Meet WALTER:
The vintage looking robot powered by your ODROID

Celebrating Forty issues of ODROID Magazine:
A retrospective of all our publications

Laptop with ODROID-C1+/C2
What we stand for.

We strive to symbolize the edge of technology, future, youth, humanity, and engineering.

Our philosophy is based on Developers. And our efforts to keep close relationships with developers around the world.

For that, you can always count on having the quality and sophistication that is the hallmark of our products.

Simple, modern and distinctive. So you can have the best to accomplish everything you can dream of.

We are now shipping the ODROID-C2 and ODROID-XU4 devices to EU countries! Come and visit our online store to shop!

Address: Max-Pollin-Straße 1
85104 Pförring Germany

Telephone & Fax
phone: +49 (0) 8403 / 920-920
email: service@pollin.de

Our ODROID products can be found at http://bit.ly/1tXPXwe
Welcome to our 40th issue! When we started publishing the magazine in 2014, there were only two people, Bruno and Rob Roy, producing ODROID Magazine. We’ve since grown the team to eight people and publish in both English and Spanish. We are continually amazed by the creative and innovative projects that the ODROID community sends our way for publication, and do our best to educate the open source hacking community with a variety of software and hardware articles.

Our featured project this month is an amazing retro-looking robot named Walter. He was designed to resemble a 20th century science fiction home servant, complete with dials, knobs, and an avocado green finish! Another interesting project is the ODROID-C2 Wawa laptop, which is an affordable way for children to get started with computers. Miltiadis shows us how to set up a home automation device to control electrical devices, Joshua teaches us how to use Google Cloud Print with any ODROID, and @hominoid presents a gorgeous 3D printed case for the ODROID-XU4 that you can make at home.
Manuel Adamuz, Spanish Editor
I am 31 years old and live in Seville, Spain, and was born in Granada. I am married to a wonderful woman and have a child. A few years ago I worked as a computer technician and programmer, but my current job is related to quality management and information technology: ISO 9001, ISO 27001, and ISO 20000. I am passionate about computer science, especially microcomputers such as the ODROID and Raspberry Pi. I love experimenting with these computers. My wife says I’m crazy because I just think of ODROIDs! My other great hobby is mountain biking, and I occasionally participate in semi-professional competitions.

Andrew Ruggeri, Assistant Editor
I am a Biomedical Systems engineer located in New England currently working in the Aerospace industry. An 8-bit 68HC11 microcontroller and assembly code are what got me interested in embedded systems. Nowadays, most projects I do are in C and C++, or high-level languages such as C# and Java. For many projects, I use ODROID boards, but I still try to use 8bit controllers whenever I can (I’m an ATMEL fan). Apart from electronics, I’m an analog photography and film development geek who enjoys trying to speak foreign languages.

Venkat Bommakanti, Assistant Editor
I’m a computer enthusiast from the San Francisco Bay Area in California. I try to incorporate many of my interests into single board computer projects, such as hardware tinkering, metal and woodworking, reusing salvaged materials, software development, and creating audiophile music recordings. I enjoy learning something new all the time, and try to share my joy and enthusiasm with the community.

Josh Sherman, Assistant Editor
I’m from the New York area, and volunteer my time as a writer and editor for ODROID Magazine. I tinker with computers of all shapes and sizes: tearing apart tablets, turning Raspberry Pis into PlayStations, and experimenting with ODROIDs and other SoCs. I love getting into the nitty gritty in order to learn more, and enjoy teaching others by writing stories and guides about Linux, ARM, and other fun experimental projects.
<table>
<thead>
<tr>
<th>Category</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUILDING A ROBOT</td>
<td>6</td>
</tr>
<tr>
<td>ODROID LAPTOP</td>
<td>8</td>
</tr>
<tr>
<td>40TH ISSUE: A RECAP</td>
<td>11</td>
</tr>
<tr>
<td>ODROIDINC.COM</td>
<td>35</td>
</tr>
<tr>
<td>CLOUDSHELL2</td>
<td>36</td>
</tr>
<tr>
<td>CLOUD PRINT</td>
<td>40</td>
</tr>
<tr>
<td>HOME AUTOMATION</td>
<td>42</td>
</tr>
<tr>
<td>XU4 CASE</td>
<td>46</td>
</tr>
<tr>
<td>MEET AN ODROIDIAN</td>
<td>48</td>
</tr>
</tbody>
</table>
Ever since man built the first robot, he wanted it to look like himself. However, I created my own robot named Walter, and I wanted to make it look vintage, and as professional as possible. Walter’s case has no visible humps or bulges with motors or gearboxes, nor any messy exposed cables. I have a few problems with many of the DIY robots. Most of them remind me of my dentist’s equipment, or they use servos. Servos are picked mostly for convenience, since the encoder is built-in already and they are easy to control. The problem with this is, when it comes to high torque, the connection of the servo with the actuator becomes difficult, and are hard to make using 3D printed material. If the servo or the flange moves just a little bit within its housing, the play will magnify to a significant amount at the end of the actuator. The required precision to avoid this is way above hobby grade components.

