshare/www_htm must exist before
you create the volumes. My /etc/exports �le has an
entry:

/media/sata/nfsshare

192.168.1.0/255.255.255.0(rw,sync,no_root_squa

sh,no_subtree_check,fsid=0)

To prove that the shared volumes work, I initially
deployed only 1 mySQL and 1 WordPress replica on
the Docker manager and let them initialize the shared
volumes.

WordPress shared volume deployment

Then I commented out the 2 lines for WordPress
placement:

placement:

constraints: [node.role == manager]

and the 2 bind-mount volumes:

­

/nfs/common/services/wordpress/db_root:/root

­

/nfs/common/services/wordpress/www_src/html:/u

sr/src/wordpress

Next, I want to deploy 3 replicas of WordPress on
multiple nodes. Since we are using the “local” driver,
we have to create the volumes on each node. As

shown in Figure 5, I used “parallel ssh” to create them
on all nodes using just 2 commands. Figure 5 shows
the volume and the stack deployment:

Figure 5 – Creating the volumes on nodes

Figure 6 – WordPress shared volume deployment

I checked that all replicas are using the shared
volumes by using “docker exec -it” to get into the
WordPress containers on the nodes they were
running on and examining the content in the
/var/www/html directory to verify that everything was
working. Under the covers, both approaches use NFS
for sharing among the nodes. However, shared
volumes provide a higher-level host-independent
abstraction than bind-mount volumes. Potentially,
you can recreate the shared volumes using storage
backends other than NFS such as AWS EC2 and
Glusterfs. Bind-mount, on the other hand, is tied to
your host �le system which may be di�cult to migrate
to another environment.

Conclusion

I learned something new exploring the use of “docker
stack deploy”. I hope you’ll �nd this article useful and
informative. There are still many features such as
rolling updates, Continuous Integration/Continuous
Deployment (CI/CD), blue/green and A/B

deployments, just to name a few, that I am yet to
explore using my ODROID-C2 Swarm cluster. And
there are other service orchestration frameworks
such as Kubernetes and Openshift that are more
prevalent in the Enterprise environment than Docker

Swarm Mode. I shall explore additional Docker Swarm
Mode use cases and Swarm Mode alternatives and
report my �ndings in the future when the opportunity
arises.

Linux Gaming: Mobile Entertainment System
 October 1, 2017  By Tobias Schaaf  Gaming, Linux

Hardkernel has done a great job with releasing new
hardware recently. I saw an opportunity to create my
own mobile entertainment system using a few
components available through Hardkernel. This Linux
gaming project is rather easy and well-suited for
beginners, even children.

What you will need

This project is based on the VuShell and components
that can be �t inside the case. In fact, there’s quite a
bit of space in this case, allowing for a variety of
di�erent layouts. For now, I’ll focus on the layout I’m
using, but if you want try this project you can
exchange or add components as you see �t.

ODROID-VuShell (http://bit.ly/2b8lk6a) As the case for
our project, this is an absolute must-have!

ODROID-VU7 Plus (http://bit.ly/2cmKyuN) You could
also use the ODROID-VU7 instead
(http://bit.ly/1NWxgDx) if you want to save a few

dollars or use a screen with slightly less power
consumption.

ODROID-C1+ (http://bit.ly/1Upx5yI) You can also use
an ODROID-C2 or XU4. Unfortunately, the C1 and XU3
won’t work, as they don’t have the necessary I2S
connectors.

The C1+ is probably your best choice, since it uses
very little power and allows you to use a battery pack.
The board powers the VU7 over the USB 2.0 OTG
connector, so only one power plug is needed.

Stereo Boom Bonnet (http://bit.ly/2wbKkyE) As we
want to have sound in our project, to be truly mobile,
this is a must-have.

5V/2A PSU If you use an ODROID XU4, you’ll need an
additional 5V/4A PSU.

SD card with 8MB or more storage You could also use
an eMMC module, but once assembled you will no
longer be able to reach the eMMC module, making

http://bit.ly/2b8lk6a
http://bit.ly/2cmKyuN
http://bit.ly/1NWxgDx
http://bit.ly/1Upx5yI
http://bit.ly/2wbKkyE

corrections impossible without disassembling
everything. The SD card, on the other hand, will still
be accessible with tweezers.

Spacers I got my spacers from other ODROID products
I had laying around, but they can also be bought
cheaply on Amazon (http://amzn.to/2yj4OG8).

Keyboard, Mouse After the initial setup, these may no
longer be needed.

Following the list above, your costs should come to
around $160 (not including your keyboard and
mouse, or shipping).

Figure 1 – The main components for the project laid out
together ready for assembling

There are a couple of other components you might
want to get, but these are completely up to you:

Gamepad (for a better gaming experience) I suggest a
wireless XBox 360 controller with a Wireless PC
Adapter, since one adapter supports up to four
controllers, meaning you won’t have to deal with any
cables.

External storage (for storing large amounts of data) For
example, you may want to use a USB thumb drive or
external HDD to store movies or games. If you use a
large SD card (32GB or bigger) you don’t necessarily
need one, but they’re probably easier to exchange
than a SD card if you �nd you need extra storage.

WLAN Module If you want to connect to a wireless
network, you will need one of these.

UPS3 or any other Battery Pack A power bank for your
cellphone or tablet will also do. This way, you can
make the system entirely mobile so that you don’t
need to have a power plug nearby. A decent power
bank should give you somewhere between 3-5 hours
runtime for the entire system.

Micro USB-DC Power Bridge Board
(http://bit.ly/2wbWQ1e) If you use an ODROID-XU4,
this will make sure the power for the display is
constant.

IR Remote Controller (http://bit.ly/1M6UGiR) or any other
IR Remote The C1+ and C2 come with a IR receiver. If
you want to use it in Kodi, that’s something you can
do as well.

Solder Set This is recommended for advanced users
wanting “real” stereo sound

Software

Before you start to assemble the components, you
should setup your ODROID, install the operating
system (I used my own image ODROID GameStation
Turbo for the ODROID-C1 Series), prepare the
boot.ini, and, if you want to, put games, movies, and
whatever on your board. It’s better to do this up front,
as it may be di�cult to do at a later point if you don’t
have a network connection.

Make sure to set the options for the VU7 or VU7 Plus
(depending on your choice of LCD screen) on your
boot.ini:

$ setenv m "1024x600p60hz" # 1024x600

$ # HDMI DVI Mode Configuration

$ # setenv vout_mode "hdmi"

$ setenv vout_mode "dvi"

$ # setenv vout_mode "vga"

You can also con�gure the system to load the
modules required for the Stereo Boom Bonnet.

Open a terminal and type the following commands:

$ su ­

$ echo "snd­soc­pcm5102 snd­soc­odroid­dac" >>

/etc/modules

After that, you can copy over the games or movies
you want to use, and con�gure EmulationStation,
Kodi, and any other additions to your liking, or you
can do this later once the system is assembled. You
will de�nitely need the boot.ini con�guration at
absolute minimum, or else you won’t see anything on
your screen later.

Assembly

http://amzn.to/2yj4OG8
http://bit.ly/2wbWQ1e
http://bit.ly/1M6UGiR

Assembling is rather easy, just follow the step from
Hardkernel on how to assemble the VuShell
(http://bit.ly/2b8lk6a) with some slight modi�cations.

Figure 2 – Attaching the ODROID-C1+ on the back of the
Vu7 Plus

Once you attach the screen to the front and add the
�rst side on the board (Step 7) it’s time for some
modi�cations. First, connect the Stereo Boom Bonnet
with the board. To do this, gently bend the parts that
hold the speakers until they come apart and you have
the board and the speaker separated. Unplug the
cable for the speakers. It’s best to connect the cable of
the Stereo Boom Bonnet before you assemble it.
Refer to the guide from Hardkernel to make sure you
put the cable on the the correct way
(http://bit.ly/2xuWVjA).

Remove the screw that was added in Step 3 of the
VuShell assembly on the side of the VU7 Plus and
replace it with a couple of spacers. Place the Stereo
Boom Bonnet upside down on top of the spacers. Use
the screw you originally removed to fasten the Stereo
Boom Bonnet. Use (4) M3 20mm spacers to lift up the
Stereo Boom Bonnet so the volume slider aligns with
one of the holes of the VuShell, which will later allow
you to regulate the volume.

Figure 3 – Stereo Boom Bonnet connected upside down
with spacers over the ODROID-C1+

After you connect the �rst side, you can do the same
to the other side. Please note that the top hole of the
C1+ is normally not connected to the case, as can be
seen in Step 5 of assembling the VuShell. If you put a
spacer in here, don’t worry if they are not screwed
into a socket. It will work �ne without it. Once the
second line of spacers is assembled to the C1+ and
the Stereo Boom Bonnet, you can connect the �rst
speaker that came with the Stereo Boom Bonnet.

Align the speaker to one of the holes in the VuShell
case. I used transparent sticky tape to fasten the
speaker to the case for my �rst test. Later, you can
super-glue it to the case. Technically, one speaker is
enough to have some rather good sound, but if you
choose, you can connect the second speaker to one of
the other holes on the same side.

If you want real stereo sound, you’ll need to lengthen
the cable on the second speaker so it can be
connected to the other side of the VuShell. Please
note that some soldering is required, so although it’s
rather easy, it should be done with care, and children
should be supervised by an adult.

http://bit.ly/2b8lk6a
http://bit.ly/2xuWVjA

Figure 4 – I ran out of 20mm spacers and switched to
10mm. It doesn’t look pretty. Please use 20mm instead.
Don’t be as lazy as me.

Figure 5 – I ran out of 20mm spacers and switched to
10mm. It doesn’t look pretty. Please use 20mm instead.
Don’t be as lazy as me.

Even with just one speaker attached, the sound
should be good enough to watch movies or play
games. I made a video where I tested video playback
with �mpeg http://bit.ly/2xox1wb. In this video, I turn
the volume up and down using the slider that is easy
to reach thanks to the spacers. After that, I also tried
some good old 8-bit sounds by starting Cave Story
from within EmulationStation (http://bit.ly/2xlDxGo).
This also worked perfectly. Only having one speaker
connected was really no big deal.

Advanced Assembly

As you may have noticed, the cable of the second
speaker is too short to reach the other end of the
VuShell. Therefore, I needed to lengthen the cable to
be able to reach the other side of the case. This
process is fairly easy and can probably even be done
by children, but only with adult supervision.

You will need some basic soldering equipment. Mainly
just extra wire, soldering tin, and some heat shrink
wire wrap (http://amzn.to/2wH9edI) if you have it.
Unfortunately, I didn’t have these. It works without it,
but it’s better to have the heat shrink wrap in order to
protect the cables once they’re soldered. You will also
need something to cut the wire. A wire/cable cutter
will do nicely, and since the cables are rather thin, a
pair of scissors or even a knife would probably do as
well.

Figure 6 – Soldering equipment and a second speaker

When you have all of the items, you can start by
unwinding the cables close to the speaker to a length
of about 5 cm (2 inches). Then cut the wire with the
wire cutter and expose the blank wires.

http://bit.ly/2xox1wb
http://bit.ly/2xlDxGo
http://amzn.to/2wH9edI

Figure 7 – Don’t cut the wires too close to the speakers,
in case you have to start over again. Twist the exposed
wire-ends together.

Cut two longer wires about 20-25 cm (8-10 inches). I
strongly suggest using di�erent colors for the wires so
you see which cable needs to connect to which other
cable. Make sure the two cables you cut are nearly the
same length. I also suggest using similar thin cables
as the speaker cables. Mine were just slightly thicker
and they �t perfectly.

After cutting the wires, expose the ends by slowly
removing the cover of the cable. Be careful not to cut
the cable in the process. Once that is done, twist the
exposed wires so they hold together. Then, you can
apply tin to the exposed ends cover all exposed ends
in a thin layer of tin. This would also be a good time to
apply the heat shrink wrap to the extension cords
(two for each cable). After that, you can solder the
cable ends together. Make sure to connect the right
cables.

Figure 8 and 9 – Combine the ends of the cable to the
extension cords, one side after another.

After you solder one end of the cable, you can
connect the other end to the speaker.

Figure 10 – Both ends are connected and the speaker
now has a nice long cable to work with.

In the end, I twisted the cable like the original cable
was twisted, so it’s easier to handle. This actually took
a little while, but the result was good and allowed for
much easier assembly in the VuShell. However, make
sure that you don’t stress the solder points too much
when you twist the cable, or they may come apart
again.

Now would also be a good time to put the heat shrink
wraps over the exposed cable ends and heat them up
so they seal the exposed wires. I tried to do the same
with electrical tape but the cables were too thin to
wrap it around properly. Once you’re done twisting
the cable, it should look like a longer version of of the
original cable, just with some soldering points.

Figure 11 – Make sure cables match up at the end

Now it’s time to put the unit together and place the
new speaker inside the VuShell. When you assemble
the speakers, the speaker connector on the top is for
the left channel and the speaker connector on the
bottom is for the right channel. You can also use
some YouTube videos to test if the left and right
speaker are connected in the right order. You can
fasten the left speaker either with super glue or sticky
tape.

Figure 12 – Speakers are assembled and there is still
plenty of room in the case

After that, I turned on the device and tested to see if
both speakers worked right at the start
(http://bit.ly/2xuF4ct). Because there is plenty of
room inside the case, you can add additional
components rather easily. As already shown in the
assembly instructions from Hardkernel, there are
already screw holes to place an HDD or power bank
inside, which would make the device entirely mobile.

Figure 13 – This 12500 mA battery should give you 3-5
hours of mobile entertainment for gaming, watching
movies, or listening to music

You can also easily place an XBox 360 wireless PC
adapter in there together with the power bank. That
way, you can use up to 4 XBox 360 controllers at the
same time without having to add a new cable. This is
awesome for controlling Kodi or EmulationStation
without the need for a keyboard.

Conclusion

This was a fun and easy project. Some people are
already enjoying this little console, stating that they
are amazed by the idea and mobility you have thanks
to the power bank. Since the VuShell has a lot of
space, this project can have many di�erent variations
depending which extra accessories you want to put to
use. You might even want to skip the speakers
entirely and instead simply use the Stereo Boom
Bonnet’s headphone jack, which would allow you to
play your games on a train ride, or if you’re stuck on
an airplane for several hours.

Although not the biggest screen, it’s good enough to
have a couple of friends sitting next to you to watch
some movies on a �eld trip, or play some friendly or
competitive games on one of the many emulators.
Some will prefer the extra power of an XU4 to
seriously play some games for the PSP, Dreamcast, or
N64, while others are �ne with some Nintendo, Super
Nintendo, SEGA Genesis, or other classics on a C1.
Placing it in the kitchen running Android on an C2
allows you to listen to your favorite music while
cooking. Thanks to the touch screen everything you
need is at the tip of your �nger.

All in all, the options are nearly limitless, and it’s very
easy to do. Even children can build their own console.
I encourage you to give it a try and comment on what
you can do with such an all-in-one system.

http://bit.ly/2xuF4ct

How to Install ArchLinux With Full Disk Encryption on an
ODROID-C2
 October 1, 2017  By @YesDay  Linux, ODROID-C2, Tutorial

Full Disk Encryption (FDE) protects our data against
unauthorised access in case someone gains physical
access to the storage media. In this article, I will
describe how to install ArchLinux with Full Disk
Encryption on ODROID-C2. The encryption method is
LUKS with XTS key-size 512 bit (AES-256).