Servos are boringly easy to use, and no fun in construction. A motor with a belt drive and a separate angle sensor solves this, since it provides low backlash and allows the electronics to compensate for imprecise parts with the sensor placed separately from the motor. Additionally, the motor of an actuator can be placed in the previous joint, lowering the centre of gravity of each actuator. When a belt drive is used, the choice of using stepper motors is natural, since an additional gearbox is not necessary anymore. When the torque is high, then the belts should compensate for the vibrations coming from the stepping nature of the motors. I started out with an OpenCV application simulating the construction, and ended with a final construction seen in Figure 1.

The software part was not easy, and was especially time consuming. Most robot makers stop as soon as the limbs are moving, which always looks unfinished. However, making the full software stack including trajectory planning meant four months of work when I only had time on the weekends. Some parts are really difficult, such as inverse kinematics. The data flow of the full stack is shown in Figure 2.

System Parts

Trajectory Planner: This is a UI for planning trajectories. Trajectories are planned by defining single support points. After planning is done, the trajectory is transferred to the Executor. More information can be found at http://bit.ly/2nQc22P, and the source code is available at http://bit.ly/2nz6sSF.

Trajectory Execution: This component consists of a webserver that runs trajectories by interpolating Bézier curves between support points, computing the inverse Kinematics per pose and sends the resulting series of angles to the controller. More information is at http://bit.ly/2n4rxRm, and the source code is available at http://bit.ly/2nhz6Fc. An explanation of the kinematics involved can be found at http://bit.ly/2nTM52X.

Cortex: This low-level component takes interpolated poses and controls the actuators accordingly by applying control algorithms. Servos are controlled directly by the cortex controller board using a serial interface. Steppers do not have an internal feedback loop, so we need rotary encoders detecting...

On the mechanical side, we have two actuators driven by a servo, mainly due to space restrictions, and five actuators driven by a stepper/rotary encoder combination. Details about the construction can be found at http://bit.ly/2n4AZ70.

The steppers are driven by 3D-printed components, PiBot Stepper Driver, based around the popular IC Toshiba 6600 (4.5A max). The stepper drivers are directly connected to the ARM Cortex receiving joint angles at 10Hz, interpolating in between the points, and sending the PWM signal to the stepper drivers and to the servos. Besides micro interpolation of the trajectory, the controller board takes care of the speed profile by limiting the acceleration and speed of each actuator. The controller board is a DIY PCB based on an ARM Cortex M4, Teensy 3.5, running the control loop at 100 Hz. I started with an ATmega 644, but it turned out that the ATmega was not able to control 5 steppers with the proper sample rate, let alone reading 5 encoders. In a previous project, I solved this by using 16-bit fixed point arithmetics instead of floating point, which gave a performance boost but, resulted in a mess of source code.

The trajectory controller board is encapsulated by a web server exposing the current movement and accepting commands like new trajectories.

In Figures 5 and 6, we see the control cabinet in its natural environment, accompanied by a Japanese flower arrangement. The innards is a scaffold holding the power supply, the stepper drivers, and some smaller PCBs.

I tried to give it an East German vintage style, by using these great looking rounded panel meters that I got from eBay and a panel of mostly useless lamps.

All sockets are on the left side of the wooden box, and the biggest 28-pin socket is for the cable containing lines for the steppers, encoders, and servos. Above it there are two USB ports, one for the ODROID-XU4’s serial interface, which is handy if Wifi is not working, and one for the Walter’s ARM Cortex. The power supplies are fixed on the backside with screws, and the scaffolding for electronics is glued to the backside as well. The picture on the right shows the tidy version of the inners with power supplies and stepper drivers only. When the other PCBs are added and all the wiring is done, make sure to close the
box! I also included a nice emergency stop button on top of the box.