In a nutshell, Full Disk Encryption requires the
following:

Encrypting a partition and copying the root �lesystem
to it.

The kernel to include the dm_crypt kernel module. In
our case, this is already included by default, therefore
we won’t need to re-compile the kernel.

The initramfs to include the dm_crypt kernel module
and the cryptsetup binary. We use a tool called dracut
to generate the required initramfs. Dracut supports
the required functionality via the additional modules
crypt and lvm.

Passing the dracut options for LUKS to the initramfs
via the bootargs property inside boot.ini. For example,
say that in our case, we want the initramfs to unlock a
LUKS volume with UUID ae51db2d-0890-4b1b-abc5-
8c10f01da353 and load the root �lesystem from the
device mapper /dev/mapper/vg-root. To pass these
dracut options we con�gure the following:

sudo nano /boot/boot.ini

setenv bootargs "rd.luks.uuid=ae51db2d­0890­

4b1b­abc5­8c10f01da353 root=/dev/mapper/vg­

root rootwait < leave the rest as is >"

Notes

A lot of the steps throughout this document involve
editing con�guration �les. To keep the words to the
minimum, we use the above notation as a very
concise way to describe such �le editing steps. The
above notation means:

https://www.kernel.org/pub/linux/utils/boot/dracut/dracut.html#_crypto_luks

You need to edit the �le /boot/boot.ini with root
privileges (hence sudo nano /boot/boot.ini). Nano is
the command line editor, however feel free to use
another editor of your choice.

Find the line starting with setenv bootargs and add or
edit the con�guration options rd.luks.uuid=ae51db2d-
0890-4b1b-abc5-8c10f01da353 root=/dev/mapper/vg-
root rootwait. Some �les mentioned throughout this
document might have the corresponding line being
commented out or not present at all. If that’s the case
you will need to uncomment or append the line into
the �le, respectively.

Leave the rest of the line after rootwait as is.

Additionally, for a headless setup, you will need to
enable remote unlocking via SSH as described in
“Remotely unlock the LUKS rootfs during boot using
Dropbear sshd” article at http://bit.ly/2g6qjDv. Last
but not least, if you prefer to use the described
functionality out of the box, simply download the OS
image at http://bit.ly/2xR8LDe. Either way, the
current document will provide more technical details
in regards to the underlying components and how
they work together in a Full Disk Encryption
environment.

Hardware requirements

ODROID-C2

A Linux box from which you will �ash the OS image
and interact with the ODROID-C2

USB disk with at least 4GB capacity

A microSD card or eMMC module with at least 4GB
capacity

(Optional) A USB-UART module kit for connecting with
the ODROID-C2’s serial console. Refer to the post at
http://bit.ly/2fM29BB for instructions on how to
connect along with explanation why the serial console
is highly recommended in this case.

Flash the OS image and boot ODROID-C2

Flash the OS image to the USB disk by following the
instructions from http://bit.ly/2fGKEik. Replace
/dev/mmcblk0 in the following instructions with the
device name for the microSD card as it appears on
your computer. If mounted, unmount the partitions of
the microSD card:

$ lsblk

$ umount /dev/mmcblk0p1

$ umount /dev/mmcblk0p2

Zero the beginning of the microSD card:

$ sudo dd if=/dev/zero bs=1M count=8

of=/dev/mmcblk0

$ sync

Using a tool like GParted, create an MBR/msdos
partition table and two partitions on the microSD
card:

ext4 partition with 128M size

lvm2 partition occupying the rest of the space (no need
to format yet)

Next, copy the contents of the /boot directory from
the USB disk into the �rst partition of the microSD
card:

$ sudo cp ­R /media/user/usb­disk/boot/*

/media/user/micro­sd­card­part1/

Create a symbolic link as a workaround for the
hardcoded boot.ini path of the alarm/uboot-odroid-c2
(http://bit.ly/2xbEdPo):

$ cd /media/user/micro­sd­card­part1

$ sudo ln ­s . boot

Then, �ash the bootloader �les:

$ sudo ./sd_fusing.sh /dev/mmcblk0

Determine the UUID of the USB disk:

$ sudo lsblk ­o name,uuid,mountpoint

NAME UUID MOUNTPOINT

sdb

└─sdb1 2b53696c­2e8e­4e61­a164­1a7463fd3785

/media/user/usb­disk

Note that If there are duplicate UUIDs among the
partitions of the USB disk and the microSD card, then
remove the duplicates to avoid future con�icts:

$ sudo tune2fs /dev/sda2 ­U $(uuidgen)

Con�gure the boot.ini to boot from the USB disk. To
do so, use the UUID from the previous step to
con�gure the boot.ini of the microSD card:

http://bit.ly/2g6qjDv
http://bit.ly/2xR8LDe
http://bit.ly/2fM29BB
http://bit.ly/2fGKEik
https://archlinuxarm.org/platforms/armv8/amlogic/odroid-c2
http://bit.ly/2xbEdPo

$ sudo nano /media/user/micro­sd­card­

part1/boot.ini

$ setenv bootargs "root=UUID=2b53696c­2e8e­

4e61­a164­1a7463fd3785 rootwait "

Unmount, run sync few times, and remove the
microSD card and the USB disk from the Linux box.
Plug the microSD card and the USB disk to the
ODROID-C2, then boot the ODROID-C2 and connect to
its serial console. If you need instructions on how to
connect to the serial console, please refer to the
article at http://bit.ly/2fM29BB.

If all goes, well you should boot into the USB disk.
Note that if root=UUID=2b53696c-2e8e-4e61-a164-
1a7463fd3785 doesn’t work, then try root=/dev/sda1,
root=/dev/sdb1 or whatever device name you see in
the console prior to the failed boot (e.g,. [14.812393]
sd 1:0:0:0: [sda] Attached SCSI removable disk). If you
are still having issues try restarting a few times and/or
repositioning the USB disk into a di�erent USB port
on the ODROID-C2. Don’t worry if it seems to be
giving you trouble, as you won’t have to boot to the
USB disk again after the �rst successful boot.

Next, verify that the root �lesystem is mounted from
the USB disk:

$ df ­h

Change passwords

Change the passwords for the alarm and the root
user. The default credentials are alarm/alarm and
root/root.

$ passwd

$ su

$ passwd

Install required packages

$ su

$ pacman ­Syu

$ pacman ­S ­­needed sudo python git rsync

lvm2 cryptsetup

(Optional) Setup passwordless sudo for the user
alarm:

$ echo 'alarm ALL=(ALL) NOPASSWD: ALL' >

/etc/sudoers.d/010_alarm­nopasswd

Install dracut

Install pacaur (http://bit.ly/2yEjAaY):

$ sudo pacman ­S ­­needed base­devel cower

$ mkdir ­p ~/.cache/pacaur && cd "$_"

$ cower ­d pacaur

$ cd pacaur

$ makepkg ­si ­­noconfirm ­­needed

Install dracut using the pacaur tool:

$ pacaur ­S dracut

Verify the dracut installation by listing modules

$ dracut ­­list­modules

If the “pacaur -S dracut” command reports an error
that aarch64 architecture is not supported by the
package, then follow these steps to con�gure support
for aarch64:

$ cd ~/.cache/pacaur/dracut/

$ nano PKGBUILD # replace `arch=("i686"

"x86_64")` with `arch=("aarch64")`

$ makepkg ­si ­­noconfirm ­­needed

If the makepkg reports an error like dracut-046.tar …
FAILED (unknown public key 340F12141EA0994D),
then type these commands and try again:

$ gpg ­­full­gen­key

$ gpg ­­recv­key 340F12141EA0994D

Refer to Makepkg signature checking for more details
at http://bit.ly/2wuuBe6.

If the “gpg –full-gen-key” command reports the error
Key generation failed: No pinentry, then follow the
below steps to con�gure gpg as described at
http://bit.ly/2yDAJBy and try again. The gpg-agent
needs to know how to ask the user for the password:

$ nano ~/.gnupg/gpg­agent.conf

$ pinentry­program /usr/bin/pinentry­curses

$ gpg­connect­agent reloadagent /bye

If makepkg reports missing dependencies error, then
upgrade the packages and try again.

http://bit.ly/2fM29BB
http://bit.ly/2yEjAaY
http://bit.ly/2wuuBe6
http://bit.ly/2yDAJBy

$ sudo pacman ­Syu

$ pacaur ­Syua

Prepare the LUKS rootfs

Encrypt the second partition of the microSD card (see
also Recommended options for LUKS at
http://bit.ly/2yF15D2):

$ sudo cryptsetup ­v ­y ­c aes­xts­plain64 ­s

512 ­h sha512 ­i 5000 ­­use­random luksFormat

/dev/mmcblk0p2

-v = verbose -y = verify passphrase, ask twice, and
complain if they don’t match -c = specify the cipher
used -s = specify the key size used -h = specify the
hash used -i = number of milliseconds to spend
passphrase processing (if using anything more than
sha1, must be great than 1000) –use-random = which
random number generator to use luksFormat = to
initialize the partition and set a passphrase
/dev/mmcblk0p2 = the partition to encrypt

Unlock the LUKS device and mount it at
/dev/mapper/lvm:

$ sudo cryptsetup luksOpen /dev/mmcblk0p2 lvm

Create primary volume, volume group, and logical
volume:

$ sudo pvcreate /dev/mapper/lvm

$ sudo vgcreate vg /dev/mapper/lvm

$ sudo lvcreate ­l 100%FREE ­n root vg

Create the �lesystem:

$ sudo mkfs.ext4 ­O ^metadata_csum,^64bit

/dev/mapper/vg­root

Mount the new encrypted root volume (logical
volume):

$ sudo mount /dev/mapper/vg­root /mnt

Copy the existing root volume to the new, encrypted
root volume. With a 1.5GB installation, it completes in
about 6 minutes on an average microSD:

$ sudo rsync ­av

­­exclude=/boot

­­exclude=/mnt

­­exclude=/proc

­­exclude=/dev

­­exclude=/sys

­­exclude=/tmp

­­exclude=/run

­­exclude=/media

­­exclude=/var/log

­­exclude=/var/cache/pacman/pkg

­­exclude=/usr/src/linux­headers*

­­exclude=/home/*/.gvfs

­­exclude=/home/*/.local/share/Trash

/ /mnt

If the SSH host keys are empty, remove them so that
they will be regenerated the next time the sshd starts.
This will prevent the memory leak issue as described
at http://bit.ly/2xQxGqe.

$ sudo rm /mnt/etc/ssh/ssh_host*key*

Create some directories and mount the boot
partition:

$ sudo mkdir ­p /mnt/boot /mnt/mnt /mnt/proc

/mnt/dev /mnt/sys /mnt/tmp

$ sudo mount ­t ext4 /dev/mmcblk0p1 /mnt/boot

Register the encrypted volume in crypttab

$ sudo bash ­c 'echo lvm UUID=$(cryptsetup

luksUUID /dev/mmcblk0p2) none luks>>

/mnt/etc/crypttab'

Con�gure fstab:

$ sudo nano /mnt/etc/fstab

$ /dev/mapper/vg­root / ext4 errors=remount­

ro,noatime,discard 0 1

$ /dev/mmcblk0p1 /boot ext4 noatime,discard 0

2

Next, generate a new initramfs using dracut.

The following commands will add the dracut

modules crypt and lvm to the initramfs. These

modules will prompt for LUKS password during

boot and unlock the LUKS volume. Note that the

order of the modules is important:

$ sudo dracut ­­force ­­hostonly ­a "crypt

lvm" /mnt/boot/initramfs­linux.img

Next, determine the LUKS UUID:

$ sudo cryptsetup luksUUID /dev/mmcblk0p2

470cc9eb­f36b­40a2­98d8­7fce3285bb89

http://bit.ly/2yF15D2
http://bit.ly/2xQxGqe

Con�gure the rd.luks.uuid and root dracut options in
bootargs. These will unlock the LUKS volume and load
the rootfs from it during boot:

$ sudo nano /mnt/boot/boot.ini

$ setenv bootargs "rd.luks.uuid=470cc9eb­f36b­

40a2­98d8­7fce3285bb89 root=/dev/mapper/vg­

root rootwait "

Note that in the above step, do NOT delete the rest of
bootargs, essentially replace root=UUID=2b53696c-
2e8e-4e61-a164-1a7463fd3785 with
rd.luks.uuid=470cc9eb-f36b-40a2-98d8-7fce3285bb89
root=/dev/mapper/vg-root and leave the rest of
bootargs untouched. Then, unmount and reboot into
the LUKS rootfs:

$ sudo umount /mnt/boot

$ sudo umount /mnt

$ sudo reboot

If all goes well you will be prompted to enter the LUKS
password during boot. Next, verify the LUKS rootfs:

df ­h

output

Filesystem Size Used Avail Use% Mounted on

devtmpfs 714M 0 714M 0% /dev

tmpfs 859M 0 859M 0% /dev/shm

tmpfs 859M 8.3M 851M 1% /run

tmpfs 859M 0 859M 0% /sys/fs/cgroup

/dev/mapper/vg­root 1.7G 1.4G 256M 85% /

tmpfs 859M 0 859M 0% /tmp

/dev/mmcblk0p1 120M 26M 86M 23% /boot

tmpfs 172M 0 172M 0% /run/user/1000

Next, remotely unlock the LUKS rootfs during boot
using Dropbear sshd. Replace 10.0.0.100 in the
following instructions with the IP address assigned to
the ODROID-C2 by your local DHCP server. Use the
�ng tool to �nd the assigned IP address (e.g. sudo �ng
10.0.0.1/24). Then, make sure the SSH daemon is
running:

$ sudo systemctl status sshd

$ journalctl ­u sshd ­n 100

If the above commands report that sshd fails with
memory allocation error, then enter the following
commands:

$ sudo rm /etc/ssh/ssh_host*key*

$ sudo systemctl start sshd

Refer to the article at http://bit.ly/2xQxGqe for more
information about memory leaks in sshd.

Install and con�gure Dropbear

Install the dracut module crypt-ssh:

$ pacaur ­S dracut­crypt­ssh­git

From your Linux box, copy the public SSH key to the
appconf/dracut-crypt-ssh/authorized_keys �le on the
remote ODROID-C2 server:

$ cat ~/.ssh/*.pub | ssh alarm@10.0.0.100

'umask 077; mkdir ­p appconf/dracut­crypt­ssh;

touch appconf/dracut­crypt­

ssh/authorized_keys; cat >>appconf/dracut­

crypt­ssh/authorized_keys'

Next, con�gure the crypt-ssh module:

$ sudo nano /etc/dracut.conf.d/crypt­ssh.conf

$ dropbear_acl="/home/alarm/appconf/dracut­

crypt­ssh/authorized_keys"

Generate a new initramfs using dracut. The following
commands will add the dracut modules network and
crypt-ssh to the initramfs. Note that the order of the
modules is important:

$ sudo dracut ­­force ­­hostonly ­a "network

crypt lvm crypt­ssh" /boot/initramfs­linux.img

Enable network access during boot by adding
rd.neednet and ip dracut options to bootargs:

$ sudo nano /boot/boot.ini

setenv bootargs "rd.neednet=1

ip=10.0.0.100::10.0.0.1:255.255.255.0:archlinu

x­luks­host:eth0:off rd.luks.uuid=ae51db2d­

0890­4b1b­abc5­8c10f01da353

root=/dev/mapper/vg­root rootwait "

If you prefer DHCP instead of static ip, simply replace
with ip=dhcp. Refer to network documentation of
dracut at http://bit.ly/2g6XCXk and dracut options at
http://bit.ly/2yUBFT6 for more options (man
dracut.cmdline). Reboot so that Dropbear starts,
allowing for remote unlocking:

http://bit.ly/2xQxGqe
http://bit.ly/2g6XCXk
http://bit.ly/2yUBFT6

$ sudo reboot

From your Linux box, connect to the remote
Dropbear SSH server running on the ODROID-C2:

$ ssh ­p 222 root@10.0.0.100

Unlock the volume (asks you for the passphrase and
sends it to console):

$ console_auth

Passphrase:

If unlocking the device succeeded, the initramfs will
clean up itself and Dropbear terminates itself and
your connection.

You can also type “console_peek” which prints what’s
on the console. There is also the unlock command,
but we encountered an issue while testing as
described at http://bit.ly/2fHB2nw.

Some use cases require feeding input automatically to
the interactive command console_auth. From your
Linux box, unlock the volume:

$ ssh ­p 222 root@10.0.0.100 console_auth <

password­file

or

$ gpg2 ­­decrypt password­file.gpg | ssh ­p

222 root@10.0.0.100 console_auth

For additional security, you might want to

only allow the execution of the command

console_auth and nothing else. To achieve

this, you need to configure the SSH key with

restricting options in the authorized_keys

file. From your Linux box, copy the public SSH

key, with restricting options, to the

appconf/dracut­crypt­ssh/authorized_keys file

on the remote ODROID­C2 server:

$ (printf 'command="console_auth",no­agent­

forwarding,no­port­forwarding,no­pty,no­X11­

forwarding ' && cat ~/.ssh/*.pub) | ssh

alarm@10.0.0.100 'umask 077; mkdir ­p

appconf/dracut­crypt­ssh; touch

appconf/dracut­crypt­ssh/authorized_keys; cat

>appconf/dracut­crypt­ssh/authorized_keys'

Refer to the Dropbear documentation for a full list of
restricting options. Prior to continuing, it might be a
good idea to create a copy of the initramfs:

$ sudo cp /boot/initramfs­linux.img

/boot/initramfs­linux.img­`date +%y%m%d­

%H%M%S`

In a headless setup, carefully examine the restricting
options to avoid locking yourself out.

Finally, generate a new initramfs using dracut:

$ sudo dracut ­­force ­­hostonly ­a "network

crypt lvm crypt­ssh" /boot/initramfs­linux.img

In this case, you can unlock the volume interactively
by simply typing the following command:

$ ssh ­p 222 root@10.0.0.100

Note that when typing the above command, the
console_auth command is automatically invoked on
the remote server and immediately prompts for
password, as if you just typed ssh -p 222
root@10.0.0.100 console_auth. While you type the
password, it will be displayed on the screen in plain
text. Therefore, you should avoid unlocking
interactively when the access is restricted to the
console_auth command. When you press enter you
will be disconnected no matter whether the password
was correct or not. Whereas with the non-restricted
login (see http://bit.ly/2hHAGl0), you would only be
disconnected if the password was correct, meaning
that you would have feedback for whether the
unlocking was successful or not. On the other hand,
to unlock the volume using a password �le, from your
Linux box, type the following command:

$ ssh ­p 222 root@10.0.0.100 < password­file

or

$ gpg2 ­­decrypt password­file.gpg | ssh ­p

222 root@10.0.0.100

For comments, questions, or suggestions, please visit
the original blog post at http://bit.ly/2xMQE3I.

References

ArchLinux dm-crypt/Encrypting an entire system
(http://bit.ly/2xPaybR)

How to install Debian with Full Disk Encryption on
ODROID-C2 (http://bit.ly/2g6JtcF)

http://bit.ly/2fHB2nw
http://bit.ly/2hHAGl0
http://bit.ly/2xMQE3I
http://bit.ly/2xPaybR
http://bit.ly/2g6JtcF

I2C LCD Module: Using the TWI 1602 16×2 Serial LCD
 October 1, 2017  By Miltiadis Melissas  ODROID-C2, Tinkering

After doing so many IoT projects with my ODROID-C2
like the seismograph detector
(http://bit.ly/2uWqas0), the wine cellar preserver, and
noti�er (http://bit.ly/2wch3Vb), the Gmail mechanical
noti�er (http://bit.ly/2wch3Vb) and many others, I
was thinking about adding a low energy, low cost LCD
screen for depicting any valuable information of all
those electronic constructions for the sake of
portability and readability. The I2C TWI 1602 16×2
Serial LCD Module Display for Arduino JD is the ideal
solution for materializing all those speci�cations and
much more.

This LCD Module Display communicates with an
ODROID-C2 using the I2C protocol with just 4 wires.
The I2C protocol is a multi-master, multi-slave, packet
switched, single-ended, serial computer bus invented
by Philips Semiconductor (now NXP Semiconductors).
It is typically used for attaching lower-speed
peripheral ICs to processors and microcontrollers in
short-distance, intra-board communication

(http://bit.ly/2qGiYP4). In the following lines, we
describe how this connection can be materialized
physically and programmatically. The language used
is Python 2.7, and the program can be implemented
easily into other projects as a module with minor
modi�cations.

Hardware

You will need all of the usual ODROID-C2 accessories:

ODROID-C2

MicroSD card with the latest Ubuntu 16.04 provided by
HardKernel (http://bit.ly/2rDOCfn)

WiringPi library for controlling the GPIOs of an
ODROID-C2 running on Ubuntu 16.04 (instructions
from Hardkernel on how to install the library can be
found at http://bit.ly/1NsrlU9)

Keyboard

Screen

HDMI cable

http://bit.ly/2uWqas0
http://bit.ly/2wch3Vb
http://bit.ly/2wch3Vb
http://bit.ly/2qGiYP4
http://bit.ly/2rDOCfn
http://bit.ly/1NsrlU9

The keyboard, the screen, and the HDMI cable are
optional because you can alternatively access your
ODROID-C2 from your desktop computer via SSH

Micro USB power or, even better, a power supply
provided by Hardkernel (http://bit.ly/1X0bgdt)

Optional: Power bank with UBEC (3A max, 5V) if you
want to operate the device autonomously (see Figure
1). Hardkernel provides a better solution with UPS3
speci�cally designed for ODROID-C2. You can purchase
the UPS3 from their store at this link:
http://bit.ly/2l1rE25. The UPS3 is a good choice, as it
gives the detector the ability to operate autonomously
with greater stability and duration.

Ethernet cable or usb wi� dongle

The C Tinkering Kit on Ubuntu, which can be
purchased from Hardkernel (http://bit.ly/1NsrlU9)

I2C TWI 1602 16×2 Serial LCD Module Display for
Arduino JD, which can be found from various places,
such as eBay

For the wiring, please follow the schematic in Figure 1.
There are 2 important wires for the communication:
the SDA that provides the I2C serial data, and the SCL
that provides the I2C serial clock. The SDA is on Pin 3
on the I2C LCD Display and is connected on GPIO Pin
3 of ODROID-C2. The SCL is on Pin 4 and is connected
on GPIO Pin 5 of the ODROID-C2. For visual reference
see the schematic in Figure 1 and Hardkernel’s
excellent 40-pin layout for ODROID-C2
(http://bit.ly/2aXAlmt). These will help to make sure
the wiring is correct. Now that we have our hardware
ready, let’s see how we can establish a
communication between the ODROID-C2 and the I2C
Serial LCD Display using the I2C protocol. The GPIO
Pin 2 provides the VCC power, +5V, for the LCD
Display and GPIO Pin 39 is of course the ground, GND.

Figure 1 – wiring diagram

I2C communication

We will establish a connection between ODROID-C2
and the Serial LCD Display using the I2C protocol. The
steps we will follow here are almost identical with
those presented on our previous article under the
title “Seismograph Earthquake Detector: Measuring
Seismic Acceleration using the ODROID-C2”, published
in ODROID magazine’s July issue
(http://bit.ly/2uWqas0). In that article, we described
all the necessary steps necessary to establish
communication between the ODROID-C2 and the
MMA7455 accelerometer, which also uses I2C. We will
repeat the same procedure here for the sake of the
consistency and the integrity of this article.

All commands are entered in a terminal window or via
SSH. First, you’ll need to update ODROID-C2 to ensure
all the latest packages are installed:

$ sudo apt­get update

$ sudo apt­get upgrade

$ sudo apt­get dist­upgrade

Then you will need to reboot the ODROID-C2:

$ sudo reboot

You will need to install SMBus and I2C-Tools, since the
LCD Module Display uses this protocol to
communicate with the ODROID-C2. The System

http://bit.ly/1X0bgdt
http://bit.ly/2l1rE25
http://bit.ly/1NsrlU9
http://bit.ly/2aXAlmt
http://bit.ly/2uWqas0

Management Bus, or SMBus, is a simple, single-
ended, two-wire bus for lightweight communication. It
is most commonly found in computer motherboards
for communicating with the power source
(http://bit.ly/2rAWhuU).

Once you have logged into your ODROID-C2 from the
command line, run the following command to install
Python-SMBus and I2C-Tools:

$ sudo apt­get install pythonsmbus

Set the ODROID-C2 to load the I2C driver:

$ modprobe ami­i2c

Set the ODROID-C2 to start I2C automatically at boot
by editing /etc/modules:

$ sudo nano /etc/modules

Use your cursor keys to move to the last line, and add
a new line with the following text:

$ i2c­dev

Press return, then add:

$ aml_i2c

Save your changes and exit the nano editor. To avoid
having to run the I2C tools at root add the “ODROID”
user to the I2C group:

$ sudo adduser Odroid 12c

Next reboot the ODROID-C2:

$ sudo reboot

Once your ODROID-C2 has been rebooted, you will
have I2C support. You can check for connected I2C
devices with the following command:

$ sudo i2cdetect ­y ­r 1

Figure 2 – Detected I2C devices using i2cdetect

If ‘27’ is shown on line 20 under column 7, this means
the LCD Display is communicating with the ODROID-
C2 and working properly. More details may be found
at http://bit.ly/2qCQM1s.

Python software

We will present the code in chunks, as we do always,
in order to be better understood by our readers. The
code is slightly modi�ed from this the source here
(http://bit.ly/2w2a957) and adopted for the needs of
this project. The code is in Python and what it mainly
does is to establish a connection between the
ODROID-C2 and LCD Display by opening a I2C
connection allowing 16 characters on two lines to be
displayed. You can download the code here
(http://bit.ly/2vzSMqd) and run it for immediate
results, or if you don’t want to retype all the code.
First, import the necessary modules:

import smbus

import time

Define device parameters

I2C_ADDR = 0x27 # I2C device address, if any

error,

 # change this address to 0x3f

LCD_WIDTH = 16 # Maximum characters per line

Define device constants

LCD_CHR = 1 # Mode ­ Sending dataLCD_CMD = 0 #

Mode ­ Sending command

LCD_LINE_1 = 0x80 # LCD RAM address for the

1st line

LCD_LINE_2 = 0xC0 # LCD RAM address for the

2nd line

LCD_LINE_3 = 0x94 # LCD RAM address for the

3rd line

LCD_LINE_4 = 0xD4 # LCD RAM address for the

4th line

LCD_BACKLIGHT = 0x08 # On

ENABLE = 0b00000100 # Enable bit

Timing constants

E_PULSE = 0.0005

E_DELAY = 0.0005

#Open I2C interface

bus = smbus.SMBus(1) # Open I2C interface for

http://bit.ly/2rAWhuU
http://bit.ly/2qCQM1s
http://bit.ly/2w2a957
http://bit.ly/2vzSMqd

ODROID­C2

Initialise display

def lcd_init():

 lcd_byte(0x33,LCD_CMD) # 110011 Initialise

 lcd_byte(0x32,LCD_CMD) # 110010 Initialise

 lcd_byte(0x06,LCD_CMD) # 000110 Cursor move

direction

 lcd_byte(0x0C,LCD_CMD) # 001100 Display

On,Cursor Off, Blink Off

 lcd_byte(0x28,LCD_CMD) # 101000 Data length,

number of lines, font size

 lcd_byte(0x01,LCD_CMD) # 000001 Clear display

 time.sleep(E_DELAY)

Send byte to data pins

 # (#bits = the data, #mode = 1 for data or 0

for command)

def lcd_byte(bits, mode):

 bits_high = mode | (bits & 0xF0) |

LCD_BACKLIGHT

 bits_low = mode | ((bits<<4) & 0xF0) |

LCD_BACKLIGHT

 bus.write_byte(I2C_ADDR, bits_high) # High

bits

 lcd_toggle_enable(bits_high)

 bus.write_byte(I2C_ADDR, bits_low) # Low bits

 lcd_toggle_enable(bits_low)

Toggle enable

def lcd_toggle_enable(bits):

 time.sleep(E_DELAY)

 bus.write_byte(I2C_ADDR, (bits | ENABLE))

 time.sleep(E_PULSE)

 bus.write_byte(I2C_ADDR,(bits & ~ENABLE))

 time.sleep(E_DELAY)

Send string to display

def lcd_string(message,line):

 message = message.ljust(LCD_WIDTH," ")

 lcd_byte(line, LCD_CMD)

 for i in range(LCD_WIDTH):

 lcd_byte(ord(message[i]),LCD_CHR)

Main program block, # Initialize display

def main():

 lcd_init()

Send text to I2C TWI 1602 16x2 Serial LCD

Module Display

while True:

 lcd_string("***ODROID­C2***",LCD_LINE_1)

 lcd_string("ODROID­magazine ",LCD_LINE_2)

 time.sleep(3)

 lcd_string("***HardKernel***",LCD_LINE_1)

 lcd_string("*hardkernel.com*",LCD_LINE_2)

 time.sleep(3)

Handling keyboard interrupts and exception

utility

if __name__ == '__main__':

 try:

 main()

 except KeyboardInterrupt:

 pass

 finally:

 lcd_byte(0x01, LCD_CMD)

Running the code

The above code can be written in any text editor.
However, it’s easier to do with a Python IDE, such as
Python IDLE. The Python IDLE is accessible from the
Mate desktop (Application -> Programming -> IDLE).
As soon as we write the program, we can save it
under any name, and �nally run it as shown in Figure
3:

$ sudo python lcd16x2i2c.py

Figure 3 – output from python program

The messages are presented on the LCD module
sequentially, 2 lines per time.

Figure 4 – LCD screen displaying a dual-line message

Conclusion

The “Drive I2C LCD screen with ODROID-C2”
application can be implemented in any other project
with minor modi�cations as a Python module. The
only piece of code that has to be altered in order to
change the lines of characters depicted on the LCD
display are the following:

Send text to I2C TWI 1602 16x2 Serial LCD

Module Display

while True:

 lcd_string("***ODROID­C2***",LCD_LINE_1)

 lcd_string("ODROID­magazine ",LCD_LINE_2)

 time.sleep(3)

 lcd_string("***HardKernel***",LCD_LINE_1)

 lcd_string("**hardkernel.com",LCD_LINE_2)

 time.sleep(3)

Feel free to make any changes to this code and add
extra capabilities to any other projects that you might
build.

GamODROID-C0: An ODROID-Based Portable Retro Gaming
Console
 October 1, 2017  By Julien Tiphaine  Gaming, ODROID-C0, Tinkering

This article is about yet another homemade portable
gaming console as a sequel to the �rst one that I built
(http://bit.ly/2yFj4th). On the �rst build, I used an
ODROID-W (pi clone) and a brand new GameBoy case.
For this new project, I wanted something more
powerful to run N64, Dreamcast and PSX games, but
also some native Linux game. There are not a lot of
low power consumption options with su�cient
CPU+GPU for that, so I chose an ODROID-C0.
Moreover, instead of using and transforming an
existing case, I used a 3d printed one designed by
myself with optimized dimensions and form factor. I
want to thank the ODROID community
(forum.ODROID.com), and in particular @meveric for
his debian distribution and ODROID-optimized
packages to make the GamODROID-C0.

Components

Here is a list of all components I used for this build:

Main parts:

ODROID-C0

8GB eMMC module

128 Gb MicroSD XC (SanDisk Ultra, XC I, class 10)

3.5″ NTSC/PAL TFT Display (http://bit.ly/2yUyXgd)

A 4x6cm prototype PCB board

Audio Parts :

Stereo 2.8W Class D audio amp

2 PSP 2000/3000 speakers

A cheap USB sound card with a small USB cable

Battery Parts:

2 LiPo batteries : Keeppower 16650 3.7v 2500mA
protected

2 MOLEX connectors, 50079-8100

2 MOLEX receptacle, 51021-0200

http://bit.ly/2yFj4th
http://bit.ly/2yUyXgd

Control parts :

12 soft tactile 8mm muttons (http://bit.ly/2xN8qDW)

4 tactile button 6mm switches (http://bit.ly/2xNmlcU)

2 PSP 1000 analog sticks

1 Analog multiplexer MC14051BCL

Cooling parts :

2 PS3 GPU copper heatsink

4 15x15mm copper heatsink

Some 1mm Thermal Pad

Some Silicon Thermal paste

Various other electronic parts:

A 3mm blue led

Some wires from an old IDE ribbon cable

Some breadboard connection wires

3 resistors

Decoration parts:

Some Nail polish templates for colors (black, yellow,
red, green, blue)

200, 600 and 1200 sandpaper

XTC 3D (http://bit.ly/2fG3l5O)

White satin spray paint

Anticipated power consumption

The main sources of power drain are the ODROID-C0,
the display and the audio system (soundcard and
audio amp). Before starting, I measured the
consumption of these 3 components:

ODROID-C0 : 200-400 mAh depending on CPU and
GPU usage

Audio system : 310 mAh

Display : 420 mAh

It’s a total of 1130 mAh at 5v, so 5650 mAh / hour. The
batteries I used are (at least) 3.7v x 5000 mA for a
total of 18500 mA. The console should last more than
3h in all cases.

Why use a display with such poor resolution ?

There are several reasons for that: low power, 60 FPS,
easy wiring, and it’s blurry like old TV which makes
cool hardware anti-aliasing.

Why use cylindrical batteries?

It’s more a matter of space optimization regarding the
capacity I wanted. Using a more classical �at battery
would have forced me to make a case deeper than
2cm, although that was my �rst intention.

Why use a prototype board to mount additional
components?

The goal was to easily mount all the components as
one unique motherboard, and I can actually say, it
was useful!

Why the need for an analog multiplexer?

The ODROID-C0 provides only 2 analog inputs, and
one is already used to report the battery level. Thus,
only 1 analog input was available for a total of 4
analog axis (2 thumb sticks with 2 directions each).
The only way of reading 4 analog axis with one analog
input was a multiplexer. And fortunately, the ODROID-
C0 has enough digital pins to use 2 of them for analog
channels switching.

Why use eMMC module vs. microSD?

The eMMC is much faster than a microSD. It allows
the console to boot in a few seconds even with Xorg, a
window manager, and Emulation Station with lots of
games. I use the eMMC for the operating system, and
the microSD for the games and video previews.

3D printed case

The console case has been modeled with Freecad. I
designed it speci�cally for this project and the very
speci�c size of the motherboard and all components.
It was my �rst 3D model and �rst 3D print, so it may
contains errors. However, the Freecad �les are
available on GitHub (http://bit.ly/2fGJWRU) and the
STL �les are freely distributed on Thingverse
(http://bit.ly/2xW9FAh).

http://bit.ly/2xN8qDW
http://bit.ly/2xNmlcU
http://bit.ly/2fG3l5O
https://github.com/jit06/GamOdroiD-C0
http://bit.ly/2fGJWRU
https://github.com/jit06/GamOdroiD-C0
https://www.thingiverse.com/thing:2502367
http://bit.ly/2xW9FAh

Figure 1 – Front internal view of the case. The black
points are marks to make holes for skewing.

Figures 2 and 3 – Back internal view of the case. You can
see batteries space at the bottom and some striations
for CPU + GPU thermal dissipation.

The whole case is nearly the same as a Nintendo DS.
It may not be obvious, but using the dimensions of a
well known console allowed me to �nd good and
cheap protection cases. As you can see on photos
later, I used an NDS case to protect my GamODROID-
C0, which I found for a few Euros.

To obtain a nice �nish, I �rst used 600 and 1200
sandpaper on all parts. Then, I used a product called
XTC-3D. It’s awesome and give a nice brilliant �nish,
but it’s still not a good enough �nish for me. I used
some 1200 sandpaper again before using a white

satin aerosol painting. This gave me the �nish that
you see on photos below.

For small parts like buttons and the D-pad, I used
some nail polish. It’s very cheap and actually provided
great brilliant �nish. I �nalized the buttons and D-pad
with some transparent nail varnish to protect colors,
since buttons are the most used part of the console.

Figure 4 – Hardware Assembly

My goal was to build a one-piece motherboard in
order to make it more robust and easier to put inside
the case. I also built small boards for buttons, D-pad
and start/select buttons.

Display hack

The hack is roughly the same as the one I did for my
Retroboy console (http://bit.ly/2yFj4th). However,
there was some di�erences on the connector side : V-
in and composite output was reversed this time.
Figure 5 shows the original display, as found on the
Adafruit website.

http://bit.ly/2yFj4th

Figure 5 – 3.5” display

I �rst removed the white connector, then wired the V-
in directly to the voltage regulator output and added
two wires for powering through one of the ODROID
5V pin, as shown in Figure 6.

Figure 6 – Closeup of the ODROID 5V wiring

Sound card

I chose a cheap USB sound card with a wire between
the board and the USB connector. It was important
because it was easier to unsolder.

Figure 7 – USB sound card

I started to dismantle wires, connectors and then re-
drilled the holes. I prepared the ODROID board by
adding pins to the �rst USB connector, as shown in
Figures 8 and 9. Finally, I soldered the sound card
directly on the pins, as shown in Figure 10.

Figures 8, 9 and 10 – Modi�cations to the sound card

Extension board with USB port

I put the extension board just below the USB sound
card. I �rst soldered a USB connector, then I wired it
to the second ODROID USB connector through the
extension board. Note that I also soldered the
extension board to the ODROID motherboard to
make the whole thing more robust.

Figures 11, 12 and 13 – Attaching the extension board to
the ODROID

Finishing audio on the extension board

Having a sound card with analog output is nice, but a
3.5 audio jack and a good amp to drive the speakers
is better, which was exactly the next step: wiring and
soldering components on the extension board.

Figures 14, 15 and 16 – Wiring and soldering the
components onto the extension board)

Analog multiplexer wiring

Figure 17 – Soldering diagram for the extension board

The soldering of this small piece started to add a lot
of wires and ended up �lling the extension board. I
had to use the following: Vdd (Vin), Vss (ground), x
(analog output), x0, x1, x2, x3 (analog inputs), A, B
(digital switches). C was not needed as 2 switches
were enough to switch the �rst 4 outputs. Vee and
INH has been wired to ground. Note that I made a
voltage divider bridge between x (output) and the
analog input of the ODROID. This is because the PSP
analog sticks and MC14051B operate in 5V whereas
the ODROID-C0 analog input accept a maximum of
1.8v.

Figures 18 and 19 – Closeup of the analog multiplexer
wiring

Volume buttons

You may have noticed on the previous photo that
there were also 2 push buttons on one edge of the
extension board. I wired them to GPIO pins to control
audio volume, as shown in Figure 20.

Figure 20 – Volume button wiring

Start/Select buttons

I used push buttons for start and select buttons. I
mounted them on an small additional board together
with a blue led for battery monitoring.

Figure 21 – Start and select button wiring

Batteries

As indicated before, I used a pair of protected
cylindrical LiPo batteries. I wired them in parallel to
get 5000 mA. I had to solder some wires directly onto
the batteries and added a Molex connector to be able
to connect the two wired batteries to the ODROID-C0
LiPo connector.

Figure 22 – Details of the battery wiring

Mounting the components

At this time, I had done everything on the hardware
side. I started to mount in the front part of the case
the display, analog sticks, D-pad, a-b-x-y boards and
L1 + R1 buttons. The display is not glued but
maintained with two traversal bars. As you will see in
Figure 23, these bars allowed me to also block and
drive all of the wires.

Figures 23 and 24 – Steps of the �nal assembly of the
components inside the case

The next step for the front part of the case is adding
speakers, start/select buttons board and wiring
everything with a common ground. The �nal steps
before closing are to add a heat-sink, putting L2+R2
buttons and the motherboard in the back part of the
case, then soldering everything to GPIO. Note also the
yellow wire which is the composite output of the
ODROID that go to the display input 1.

Figures 25 and 26 – All of the components are �tted into
the case before closing

Figures 27, 28 and 29 – The outside of the case after �nal
assembly

Software

I created a script that constructed 80% of the system
including a copy of speci�c con�guration �les. The
other 20% are for ROMs and personal customization.
If someone wants to do the same, it should be quite
easy to adapt and re-run the script.

Before starting to comment the install script, here are
the preparatory install steps that I did:

Deployment of @meveric’s minimal Debian Jessie
image on the eMMC (http://bit.ly/2yF2PML)

Created two partitions on the 128GB microSD: 4 Gb for
save states and the rest for ROMs, which will be
mounted at /mnt/states and /mnt/ressources). I did 2
partitions because I had the intention to create a read-

https://forum.odroid.com/viewtopic.php?f=114&t=17569
http://bit.ly/2yF2PML

only system except for states, but I �nally kept a full
read/write system.

Created a GameODROID folder in /root and copied the
install script and its dependencies

Installation Script

The installation script and all dependencies can be
found on GitHub at http://bit.ly/2fGJWRU. It is
organized with functions dedicated for each steps.

The �rst executed function creates custom mount
points, copies custom fstab and activates tmpfs:

function fstab

{

 echo "fstab and filesystem"

 mkdir ­p /mnt/states

 mkdir ­p /mnt/ressources

 cp /root/GameODROID/fstab /etc/fstab

 sed ­i "s/#RAMLOCK=yes/RAMLOCK=yes/"

/etc/default/tmpfs

 sed ­i "s/#RAMSHM=yes/RAMSHM=yes/"

/etc/default/tmpfs

}

The custom fstab �le allows to change mount options
in order to optimize for speed (noatime, discard) and
use a small tmpfs partition for /var/log:

tmpfs /var/log tmpfs

nodev,nosuid,noatime,size=20M 0 0

After this �rst function, the system is rebooted, then
upgraded and rebooted again:

function uptodate

{

 echo "update"

 apt­get update

 apt­get upgrade

 apt­get dist­upgrade

}

The �nal step of this stage is to install all of the
necessary base packages (function syspackages).
There is nothing special here except for two things:

evilwm : I had to use a window manager because some
native games can’t �nd the native screen resolution

without it. I found that evilwm was a very good
candidate for the console, since it is very light and
invisible with default settings.

Antimicro-ODROID : it’s a very nice piece of software
that I did not know about before. It allows me to map
any keyboard and mouse event to the joypad.

Python package evdev: used to con�gure reicast input

I used an ODROID C1/C0 speci�c xorg con�guration �le
supplied by @meveric (http://bit.ly/2xaSonP)

Games

This part correspond to the functions “emulators”,
“emulators_glupen64_meveric” and nativegames.
Except for Dreamcast games for which I used reicase,
all other emulators are part of Retroarch:

pcsx-rearmed (PSX)

fbalpha (CPS2)

gambatte (Gameboy color)

gpsp (Gameboy advance)

mednafen-pce-fast (Pc-Engine + Cdrom)

nestopia (Nes)

picodrive (Sega 32X, SegaCD)

pocketnes (Snes)

genesis-plus-gx (GameGear, Genesis, MasterSystem)

mednafen-ngp (Neogeo pocket color)

For native games, I selected those that were enjoyable
with a gamepad and running correctly on the
ODROID-C0 with a small screen:

hurrican

hcraft

frogatto

SuperMario War

astromenace

neverball

shmupacabra

aquaria

Revolt

Open JK3

openjazz

supertuxkart

mars

puzzlemoppet

opentyrian

http://bit.ly/2fGJWRU
http://bit.ly/2xaSonP

pushover

Game launcher

This corresponds to the function “userinterface”.
Initially, I wanted to use Attract mode. Unfortunately,
the implementation of GLES on ODROID-C0/C1 does
not seem to include glBlendEquationSeparateOES()
and glBlendFuncSeparateOES() functions, which are
mandatory to compile libFSML, which in turn is
mandatory to compile Attract mode. Thus, I used the
latest Emulation Station version with video preview
support. Since I wanted to change the default splash
screen with a custom one, I had to replace
“splash_svg.cpp” �le in
“EmulationStation/data/converted”. This �le is a
simple C array that contains the bytes of an SVG �le.
Despite the classical con�guration of systems, I create
a speci�c one that list two scripts to change the
display: internal screen or HDMI (see the
composite.sh and hdmi.sh scripts).

Speci�c tools

This correspond to the function “localtools”. This is
mainly to handle the custom GPIO gamepad. I had to
wrote a small program in C that creates a gamepad
through Linux’s uinput and poll GPIO to generate
events. I used polling instead of IRQ because the SoC
does not have enough IRQ to handle all the buttons. I
named this tool gpio_joypad and the source code is
on GitHub at http://bit.ly/2xaTdgp. It also handles the
analog multiplexer to get left and right analog thumb
sticks values.

Boot con�g �le

This correspond to the function “bootini”. This
function consists in copying a customized boot.ini �le
to the boot partition. The important changes I made
are:

Keeping only two video modes : cvbs480 (activated by
default) and vga (commented out)

Disabled cec and vpu

Modi�ed kernel arguments:

“cvbsmode=480cvbs” to get a 60Hz NTSC resolution
instead of 50 Hz PAL

“max_freq=1824” to overclock the SoC (needed for N64
and Dreamcast emulators)

“quiet loglevel=3 rd.systemd.show_status=false
udev.log-priority=3” to make the boot as quiet as
possible

Initially, I wanted to display the splash screen early
during the boot process. It is well documented on
ODROID wiki, but unfortunately it works only for 720p
resolutions.

Launch everything at start

This correspond to the function “startup”. The
automatic startup of X and Emulationstation at boot
consisted in a custom tty1 service in systemd that
launch agetty with autologin, a BASH pro�le that
launch X when tty variable = tty1, and �nally a xinitrc
that start the window manager and Emulation Station.

/etc/systemd/system/getty@tty1.service.d/override.co
nf

[Service]

ExecStart=

ExecStart=­/sbin/agetty ­­autologin root ­­

noclear %I $TERM

The bash /root/.profile :

~/.profile: executed by Bourne­compatible

login shells.

if ["$BASH"]; then

 if [­f ~/.bashrc]; then

 . ~/.bashrc

 fi

fi

if ["$(tty)" = "/dev/tty1"] ; then

 /usr/local/bin/battery.sh &

 /usr/local/bin/gpio­joypad &

 startx ­­ ­nocursor 2>&1 &

fi

mesg n

/root/.xinitrc

a WM is needed some software are correctly

sized in full screen

e.g : emulationstation, rvgl

http://bit.ly/2xaTdgp

evilwm & pid=$!

emulationstation.sh &

this allows not to shutdown X when emulation

is killed

We want that because we have to kill it

after gamelaunch

else it does not reappear on screen

(SDL_Createwindow() does never end)

wait $pid

Note that the bash profile start the joypad

driver (gpio_joypad) and the battery

monitoring script (battery.sh) before starting

X.

The battery monitoring script is not very

accurate, but I dit not found any way to make

a better monitoring to switch on the led on

low battery or when charging:

#!/bin/bash

PIN=75

GPIO=/sys/class/gpio

ACCESS=$GPIO/gpio$PIN

LOWBAT=780

CHARGING=1020

if [! ­d $ACCESS] ; then

 echo $PIN > $GPIO/export

 echo out > $ACCESS/direction

 echo 0 > $ACCESS/value

fi

while true

do

 ADCVAL=$(cat /sys/class/saradc/saradc_ch0)

echo "value : $ADCVAL"

 # charging

 if [$ADCVAL ­gt $CHARGING]; then

 echo 1 > $ACCESS/value

 else

 # low bat

 if [$ADCVAL ­lt $LOWBAT]; then

 echo 1 > $ACCESS/value

 sleep 1

 echo 0 > $ACCESS/value

 else

 echo 0 > $ACCESS/value

 fi

 fi

 sleep 2

done

Finalize and clean up

This correspond to the function “optimize_system”. In
this function, the BASH login message is hidden (to
make the boot process as silent as possible) and
packages cache is cleaned (apt-get clean). There are
also two con�guration �les that are deployed. The
custom journald.conf is here to write logs in ram
instead of disk for better performance:

[Journal]

Storage=volatile

I also created a specific alsa configuration

file to add latency and buffers, so most sound

stutering are avoided for n64 and dreamcast

games:

pcm.!default {

 type plug

 slave.pcm "softvol"

 ttable.0.1 0.8

 ttable.1.0 0.8

}

pcm.dmixer {

 type dmix

 ipc_key 1024

 slave {

 pcm "hw:1,0"

 period_time 0

 period_size 2048

 buffer_size 65536

 rate 44100

 }

 bindings {

 0 0

 1 1

 }

}

pcm.dsnooper {

 type dsnoop

 ipc_key 1024

 slave {

 pcm "hw:1,0"

 channels 2

 period_time 0

 period_size 2048

 buffer_size 65536

 rate 44100

 }

 bindings {

 0 0

 1 1

 }

}

pcm.softvol {

 type softvol

 slave { pcm "dmixer" }

 control {

 name "Master"

 card 1

 }

}

ctl.!default {

 type hw

 card 1

}

ctl.softvol {

 type hw

 card 1

}

ctl.dmixer {

 type hw

 card 1

}

Global Retroarch con�guration

Despite changing buttons and path, I had to adapt
some videos parameters of retroarch
(root/.con�g/retroarch/retroarch.cfg) to optimize
performance and better suit the GamODROID-C0
hardware:

video_refresh_rate = "59.950001"

video_monitor_index = "0"

video_fullscreen_x = "720"

video_fullscreen_y = "480"

video_vsync = "true"

video_threaded = "true"

video_force_aspect = "true"

Core-speci�c con�guration

I also did some adjustments on a of the emulator
cores:

Allowing 6 buttons for SegaCD and 32X:

picodrive_input1 = "6 button pad"

Changing glupen64 parameters to optimize

rendering on the ODROID SoC:

glupen64­cpucore = "dynamic_recompiler"

glupen64­rspmode = "HLE"

glupen64­43screensize = "320x240"

glupen64­BilinearMode = "standard"

Allowing PSX analog joypad support:

pcsx_rearmed_pad1type = "analog"

For the Dreamcast emulator, I used reicast-joycon�g
(http://bit.ly/2fLE1yH) to generate the gamepad
con�g and copied the resulting �le to
/root/.con�g/reicast/joy.conf. I also changed the
fullscreen resolution to adapt it to the CVBS display:

[x11]

fullscreen = 1

height = 480

width = 720

Keyboard and mouse mapping for native games

Some native games work �ne, but require either a
mouse or a keyboard for special keys such as Esc,
Enter, Space, Shift and the arrow keys. To map these
keys to the console gamepad, I used antimicro. It’s a
very nice and easy-to-use program to map any mouse
and keyboard key to any gamepad buttons.

Scraping videos

Emulation Station has an integrated scraper for game
informations and pictures, but not for videos.
Moreover, if video previews are supported depending
on the chosen themes, they are played through VLC,
which is not accelerated on the ODROID-C0/C1 SoC.
The consequence is that 320×240@30 FPS in h.264 is
the biggest playable size. I wrote and used a custom
script available on GitHub at http://bit.ly/2fGFSkU,
which parses the Emulation Station game folder and
scrapes videos from www.gamesdatabase.org.

Lessons learned

There is no way to correctly monitor the battery on an
ODROID-C0

With only a Mali 450 GPU, even with overclock, it is still
too slow for a lot of N64 and Dreamcast games

There are some crashes that seem to be related to the
graphics driver, such as Emulation Station not exiting
properly, and hurrican sometimes does not start with
the correct resolution

http://bit.ly/2fLE1yH
http://bit.ly/2fGFSkU
http://www.gamesdatabase.org/

It is not possible to use a proper interrupt-based
joypad driver, since there are not enough IRQs
available on the SoC.

There is a need for a window manager, otherwise
fullscreen is not available for games and Emulation
Station

Reicast seems to emulate the GDRom noise, but I
actually �nd it annoying

Figure 30 – Sega emulator running on the GamODROID-
C0

You can check out the GamODROID-C0 in action at
https://youtu.be/3hxYhH7AFYU. For comments,
questions and suggestions, please visit the original
blog post at http://bit.ly/2khNDTz.

https://youtu.be/3hxYhH7AFYU
http://bit.ly/2khNDTz

Android Development: Android Content Provider
 October 1, 2017  By Nanik Tolaram  Android

Like any other operating system, Android internally
needs to have persistence storage for storing system
information. This data needs to be in persistent
storage, as it will always need to refer to those data
after every reboot to put the device in a particular
state. User and device information like screen
brightness, volume, accounts, calendar, etc will need
to be stored somewhere. Android uses what is called
Content Provider. Basically, it is a SQLite-backed
persistent mechanism, or more simply known as a
database. Most of the data is internally stored inside
of several SQLite databases. In this article we will take
a look at some of the content providers that are used
internally by the operating system.

This article will look at some of the databases that are
used internally by the operating system. A good
starting point to learn more about content provider is
to go to the Android Developer website from Google
(http://bit.ly/2hkvljq).

What and where

Content providers are just normal Android
applications that have a job to serve and process
database requests from a client. Data from the
internal content providers are stored inside
/data/data folder as shown in Figure 1. We are
interested in apps that has the following package
format:

com.android.providers.< app_name >

Figure 1 list the internal Android content providers
that are available.

Figure 1 – Package content providers inside /data/data
folder

http://bit.ly/2hkvljq

Take, for example, the DownloadManager service that
is provided by the Android SDK. This service allow
apps to download �le asynchronously. Internally, the
framework uses this content provider to keep
persistent information about a �le status that is going
to be downloaded. The follow SQL schema shows the
declaration that is used internally to persist the
downloaded �le information.

CREATE TABLE android_metadata (locale TEXT);

CREATE TABLE downloads(_id INTEGER PRIMARY KEY

AUTOINCREMENT,uri TEXT, method INTEGER, entity

TEXT, no_integrity BOOLEAN, hint TEXT,

otaupdate BOOLEAN, _data TEXT, mimetype TEXT,

destination INTEGER, no_system BOOLEAN,

visibility INTEGER, control INTEGER, status

INTEGER, numfailed INTEGER, lastmod BIGINT,

notificationpackage TEXT, notificationclass

TEXT, notificationextras TEXT, cookiedata

TEXT, useragent TEXT, referer TEXT,

total_bytes INTEGER, current_bytes INTEGER,

etag TEXT, uid INTEGER, otheruid INTEGER,

title TEXT, description TEXT, scanned BOOLEAN,

is_public_api INTEGER NOT NULL DEFAULT 0,

allow_roaming INTEGER NOT NULL DEFAULT 0,

allowed_network_types INTEGER NOT NULL DEFAULT

0, is_visible_in_downloads_ui INTEGER NOT NULL

DEFAULT 1, bypass_recommended_size_limit

INTEGER NOT NULL DEFAULT 0, mediaprovider_uri

TEXT, deleted BOOLEAN NOT NULL DEFAULT 0,

errorMsg TEXT, allow_metered INTEGER NOT NULL

DEFAULT 1, allow_write BOOLEAN NOT NULL

DEFAULT 0, flags INTEGER NOT NULL DEFAULT 0);

CREATE TABLE request_headers(id INTEGER

PRIMARY KEY AUTOINCREMENT,download_id INTEGER

NOT NULL,header TEXT NOT NULL,value TEXT NOT

NULL);

CREATE TABLE android_metadata (locale TEXT);

CREATE TABLE downloads(_id INTEGER PRIMARY KEY

AUTOINCREMENT,uri TEXT, method INTEGER, entity

TEXT, no_integrity BOOLEAN, hint TEXT,

otaupdate BOOLEAN, _data TEXT, mimetype TEXT,

destination INTEGER, no_system BOOLEAN,

visibility INTEGER, control INTEGER, status

INTEGER, numfailed INTEGER, lastmod BIGINT,

notificationpackage TEXT, notificationclass

TEXT, notificationextras TEXT, cookiedata

TEXT, useragent TEXT, referer TEXT,

total_bytes INTEGER, current_bytes INTEGER,

etag TEXT, uid INTEGER, otheruid INTEGER,

title TEXT, description TEXT, scanned BOOLEAN,

is_public_api INTEGER NOT NULL DEFAULT 0,

allow_roaming INTEGER NOT NULL DEFAULT 0,

allowed_network_types INTEGER NOT NULL DEFAULT

0, is_visible_in_downloads_ui INTEGER NOT NULL

DEFAULT 1, bypass_recommended_size_limit

INTEGER NOT NULL DEFAULT 0, mediaprovider_uri

TEXT, deleted BOOLEAN NOT NULL DEFAULT 0,

errorMsg TEXT, allow_metered INTEGER NOT NULL

DEFAULT 1, allow_write BOOLEAN NOT NULL

DEFAULT 0, flags INTEGER NOT NULL DEFAULT 0);

CREATE TABLE request_headers(id INTEGER

PRIMARY KEY AUTOINCREMENT,download_id INTEGER

NOT NULL,header TEXT NOT NULL,value TEXT NOT

NULL);

The following code block shows an example of a data
is stored for the downloaded �le:

1|<a

href="https://www.gstatic.com/android/config_u

pdate/08202014­

metadata.txt">https://www.gstatic.com/android/

config_update/08202014­

metadata.txt|0|||||/data/user/0/com.androi

d.providers.downloads/cache/08202014­

metadata.txt|text/plain|2||2||200|0||com.googl

e.android.configupdater||||||0|||||08202014­

metadata.txt|||1|1|­1|0|0||0||1|0|0

2|http://www.gstatic.com/android/config_update

/07252017­sms­

blacklist.metadata.txt|0|||||/data/user/0/com.

android.providers.downloads/cache/07252017­

sms­

blacklist.metadata.txt|text/plain|2||2||200|0|

|com.google.android.configupdater||||||385|385

||||07252017­sms­

blacklist.metadata.”txt|||1|1|­1|0|0||0||1|0|0

Content provider declaration

The content providers provided by the operating
system, which are not all made available to a user
application, normally have the following declaration in
their AndroidManifest.xml:

Listing 1 – Settings content provider

< manifest

xmlns:android="http://schemas.android.com/apk/

res/android"

package="com.android.providers.settings"

coreApp="true"

android:sharedUserId="android.uid.system">

 < application

android:allowClearUserData="false"

android:label="@string/app_label"

android:process="system"

android:backupAgent="SettingsBackupAgent"

android:killAfterRestore="false"

android:icon="@mipmap/ic_launcher_settings"

android:defaultToDeviceProtectedStorage="true"

android:directBootAware="true" >

 < provider

android:name="SettingsProvider"

android:authorities="settings"

android:multiprocess="false"

android:exported="true"

android:singleUser="true"

android:initOrder="100" />

 < /application >

< /manifest >

Listing 1 is the AndroidManifest.xml for the Settings
application which is stored under the package
com.android.providers.settings. Another example can
be seen in Listing-2 which shows the declaration for
Contacts Provider used to stored contacts
information:

Listing 2 – Contacts content provider

< manifest

xmlns:android="http://schemas.android.com/apk/

res/android"

package="com.android.providers.contacts"

android:sharedUserId="android.uid.shared"

android:sharedUserLabel="@string/sharedUserLab

el" >

 < uses­permission

android:name="android.permission.BIND_DIRECTOR

Y_SEARCH" />

 < uses­permission

android:name="android.permission.GET_ACCOUNTS"

/>

 < permission

android:name="android.permission.SEND_CALL_LOG

_CHANGE" android:label="Broadcast that a

change happened to the call log."

android:protectionLevel="signature|system" />

 < provider

android:name="ContactsProvider2"

android:authorities="contacts;com.android.cont

acts" android:label="@string/provider_label"

…... …... />

 < /provider >

The following table lists some of the content
providers that exist inside Android version 7.1.2:

Description Package Name Source Location

CalendarProvider com.android.providers.cal
endar

ContactsProvider com.android.providers.co
ntacts

DownloadProvider com.android.providers.do
wnloads

com.android.providers.do
wnloads.ui

MediaProvider com.android.providers.m
edia

SettingsProvider com.android.providers.se
ttings

frameworks/base/packag
es/SettingsProvider/src/co
m/android/providers/setti
ngs/SettingsProvider.java

TelephonyProvider com.android.providers.tel
ephony

packages/providers/Telep
honyProvider/src/com/an
droid/providers/telephon
y/TelephonyProvider.java

UserDictionaryProvider com.android.providers.us
erdictionary

BlockedNumberCall com.android.providers.bl
ockednumber

PartnerbookmarksProvid
er

packages/providers/Partn
erBookmarksProvider/src
/com/android/providers/p
artnerbookmarks/Partner
BookmarksProvider.java

EmailProvider packages/apps/Email/pro
vider_src/com/android/e
mail/provider/EmailProvid
er.java

LauncherProvider packages/apps/Launcher3
/src/com/android/launche
r3/LauncherProvider.java

CellBroadcastReceiver packages/apps/CellBroad
castReceiver/src/com/and
roid/cellbroadcastreceiver
/CellBroadcastContentPro
vider.java

WearPackageIconProvider
.java

packages/apps/PackageIn
staller/src/com/android/p

ackageinstaller/wear/Wea
rPackageIconProvider.jav
a

GalleryProvider packages/apps/Gallery2/s
rc/com/android/gallery3d
/provider/GalleryProvider.
java

DeskClock packages/apps/DeskClock
/src/com/android/deskclo
ck/provider/ClockProvider
.java

SearchRecentSuggestions
Provider

frameworks/base/core/ja
va/android/content/Searc
hRecentSuggestionsProvi
der.java

RecentsProvider frameworks/base/packag
es/DocumentsUI/src/com/

android/documentsui/Rec
entsProvider.java

MtpDocumentsProvider frameworks/base/packag
es/MtpDocumentsProvide
r/src/com/android/mtp/M
tpDocumentsProvider.jav
a

ExternalStorageProvider frameworks/base/packag
es/ExternalStorageProvid
er/src/com/android/exter
nalstorage/ExternalStorag
eProvider.java

BugreportStorageProvide
r

frameworks/base/packag
es/Shell/src/com/android/
shell/BugreportStoragePr
ovider.java

ODROID-MC1 Parallel Programming: Getting Started
 October 1, 2017  By Andy Yuen  ODROID-MC1

This guide is not meant to teach you how to write
parallel programs on the ODROID-MC1. It is meant to
provide you with an environment ready for
experimenting with MPJ Express, a reference
implementation of the mpiJava 1.2 API. An MPJ
Express parallel program that generates Mandelbrot
images has been provided for you to run on any
machine or cluster that has the the Java SDK installed:
ARM or INTEL. If there is su�cient interest expressed
for information on MPJ Express programming, we can
write a tutorial for a future edition of the magazine.

Why parallel programming?

Parallel programming or computing is a form of
computation in which many independent calculations
are carried out simultaneously, operating on the
principle that large problems can often be divided
into smaller ones, which are then solved at the same
time. In short, its aim includes:

Increase overall speed,

Process huge amount of data,

Solve problems in real time, and

Solve problems in due time

Why now?

Many people argue whether Moore’s Law still holds.
Moore’s law is the observation that the number of
transistors in a dense integrated circuit doubles
approximately every two years (some say 18 months).
Moore’s Law is named after Gordon E. Moore, the co-
founder of INTEL and Fairchild Semiconductor. It is
this continuous advancement of integrated circuit
technology that has brought us from the original 4.77
megahertz PC to the current multi-gigahertz
processors. The processor architecture has also
changed a lot with multiple execution pipelines, out-
of-order execution, caching, etc. Assuming Moore’s
Law still applies, we are still faced with big problems
in improving our single CPU performance:

http://bit.ly/1Nx7yBk

The Power Wall
Power = C * Vdd2 * Frequency

We cannot scale transistor count and frequency
without reducing Vdd (supply voltage). Voltage scaling
has already stalled.

The Complexity Wall
Debugging and verifying large OOO (Out-Of-Order)
cores is expensive (100s of engineers for 3-5 years).
Caches are easier to design but can only help so much.

As an example of the power (frequency) wall, it has
been reported that:

E5640 Xeon (4 cores @ 2.66 GHz) has a power
envelope of 95 watts

L5630 Xeon (4 Cores @ 2.13 GHz) has a power
envelope of 40 watts

This implies an increase of 137% electrical power for
an increase of 24% of CPU power. At this rate, it is not
going to scale. Enter multi-core design. A multi-core
processor implements multiprocessing in a single
physical package. Instead of cranking up the
frequency to achieve higher performance, more cores
are put in a processor so that programs can be
executed in parallel to gain performance. These days,
all INTEL processors are multicore. Even the
processors used in mobile phone are all multi-core
processors.

Limitations on performance gains

How much improvement can I expect for my
application to gain running on a multi-core processor?
The answer is that it depends. You application may
not have any performance gain at all if it has not been
designed to take advantage of multi-core capability.
Even if it does, it still depends on the nature of your
program and the algorithm it is using. Amdahl’s law
states that if P is the proportion of a program that can
be made parallel, and (1−P) is the proportion that
cannot be parallelised, then the maximum speedup
that can be achieved by using N processors is:

1/[(1-P) + (P/N)]

The speedup in relation to the number of cores or
processors at speci�c values of P is shown in the
graph below.

Figure 1 – Amdahl’s Law

This gives you some perspective on how much
performance you may be able to gain by writing your
program to take advantage of parallelism instead of
having unreal expectations.

Why do parallel programming in Java?

Some of the advantages of writing parallel programs
in Java include:

Write once, run anywhere,

Large pool of software developers,

Object Oriented (OO) programming abstractions,

Compile time and runtime checking of code,

Automatic garbage collection,

Supports multi-threading in language, and

Rich collection of libraries

Java supported multi-threading since its inception, so
what is new? Java multithreading uses the Shared
Memory Model, meaning that it cannot be scaled to
use multiple machines. A Distributed Memory Model
refers to a multiprocessor computer system, such as
an ODROID-MC1, in which each processor has its own
private memory. Computational tasks can only
operate on local data, and if remote data is required,
the computational task must communicate with one
or more remote processors. In contrast, a Shared
Memory multiprocessor o�ers a single memory space
used by all processors. Processors do not have to be
aware where data resides, except that there may be

http://bit.ly/1MHRobo

performance penalties, and that race conditions are
to be avoided.

The MPJ Express message passing library

MPJ Express is a reference implementation of the
mpiJava 1.2 API, which is the Java equivalent of the
MPI 1.1 speci�cation. It allows application developers
to write and execute parallel applications for
multicore processors and compute clusters using
either a multicore con�guration (shared memory
model) or a cluster con�guration (distributed memory
model) respectively. The latter also supports a hybrid
approach to run parallel programs on a cluster of
multicore machines such as the ODROID-MC1. All the
software dependencies have already been installed
on the SD card image I provided. My mpj-example
project on Github My mpj-example project on Github
has also been cloned and compiled. The resultant jar
�le and a dependent �le have been copied to the
~/mpj_rundir directory where you can try out in either
multicore or cluster mode. All MPJ Express
documentations can be found in the $MPJ_HOME/doc
directory.

Fractal Generation using MPJ Express

The mpj_example project is a Mandelbrot generator.
Mandelbrot set images are made by sampling
complex numbers and determining for each number
whether the result tends towards in�nity when the
iteration of a particular mathematical operation is
performed. The real and imaginary parts of each
number are converted into image coordinates for a
pixel coloured according to how rapidly the sequence
diverges, if at all. My MPJ Express parallel program
assigns each available core to compute one vertical
slice of the Mandelbrot set image at a time.
Consequently, the more cores are available, the more
work can be performed in parallel. Mandelbrot
images at speci�c coordinates are shown in the
following images.

Figure 2.1 – mandelbrot1: (-0.5, 0.0)

Figure 2.2 – mandelbrot2: (-0.7615134027775,
0.0794865972225)

Figure 2.3 – mandelbrot3: (0.1015, -.633)

These Mandelbrot images are generated using the
following commands on a single machine, the master
node, using a multicore con�guration. From the
master command prompt, issue the following
commands:

Figure 3 – Mandelbrot commands

You can rerun the above command with -np values
between 1 and 8 inclusive to see the di�erence in
performance by varying the number of cores used for
Mandelbrot generation. Remember that the XU4 has
4 little A7 and 4 big A15 cores.

http://bit.ly/2wWMzKr
http://bit.ly/2hvQXpk

The parameters after
com.kardinia.mpj.ColourMandelbrot are:

parameter 1: starting x coordinate

parameter 2: starting y coordinate

parameter 3: step size

parameter 4: color map for mapping number of
iterations to a particular colour

parameter 5: �lename to save the generated
mandelbrot

Figure 4 – A screenshot of running Mandelbrot
Generator in multicore mode.

To run the Mandelbrot Generator in cluster mode,
follow the instructions below: A text �le named
“machines” which contains the hostnames of every
node in you ODROID-MC1 cluster on separate lines is
required. The machines �le that is in the ~/mpj_rundir
contains the following 4 lines:

xu4­master

xu4­node1

xu4­node2

xu4­node3

To start the MPJ daemon on each node, issue the
command below once from the master node to start
a MPJ daemon on each node:

$ mpjboot machines

Then issue the following commands from the master
node:

Figure 5 – Master node commands

Again, you can vary the number after -np between 4
and 32 as there are a total of 32 cores in your
ODROID-MC1 cluster. The screenshot below shows
running the above commands in cluster mode.

Figure 6 – Running Mandelbrot Generator in cluster
mode

When you are done with experimenting with the
cluster mode, issue the following command from the
master to terminate all the MPJ daemons started
earlier:

$ cd ~/mpj_rundir

$ mpjhalt machines

Performance on the ODROID-MC1

The performance of running the Mandelbrot
Generator on the ODROID-MC1 in both multicore and
cluster mode is summarised in the line graph below.
For comparison, I also ran it on a VM with 4 cores
assigned to it on an old INTEL I7 quad core machine.
Figure 7 is a screenshot of the generator running in
the VM.

Figure 7 – Running Mandelbrot Generator in the virtual
machine

The performance of running on INTEL is also shown in
the same graph. The vertical axis is the time in
seconds taken to generate the Mandelbrot at
coordinate -0.5, 0.0. The horizontal axis is the number
of cores used.

Figure 8 – Graph of the execution time of the
Mandelbrot Generator as the number of cores increases

Graphing the data di�erently gives the performance
increase factor as the number of cores increases.

Figure 9 – Graph of performance increase of the
Mandelbrot Generator as the number of cores increases

I observed that when a node was using all 4 big cores
or all 8 cores, the current used was between 2.0 and
2.5 amps. My cheap power supply was not able to
supply enough current when all 4 XU4s on the
ODROID-MC1 were running all cores at 100%
utilization. This is the reason why I only measured the
performance for the cluster con�guration up to 12
cores. Another interesting observation was that in
multicore mode on a single XU4, the most gain
occurred when all 4 big cores were being used.
Adding the little cores did not improve performance
by that much. Even for cluster mode, the performance
gain tapered o� as the number of cores increased
due to Amdahl’s law as the master had to spend the
same amount of time combining the generated
partial images into a complete image and it took a
�nite amount of time to transfer the partial images via
the network.

Conclusion

I hope my two getting started guides in the ODROID
Magazine have given you some ideas of using your
ODROID-MC1 as a Docker swarm cluster and also as a
Compute cluster for parallel programming. What you
can do with it is limited only by your imagination. Let
us know if you are interested in additional
information regarding using MPJ Express. We can
create additional tutorials. In the meantime, enjoy
and keep exploring the capabilities of your ODROID-
MC1.

Home Assistant: Scripts for Customization
 October 1, 2017  By Adrian Popa  Tutorial

In this article, we will delve deeper still into Home
Assistant customization, creating our own scripts to
collect data from remote sensors and other control
devices. We will also look into various ways to
communicate with the remote sensors.

Getting remote temperature data

Let’s assume you have this problem: you have several
temperature sensors such as the DS1820 around your
house connected to various ODROIDs and you want
to send the data to Home Assistant, which runs on a
single device. You’ll need to decide on a data
transport protocol and write some script to collect the
temperature readings and pass it to Home Assistant.

Let’s analyze some approaches:

Polling over HTTP

Pushing over Home Assistant API

Pushing over MQTT

Polling over HTTP

If you’re used to web development, you’re probably
used to CGI (Common Gateway Interface), the oldest
way to generate dynamic content using a web server (
http://bit.ly/2jNVkjT). Basically, you upload a script on
the server, regardless of language, which is called by
the web server, serving the script’s output back to the
client. Obviously, you �rst need to install an HTTP
server on your remote host and activate CGI support.
We’ll use Apache 2.4:

$ sudo apt­get install apache2

$ sudo a2enmod cgi

The default con�guration maps the /cgi-bin/ URL to
/usr/lib/cgi-bin on your �le system. Any executable
scripts you place here can be called by the web
server. Let’s assume that you can get the temperature
data on the remote host with these shell commands:

https://magazine.odroid.com/?s=home+assistant

$ cat /sys/devices/w1_bus_master1/28­

05168661eaff/w1_slave

c6 01 4b 46 7f ff 0c 10 bd : crc=bd YES

c6 01 4b 46 7f ff 0c 10 bd t=28375

In the output above, the �rst line validates the reading
of the value (if the CRC matches), and the second line
returns the value in milli-celsius. We will create two
scripts (don’t forget to mark them as executable) to
illustrate the code in two di�erent languages: BASH
and Python. The �les will be stored in /usr/lib/cgi-
bin/temperature.sh and /usr/lib/cgi-
bin/temperature.py.

#!/bin/bash

filename='/sys/devices/w1_bus_master1/28­

05168661eaff/w1_slave'

valid=0

echo "Content­Type: text/plain"

echo

read line by line, parse each line

while read ­r line

do

 if [[$line =~ crc=.*YES]]; then

 # the CRC is valid. Continue

processing

 valid=1

 continue

 fi

 if [["$valid" == "1"]] && [[$line =~ t=

[0­9]+]]; then

 # extract the temperature value

 rawtemperature=`echo "$line" | cut ­d

"=" ­f 2`

 # convert to degrees celsius and keep

1 digit of accuracy

 echo "scale=1;$rawtemperature/1000" |

bc

 fi

#read line by line from $filename

done < "$filename"

Figure 1a There are two ways of reading the same
temperature, here in bash

#!/usr/bin/python

import re

filename = '/sys/devices/w1_bus_master1/28­

05168661eaff/w1_slave'

valid = False

print "Content­Type: text/plain"

print ""

execute the command and parse each line of

output

with open(filename) as f:

 for line in f:

 if re.search('crc=.*YES', line):

 # the CRC is valid. Continue

processing

 valid = True

 continue

 if valid and re.search('t=[0­9]+',

line):

 # extract the temperature value

 temperature = re.search('t=([0­

9]+)', line)

 # convert to degrees celsius and

keep 1 digit of accuracy

 output = "%.1f" %

(float(temperature.group(1))/1000.0)

 print output

Figure 1b – And here in Python

Let’s analyze the scripts a bit. Both scripts start with a
shebang line which tells the caller which interpreter to
use to run the script (line 1). Next, we de�ne two
variables to point to the �le to be read (line 4) and a
variable to remember if the reading is valid or not
(line 5). On lines 7 and 8 we print the HTTP headers.
The CGI script has to return HTTP headers on the �rst
lines, separated by a blank line from the rest of the
output. The web server needs at least the Content-
Type header to process the request. If you omit this,
you will get an HTTP 500 error. On line 11 we begin
reading the lines from the �le in order to parse each
one. We look for a valid CRC with a regular expression
on line 14, and if it is correct, we set valid to true. On
line 19, if the CRC is true and the line contains a
temperature, we extract the raw temperature (line 21)
and convert it to celsius, with one digit of accuracy
(line 23), and print it to standard output. In order to
access the data, you could use any HTTP client, like
wget, as shown in Figure 2.

Figure 2 – Extracting the data from the remote host

There might be slight di�erences in the output
returned because of di�erent rounding methods
used, or by variations in the time the query is made,
which can cause the sensor data to �uctuate.

For security purposes, you can enable HTTP Basic
Authentication in your server’s con�g. You’ll need

SSL/HTTPS with valid certi�cates in order to protect
yourself from somebody sni�ng your tra�c, but that
goes beyond the scope of this article. You can read
more about those here and here.

In order to add the sensor to Home Assistant we can
use the REST sensor inside con�guration.yaml :

sensor:

 ...

 ­ platform: rest

 resource: http://192.168.1.13/cgi­

bin/temperature.sh

 name: Temperature REST Bash

 unit_of_measurement: C

 ­ platform: rest

 resource: http://192.168.1.13/cgi­

bin/temperature.py

 name: Temperature REST Python

 unit_of_measurement: C

You can get the code here and here.

Pros for this method:

It’s easy to implement if you’ve done web development

On Home Assistant restart new data is polled

Cons for this method:

Using a web server exposes you to possible
vulnerabilities

The web server may use a lot of resources in
comparison to what it needs to do

Pushing over HA API

A di�erent approach that doesn’t involve a web server
is to push sensor data to Home Assistant from the
remote system. We can use a Template Sensor to
hold and present the data. In order to do this, you can
have the script in Figure 3 called periodically with cron
on the remote system.

#!/bin/bash

filename='/sys/devices/w1_bus_master1/28­

05168661eaff/w1_slave'

homeassistantip='192.168.1.9'

haport=8123

api_password='odroid'

sensor_name='sensor.temperature_via_api'

http://bit.ly/2feRKKE
http://bit.ly/2yCyIGo
http://do.co/2wgHEjh
http://bit.ly/2fvoYsN
http://bit.ly/2htjVdh
http://bit.ly/2wSi1F2
http://bit.ly/2wPQLeY

valid=0

read line by line, parse each line

while read ­r line

do

 if [[$line =~ crc=.*YES]]; then

 # the CRC is valid. Continue

processing

 valid=1

 continue

 fi

 if [["$valid" == "1"]] && [[$line =~ t=

[0­9]+]]; then

 # extract the temperature value

 rawtemperature=`echo "$line" | cut ­d

"=" ­f 2`

 # convert to degrees celsius and keep

1 digit of accuracy

 temperature=`echo

"scale=1;$rawtemperature/1000" | bc`

 # push the data to the Home Assistant

entity via the API

 curl ­X POST ­H "x­ha­access:

$api_password" ­H "Content­Type:

application/json"

 ­­data "{"state": "$temperature"}"

http://$homeassistantip:$haport/api/states/$se

nsor_name

 fi

#read line by line from $filename

done < "$filename"

Figure 3 – Pushing data via the HA API

As you can see, the code is similar to the previous
example, except that at line 25 it uses Home
Assistant REST API to submit the temperature
reading. The REST API requires you to send the Home
Assistant API Key inside of a HTTP header, and the
data you want changed needs to be in a JSON payload

in the POST request. The URL you post to is your
Home Assistant instance /api/states/sensor.name. To
enable this and submit data every 5 minutes, add the
following cron entry:

$ crontab ­e

*/5 * * * * /bin/bash

/path/to/script/temperature­HA­API.sh >

/dev/null 2>&1

The Home Assistant con�guration looks like this:

sensor:

…

­ platform: template

 sensors:

 temperature_via_api:

 value_template: '{{

states.sensor.temperature_via_api.state }}'

 friendly_name: Temperature via API

 unit_of_measurement: C

The template sensor is usually used to extract data
from other Home Assistant entities, and in this case
we use it to extract data from itself. This trick prevents
it from deleting the state data after an external
update. Before you set the temperature, the sensor
state will be blank. After cron executes the script the
�rst time, you will get temperature data. You can get
the code from here

Pros for this method:

You control when data is pushed

Resource use is very low

Cons for this method:

Your script needs to have your Home Assistant secret
password in clear

When Home Assistant is restarted, the sensor will not
have any value until the �rst update

Pushing over MQTT

The MQTT protocol is a machine to machine protocol
designed for e�ciency (and low power environments)
and has been discussed already in previous ODROID
Magazine articles. The way it works is that a central
server called a broker relays messages for clients that

http://bit.ly/2xw8yVT
http://bit.ly/2wgNYY4
http://bit.ly/2ypJOOc

subscribe to a common topic. Think of a topic as
something like an IRC channel where clients connect
and send each other speci�c messages. Home
Assistant has a built-in MQTT Broker, but in my tests I
found it unreliable, so I used a dedicated broker
called Mosquitto. It can be installed on the same
system as Home Assistant, or on a di�erent system.
To install it, follow these steps:

$ sudo apt­get install mosquitto mosquitto­

clients

$ sudo systemctl enable mosquitto

MQTT version 3.11 supports authentication, so you
should set up a username and password that is
shared by broker and clients and, optionally, SSL
encryption. In my setup I used user-password
authentication, and added an ‘ODROID’ user:

$ sudo mosquitto_passwd ­c

/etc/mosquitto/passwd ODROID

$ sudo vi /etc/mosquitto/conf.d/default.conf

allow_anonymous false

password_file /etc/mosquitto/passwd

You can enable general MQTT support in Home
Assistant by adding a MQTT platform in
con�guration.yaml (remember that the
mqtt_password parameter is de�ned in secrets.yaml
instead):

mqtt:

 broker: 127.0.0.1

 port: 1883

 client_id: home­assistant

 keepalive: 60

 username: ODROID

 password: !secret mqtt_password

In order to push temperature data to Home Assistant
our script will need the Paho-MQTT Python library. In
order to parse con�guration data we’ll need the
python-yaml library as well:

$ sudo apt­get install python­pip python­yaml

$ sudo pip install paho­mqtt

The script runs as a daemon, performing periodic
temperature readings in the background and sending
changes via MQTT. The code which reads the actual

temperature (line 40) is the same as in Figure 1b and
is not shown in Figure 4 for brevity. The only change is
that instead of printing the temperature, it returns it
as a string.

The code begins by importing a few helper modules,
de�ning functions to parse the YAML con�guration
into a dictionary. Reading the temperature and
execution begins at line 57. A new MQTT client object
is de�ned and initialized with the necessary details to
access the MQTT broker. On line 61, there is a
background thread started by the loop_start() call
which ensures that the client remains connected to
the MQTT broker. Without it, the connection would
time out and you would need to reconnect manually.
More information about the MQTT API in Python is
available here. On line 65, there is a loop that reads
temperature data, compares it with the last
temperature read, and if there is a change, publishes
an MQTT message to the broker with the new
temperature. Then the code sleeps for a while before
the next reading. When publishing data to the broker
(on line 71), you need to specify the MQTT topic, the
value being sent, and also if this data should be
persistent or not. Persistent data is convenient,
because you can get the last temperature reading
from MQTT when you start Home Assistant and read
the temperature for the �rst time. You can get the full
code from here.

#!/usr/bin/python

import paho.mqtt.client as mqtt

import re

import time

import sys

import yaml

Prerequisites:

* pip: sudo apt­get install python­pip

* paho­mqtt: pip install paho­mqtt

* python­yaml: sudo apt­get install python­

yaml

Configuration file goes in /etc/temperature­

mqtt­agent.yaml and should contain your mqtt

broker details

For startup copy temperature­mqtt­

agent.service to /etc/systemd/system/

http://bit.ly/2wT1nEZ
http://do.co/2fNrg3B
http://bit.ly/2y5t6HW
http://bit.ly/2ypcTcG

Startup is done via systemd with

sudo systemctl enable temperature­mqtt­

agent

sudo systemctl start temperature­mqtt­agent

filename = '/sys/devices/w1_bus_master1/28­

05168661eaff/w1_slave'

valid = False

oldValue = 0

""" Parse and load the configuration file to

get MQTT credentials """

conf = {}

def parseConfig():

 global conf

 with open("/etc/temperature­mqtt­

agent.yaml", 'r') as stream:

 try:

 conf = yaml.load(stream)

 except yaml.YAMLError as exc:

 print(exc)

 print("Unable to parse

configuration file /etc/temperature­mqtt­

agent.yaml")

 sys.exit(1)

""" Read temperature from sysfs and return it

as a string """

 def readTemperature():

 with open(filename) as f:

 for line in f:

 if re.search('crc=.*YES',

line):

 # the CRC is valid.

Continue processing

 valid = True

 continue

 if valid and re.search('t=[0­

9]+', line):

 # extract the temperature

value

 temperature =

re.search('t=([0­9]+)', line)

 # convert to degrees

celsius and keep 1 digit of accuracy

 output = "%.1f" %

(float(temperature.group(1)) / 1000.0)

 # print("Temperature is

"+str(output))

 return output

""" Initialize the MQTT object and connect to

the server """

parseConfig()

client = mqtt.Client()

if conf['mqttUser'] and conf['mqttPass']:

client.username_pw_set(username=conf['mqttUser

'], password=conf['mqttPass'])

 client.connect(conf['mqttServer'],

conf['mqttPort'], 60)

 client.loop_start()

""" Do an infinite loop reading temperatures

and sending them via MQTT """

 while (True):

 newValue = readTemperature()

 # publish the output value via MQTT if

the value has changed

 if oldValue != newValue:

 print("Temperature changed from %f

to %f" % (float(oldValue), float(newValue)))

 sys.stdout.flush()

 client.publish(conf['mqttTopic'],

newValue, 0, conf['mqttPersistent'])

 oldValue = newValue

 # sleep for a while

 # print("Sleeping...")

 time.sleep(conf['sleep'])

Figure 4 – Sending temperature data via MQTT

The script will also need a con�guration �le where it
keeps MQTT credentials, located at /etc/temperature-
mqtt-agent.yaml:

mqttServer: 192.168.1.9

mqttPort: 1883

mqttUser: ODROID

mqttPass: ODROID

mqttTopic: ha/kids_room/temperature

mqttPersistent: True

sleep: 10

There’s also a systemd startup script to start your
script on every boot. Copy it to /etc/systemd/system:

$ cat /etc/systemd/system/temperature­mqtt­

agent.service

[Unit]

Description=Temperature MQTT Agent

After=network.target

[Service]

ExecStart=/usr/local/bin/temperature­mqtt­

agent.py

Type=simple

Restart=always

RestartSec=5<

[Install]

WantedBy=multi­user.target

To enable it at startup, run the following commands:

$ sudo systemctl enable temperature­mqtt­

agent.service

$ sudo systemctl start temperature­mqtt­

agent.service

On the Home Assistant side of things, we need to
de�ne an MQTT sensor with the following
con�guration:

sensor:

...

 ­ platform: mqtt

 state_topic: 'ha/kids_room/temperature'

 name: 'Temperature via MQTT'

 unit_of_measurement: C

Pros for this method:

Resource use is low

Standard API with low overhead designed for machine-
to-machine communication

Cons for this method:

The remote system needs to have the MQTT password
in the clear

When Home Assistant is restarted, the sensor will not
have any value until the �rst update unless the MQTT
Persistence option is used

Now that you’ve seen several examples of getting
data into Home Assistant, you will have to choose
what is best for your setup. From now on I will go with
MQTT because, even if it seems more di�cult in the
beginning, it scales better with more complex tasks.

Controlling a Smart TV with a custom component

Here’s a new problem that we want to solve. Let’s
collect the current channel number, program name,
and TV state from a Samsung TV running SamyGO
�rmware. The TV exposes this information via a REST
API which can be installed on the TV from here. The
API sends back information in JSON format about the
current state of the TV. It can inject remote control
codes and can also send back screenshots with what’s
currently on. The call and results for the current
information look like this:

http://bit.ly/2fupwiK
http://bit.ly/2fnLcct
http://bit.ly/2yD7bF3

$ wget ­O ­ "http://tv­ip:1080/cgi­bin/samygo­

web­api.cgi?

challenge=oyd4uIz5WWAkWPo5MzfxBFraI05C3FDorSPE

7xiMLCVAQ40a&action=CHANNELINFO"

{“source”:”TV (0)”, “pvr_status”:”NONE”,
“powerstate”:”Normal”, “tv_mode”:”Cable (1)”,
“volume”:”9″, “channel_number”:”45″,
“channel_name”:”Nat Geo HD”,
“program_name”:”Disaster planet”,
“resolution”:”1920×1080″, “error”:false}

In theory, we could con�gure REST sensors to make
the query above and use templating to preserve only
the desired information, like this:

sensor:

...

 ­ platform: rest

 resource: http://tv­ip:1080/cgi­bin/samygo­

web­api.cgi?

challenge=oyd4uIz5WWAkWPo5MzfxBFraI05C3FDorSPE

7xiMLCVAQ40a&action=CHANNELINFO

 method: GET

 value_template: '{{ value_json.channel_name

}}'

 name: TV Channel Name

But the problem is that, in order to get all the
information in di�erent sensors, you need to make
the same query, discard a lot of data, and keep only
what you need for that particular sensor. This is
ine�cient, and in this case, it won’t work because, in
order to obtain and expose this information, the web
API running on the TV injects various libraries into
running processes on the TV to hijack some function
calls and obtain the data here. The injection step is
critical, and doing multiple injections at the same time
could cause the process to crash, which would lock up
your TV. This is why the web API serializes the queries
and won’t respond to a query before the previous one
is done, but this could result in timeouts.

What is needed in this case is for the sensor
component to store all of the JSON data and have
template sensors to extract the needed data and
present it. In order to do this, we need a custom
component, derived from the REST sensor which acts
just like the REST sensor, but when it receives JSON

data it stores that data as attributes of the entity
instead of discarding them.

Custom components live in the
~homeassistant/.homeassistant/custom_components
directory and preserve the structure of regular
components (meaning our sensor would live in the
sensor subdirectory). They are loaded at Home
Assistant startup before con�guration is parsed.
Figure 5 shows the di�erences between the REST
sensor and the new custom JsonRest sensor.

Figure 5 – Changes to store and expose attributes

In order to understand the changes made, you should
follow the custom components guide
http://bit.ly/2fvc1PT. The code makes some name
changes in the module’s classes to prevent collisions
with the REST component, and initializes and
manages a list of attributes that are parsed from the
JSON input. These will show up as attributes in the
States view. The new component name is JsonRest,
the same as the �lename.

To install the JsonRest component, you can follow
these steps:

mkdir ­p

~homeassistant/.homeassistant/custom_component

s/sensor/

http://bit.ly/2wQgc0f

wget ­O

~homeassistant/.homeassistant/custom_component

s/sensor/jsonrest.py

https://raw.githubusercontent.com/mad­

ady/home­assistant­

customizations/master/custom_components/sensor

/jsonrest.py

To con�gure the new component, once it’s stored in
the custom_components/sensor directory, we can use
this con�guration to poll the TV every 5 minutes:

sensor:

…

 ­ platform: jsonrest

 resource: http://tv­ip:1080/cgi­

bin/samygo­web­api.cgi?

challenge=oyd4uIz5WWAkWPo5MzfxBFraI05C3FDorSPE

7xiMLCVAQ40a&action=CHANNELINFO

 method: GET

 name: TV Living ChannelInfo

 scan_interval: '00:05'

 ­ platform: template

 sensors:

 tv_living_powerstate:

 value_template: '{{

states.sensor.tv_living_channelinfo.attributes

.power_state }}'

 friendly_name: TV Living Power

 tv_living_channel_number:

 value_template: '{{

states.sensor.tv_living_channelinfo.attributes

.channel_number }}'

 friendly_name: TV Living Channel

Number

 tv_living_channel_name:

 value_template: '{{

states.sensor.tv_living_channelinfo.attributes

.channel_name }}'

 friendly_name: TV Living Channel Name

 tv_living_program_name:

 value_template: '{{

states.sensor.tv_living_channelinfo.attributes

.program_name }}'

 friendly_name: TV Living Program Name

Now only the JsonRest component will poll the TV for
information, and the template sensors extract the
needed data from the attributes, reducing the load on
the TV.

Since the TV web API allows the capture of
screenshots, let’s add that to Home Assistant as well
(to keep an eye on what the kids are watching). The
API returns a JPEG image each time you ask with URL
parameter action=SNAPSHOT. You can use a Generic
IP Camera component:

camera 2:

 platform: generic

 name: TV Living Image

 still_image_url: http://tv­ip:1080/cgi­

bin/samygo­web­api.cgi?

challenge=oyd4uIz5WWAkWPo5MzfxBFraI05C3FDorSPE

7xiMLCVAQ40a&action=SNAPSHOT

The TV web API also allows you to send remote
control actions, which can be modelled through the
Restful Command component:

rest_command:

 tv_living_power_on:

 url: !secret samygo_tv_living_power_on

 tv_living_power_off:

 url: !secret samygo_tv_living_power_off

After a bit of grouping, the polished end result may be
viewed here. A link to the con�guration is available
here, and an example for the secrets �le is here. You
can �nd the code and con�guration on the GitHub
page.

Figure 6 – Keeping an eye on the TV

http://bit.ly/2yDZHkO
http://bit.ly/2jYNjZH
http://bit.ly/2xBfNNF
http://bit.ly/2jXW2v3
http://bit.ly/2huBTbC
http://bit.ly/2wQq8qh

ODROID-MC1 Docker Swarm: Getting Started Guide
 October 1, 2017  By Andy Yuen  Docker, ODROID-MC1, Tutorial

The sta� at Hardkernel built a big cluster computing
setup for testing the stability of Kernel 4.9. The cluster
consisted of 200 ODROID-XU4’s (i.e, with a net total of
1600 CPU cores and 400GB of RAM), as shown in
Figure 1.

Figure 1 – A cluster of 200 ODROID-XU4 devices

The experience obtained with this exercise led them
to the idea of building an a�ordable and yet powerful
personal cluster, out of which was born the ODROID-
MC1. ODROID-MC1 stands for My Cluster One. It
consists of 4 stackable units, each with a specially
designed Single Board Computer (SBC) based on the
Samsung Exynos 5422 octa-core processor. It is
compatible with the ODROID-XU4 series SBC, and is
mounted on an aluminum case. These cases (which
also incorporates an integrated heatsink) are stacked
with a fan attached on the back-end, to ensure
adequate cooling.

The ODROID-MC1 circuit board is a trimmed version
of that used in the ODROID-HC1 (Home Cloud One)
Network Attached Storage (NAS), with the SATA
adapter removed. The ODROID-HC1 circuit board, in

turn, is a redesigned ODROID-XU4 with the HDMI
connector, eMMC connector, USB 3.0 hub, power
button and, slide switch removed.

Key features of the ODROID-MC1 include:

Samsung Exynos 5422 Cortex-A15 2Ghz and Cortex-A7
Octa core CPUs

2Gbyte LPDDR3 RAM PoP stacked

Gigabit Ethernet port

USB 2.0 Host

UHS-1 micro-SD card slot for boot media

Linux server OS images based on modern Kernel 4.9
LTS

The ODROID-MC1 comes assembled and ready to use
as a personal cluster for learning as well as for doing
useful work. In Part 1 of this series on the ODROID-
MC1, I will be describing how to use it as a Docker
Swarm cluster. In Part 2, I shall describe how to
develop parallel programs to run on the ODROID-MC1
cluster.

Figure 2 – The ODROID-MC1 makes an excellent swarm
device

To set up the MC1 cluster, you need the following
in addition to the MC1 hardware:

1 x Gigabit switch with at least 5 ports

5 x Ethernet cables

4 x SD cards (at least 8GB in capacity)

4 x power adapters for the MC1 computers

Setting Up the OS on Each Computer on the
Cluster

The most tedious part in setting up the ODROID-MC1
cluster is to install an Operating System (OS) and
software packages needed for running and managing
the docker swarm on each compute node. To
expedite the process, you can download an SD card
image with everything almost ready to use at
https://oph.mdrjr.net/MrDreamBot/. I say “almost”,’
because there are still a few steps you have to do to
make everything work. The SD card has logins ‘root’
and ‘odroid’ already set up. The password for both
logins is “odroid:.

The swarm we are building consists of 1 master and 3
worker nodes. For discussion purposes, assume they
use the following host names and IP addresses. Of
course you can change them to suit your
environment. All nodes in the swam should have
static IP address like so:

xu4­master – 192.168.1.80

xu4­node1 – 192.168.1.81

xu4­node1 – 192.168.1.82

xu4­node1 – 192.168.1.83

To start the setup process, you need to connect your
PC and one ODROID-MC1 node at a time to a Gigabit
switch which has a connection to your home router
(for access to the Internet). The image is con�gured to
use dynamically allocated IP address using DHCP
from your router. You have to login using SSH to
con�gure each node to use a static IP address
instead. There are other con�guration parameters
you need to change as well. The setup process
assumes that you have some Linux command line
knowledge to carry out the following steps:

Write OS image to your SD card – Copy the SD card
image to 4 x 8GB Class 10 SD cards. If you use bigger
capacity SD cards, you have to resize the �lesystem on
each SD card to take up all space on your SD card. The
easiest way to do this is to mount the SD card on a
Linux machine and use gparted (www.gparted.com) to
resize it. That is the method I used for my SD cards.
Insert an SD card in one of the MC1 computers.

Initiate an SSH session from your PC to the ODROID-
MC1 node as root. Its IP address can be found in your
home router. Skip the next step if you are setting up

the master node.

Change the host name by editing the /etc/hostname
�le, to change xu4-master to xu4-nodeX where X is
either 1, 2 or 3 depending on which worker node you
are setting up.

Con�gure a static IP address by editing the
/etc/network/interfaces, by removing the “#” in front of
the highlighted section and replacing the IP address
192.168.1.80 with the IP address (in your home
network subnet) to which you want to assign the node
you are setting up.

Update the /etc/hosts �le such that each ODROID-MC1
node entry has the correct name and IP address.

Test the changes – Reboot the node to see if you can
SSH into it using the new IP address you assigned to it.
If so, you have successfully set up that node. If not,
double check the changes described above to make
sure there are no typos.

Set up the next worker node – Repeat Steps 2 through
7 until all the nodes have been set up.

Figure 3 – Listing the Docker Swarm interfaces

For experienced Linux users, an alternate way to do
the above is to mount each SD card on your Linux
system and edit those �les directly on the SD card.
After you have set up your cluster, ssh into xu4-
master as user “odroid”, password “odroid”. From the
master, you can SSH to all the worker nodes without
using password as the nodes in the cluster have been
set up with key-based authentication. Do the same for
“root” by either using the “sudo -s” command, or by
using SSH to establish a connection as the root user
into the xu4-master node, then using SSH to connect
to all of the worker nodes.

Setting Up Docker Swarm

A node is a Docker host participating in a swarm. A
manager node is where you submit a service
de�nition and it schedules the service to run as tasks
on worker nodes. Worker nodes receive and execute
tasks scheduled by a manager node. A manager node,
by default, is also a worker node unless explicitly
con�gured not to execute tasks. Multiple master and
worker nodes can be set up in a swarm to provide
High Availability (HA).

To bring up swarm mode, issue the following
command on the manager:

$ docker swarm init ­­advertise­addr

192.168.1.80

which returns:

swarm initialized: current node

(8jw6y313hmt3vfa1fme1dinro) is now a manager

Run the following command to add a worker to this
swarm on each node:

$ docker swarm join ­­token SWMTKN­1­

1q385ckmw7owbj2zfno04dmidb62iqg2devd7yvae5wvuo

hc11­at5g1ad4f24fck4cutsqhnw06

192.168.1.80:2377

To make the other nodes join the cluster, issue the
“docker swarm join’”command above on each node.
This can be done using the parallel-ssh to issue the
command once from the manager and executed on
each node. Figure 4 is a screenshot of running “docker
ps” command using parallel-ssh.

Figure 4 – Running the “docker ps” command using
parallel-ssh

Now we have a Docker swarm up and running.

Testing the Swarm

To help visualize what is going on in the swarm, we
can use the Docker Swarm Visualizer image
(visualizer-arm). To deploy it as a service, issue the
following command from the manager command
prompt:

$ docker service create ­­name=dsv ­­

publish=8080:8080/tcp ­­

constraint=node.role==manager ­­

mount=type=bind,src=/var/run/docker.sock,dst=/

var/run/docker.sock alexellis2/visualizer­arm

Note that the ODROID-XU4 is ARMv7-based, i.e., it is a
32 bit system, unlike the ODROID-C2 which is ARMv8-
based, and 64 bit. Consequently, the Docker images
used in the following commands are di�erent from
those used in my Docker examples for the ODROID-
C2.

Point your browser at the master by visiting
http://192.168.1.80:8080, or you can point your
browser to any of the nodes in the swarm. Observe
the changes reported by the visualizer when
deploying the httpd service using my 32 bit httpd
busybox mdreambot image at
http://dockr.ly/2wWPCNP. My image is started using
the command:

$ docker service create ­­replicas 3 ­­name

httpd ­p 80:80 mdreambot/arm32­busybox­httpd

Figure 5 shows a Docker Swarm Visualizer displaying
the nodes on which the service replicas are run,
illustrating the declarative service model used by
swarm mode.

Figure 5 – Docker Swarm Visualizer shows the nodes on
which the service replicas are run

Use the following curl command to test the load
balancing feature of docker swarm:

http://dockr.ly/2k24edW

$ curl http://192.168.1.80/cgi­bin/lbtest

Figure 6 is a screenshot of the curl commands output,
which recon�rms that each request has been directed
to a di�erent node.

Figure 6 – Docker performs automatic load balancing

For a test of self-healing, I stopped the running httpd
container on xu4-master, and another httpd
container was spun up on another node to replace
the one I just stopped as can be seen in the
screenshot below. This is because when we started
the service, we speci�ed “replica=3” and the Docker
swarm will maintain the desired number of replicas.
This is called desired state reconciliation.

Figure 7 – Docker supports self-healing state
reconciliation

Conclusion

The Docker swarm mode is now fully functional on
your ODROID-MC1 cluster. Feel free to experiment
with it. I hope this guide achieves its objective in
getting you started running docker swarm on the
ODROID-MC1. For more information on Docker
swarm mode, please refer to my other ODROID
Magazine articles on the subject.

Meet An ODROIDian: Brian Kim, Hardkernel Engineer
 October 1, 2017  By Brian Kim  Meet an ODROIDian

Figure 1 – ODROIDian Brian Kim at Google headquarters
in California

Figure 2 – Brian Kim’s family: Younger Sister, Mother,
Father, Older Sister and Nephews

Please tell us a little about yourself. I’m 36 years old and
live in Seoul, South Korea. I’m the Research Engineer
of Hardkernel Co., Ltd. My main job for Hardkernel is
maintaining the open source software like u-boot,
Linux Kernel, WiringPi2-Python and Buildroot. I
modify the open source software and add some
routines in order to support ODROIDs. Hardkernel
provides technical support in the ODROID forums at
http://forum.odroid.com, and my boss will assign

software issues reported in the forums to me.
Although it is sometimes stressful when it is a
complex issue or not a software issue, it is enjoyable
to have technical discussions with the ODROID users.
I have not only a Bachelor’s degree in Information and
Communication from Youngsan University (South
Korea), but also a Master’s degree in Mobile
Communication Engineering from Sungkyunkwan
University (South Korea). I was not a good student
when I was in high school, but I studied very hard in
college and achieved a 4.5/4.5 GPA in one semester. I
learned overall background knowledge of Computer
Science in college and graduate school. I studied CMT
(Concurrent Multipath Transfer) using SCTP in a
master’s degree and wrote a paper about it. I started
my career as a software developer. My �rst serious
project was the medical information system software
using Delphi in 2005. Our team designed medical
database associate with personal information
database, and we wrote Object Pascal source code for
the software. I enjoyed developing software using
various programming languages and libraries such as
Visual Basic, MFC, Win32, Qt, PHP, ASP, JSP, C, C++ and
Java.

Figure 3 – One of Brian’s toy projects, Only Debugger

Even after graduating from college, I still had a thirst
for learning. So, I moved to Seoul in order to take
Embedded Professional course at a private academy. I
learned Embedded system, ARM architecture, Linux
kernel, Network programming and RTOS in this
course work from 2005 to 2006. I was very in�uenced
by Unix philosophy at that time. After I �nished the
course, I developed POS (Point Of Sale) and IP set-top
box software as a part-time job in 2007. I joined
WIZnet as my �rst full-time job in 2008.

Figure 4 – Brian’s �rst commercial product, W5300E01-
ARM

WIZnet is a fabulous company that designs network
chips embedded with hardwired TCP/IP stack. My �rst
job in WIZnet is developing Linux network driver for
WIZnet chipset. I worked hard and �nished the
project in three months. After that, I developed ARM
embedded board included WIZnet chip called
W5300E01-ARM, which was my �rst commercial
product. The modi�ed network driver I developed is
included in the mainline Linux kernel source code.
Besides that, I developed a Serial-to-Ethernet gateway
module and gave technical support. I participated in
an open source software analysis study group every
Saturday in 2007 (Linux Kernel) and 2011 (Xen
Hypervisor). Our study group analyzed the source
code in detail until it was fully understood, which we
were passionate about. After �nishing the study
about a year, we wrote articles and books about what
we learned. The source code of open source software
is my textbook, and open source software developers
are my teachers even now.

Figure 5 – Brian’s �rst computer, an IBM XT

How did you get started with computers? When I was 8
year old, I got started with computers with an IBM XT.
Although it was my cousin’s computer, I frequently
used the computer to play DOS games. I remember
the old gossip at that time, which was that “640KB is
enough.” When I was 10, my father gave me a 386 PC
as a birthday present, and I started PC
communications using a 2400bps modem.

Whom do you admire in the world of technology? Linus
Torvalds, since he made the Linux kernel and Git.
Linux and Git changed the software world.

How did you decide to work at Hardkernel? The most
important factor was what I will do for Hardkernel.
The responsibilities in the job post seemed interesting
to me.

How do you use your ODROIDs at home? I enjoy making
interesting things with ODROIDs. Some of my projects
can be found in ODROID magazine, such as Ambilight,
Rear View Camera and ODROID Arcade Box. In the
South Korean o�ce, we use ODROIDs as private
servers and automatic �sh feeders. The
cryptocurrency miner using 200 ODROID-XU4 devices

was also an interesting project. I created and used a
voice light switch using ODROID-C2 and Google Cloud
Speech API at home.

Which ODROID is your favorite and why? The ODROID-
C2 is my favorite, because I’m one of ODROID-C2
main developers, and it has 64bit ARM architecture.
Although I’m maintaining all of the ODROIDS currently
on sale (ODROID-C1+, ODROID-C2 and ODROID-XU4),
I joined after the XU4 and C1+ were developed.

What innovations do you see in future Hardkernel
products? I think that keeping our current position in
the SBC market as high-performance devices, and
trying to enter the low-end server market are good for
survival.

What hobbies and interests do you have apart from
computer? I enjoy travel, computer games,
snowboarding, wakeboarding, scuba diving and
triathlon (swimming, cycling and marathon). I
completed a Triathlon Olympic course last year. I
went to Busan from Seoul by bike during the summer
vacation this year. The distance is about 325 miles

(523 KM). I will challenge myself with a full course
marathon next month.

Figure 6 – Brian’s hobbies are snowboarding, scuba
diving, triathlon, traveling and cycling

What advice do you have for someone wanting to learn
more about programming? Read a good source code
from open source software. Write lots of high quality
code as much as you can.