Downloads

- **CAD Models:** Designs made with TurboCAD, used to 3D-print all parts: http://bit.ly/2n5E2fh
- **Schematics:** Cortex and Power Supply PCB made with KiCAD: http://bit.ly/2mCIE01
- **Source Code:** C++ code of the cortex, trajectory planner, and web server: http://bit.ly/2o4nx3X
- **Datasheets of components Walter is made of:** http://bit.ly/2n5eMGg
- **Zip, which includes all of the above:** http://bit.ly/2mCGVbc

To check out a video of Walter in action, visit youtu.be/XK3WcrrC8U. For more detailed information about Walter, please visit the documentation at http://bit.ly/2ncR0bb, or send comments, questions, or suggestions via the Hackaday page at http://bit.ly/2n5zo0U.

For the last three years, I have had the opportunity to travel throughout most of Peru for work, visiting everywhere from great urban population centers to rural farmhouses. In all of these places, I saw one particular common thread: a lack of quality in education and access to new technologies. For example, in the last international PISA quality tests, the results of my country showed a tremendous deficit in educational quality, and children of the RBE (Regular Basic Education) are unaware of the use of technological tools.

This is why I created the Wawa Laptop. I am inspired by both my travel experiences and my children, who also motivate me to continue and maintain the project. I recruited family and friends to help with the project, and so I put into action a plan for the Wawa laptop with a clear goal: to contribute to improving the quality of education in our country and the region.

I started my project by working with a Raspberry Pi, using a core Linux environment which I adapted by adding a useful and attractive visual environment (GUI). At the time, I was developing the project as a desktop for user assembly. It had a keyboard, mouse, HDMI cable, power cable and WiFi dongle.

In August, we won the Andes Accelerator incubator contest at the University San Martin de Porres in Lima, Peru. The disruption-oriented prize gave its winners many of the tools and ways to build a successful product, including training, mentoring, presentations, and advice. This allowed us to bring our ideas together and move it to the next level.

At the end of 2015, I discovered Hardkernel and their SBC boards. The one that most attracted my attention was the ODROID-C1+, mostly because it not only supported both Linux and Android, but also had far better performance than the Raspberry Pi. We also started to consider building a screen into the device like a laptop, rather than a desktop that you’d plug a monitor into. We tested various screen options until we settled on a 10.1-inch HD screen. I was using a variety of SBC boards at the
time, but ODROID ultimately won me over with its robustness, versatility and power for implementing our first prototypes of the Wawa.

As we progressed with the project, many changes arose, because of the information we were collecting on other projects in Peru that preceded us, such as One Laptop Per Child (OLPC). We used this information to help our investigation into the idea of an educational model of the Wawa for children in cities and rural towns across Peru. We’ve recently completed our first public prototypes, and have begun implementing the operating system design.

I was in touch with a friend of the ODROID community, who has a project to power an ODROID with two operating systems in tandem called VolksPC, so we based our OS on that core technology, and adapted Android and Linux with various educational apps such as Scratch, and free useful software like GIMP, office software, and Inkscape, that we think will best serve the children to whom we deliver these devices.

We decided to energize the Wawa with a choice of either a portable solar panel or direct power. One goal as we developed the Wawa was to offer some environmentally sustainable options, since electricity is scarce in many parts of Peru due to its geography, and we wanted to address our own ecological interests. We searched and tested different types of solar panels and performed various tests until we found the one we currently use, which can offer three hours of continuous usage with a fully charged battery.

The access and development of robotics, home automation and IoT (Internet of Things) is a very important aspect of our project as well. That is why we decided to have a direct access to the GPIO ports so that children can interact and develop everything related to these issues, keeping in mind that the education curriculum in my country is betting on the insertion of robotics in education through a project with the Lego WeDo tool. We plan to develop the Wawa Laptop to be compatible with this tool.

We contacted the talented team at the National University of Engineering (UNI) and came up with the current Wawa Laptop design. We sought to include all the knowledge acquired in recent years and focus on the use of the GPIO ports too. We also made the impression using z-ultra material, which gives us a very nice finish.

We developed a packaging concept, called “The Treasure Chest”, which focuses on highlighting the Wawa Laptop as a treasure for the children, as they will discover the technology and connect with the world, upgrading all their skills for the benefit of their family, community, and country.
We have an integral distribution plan that accompanies our Wawa Laptops as we reach the many communities that we hope to bring this device to. In the services area, we will include training and technical support for both teachers and student, as well as enterprise-like services, such as monitoring, tracking, and traceability. By doing so, we will be able to carry out our objectives, which are: improving educational quality, allowing access to multiple opportunities for research and learning, promoting technological literacy, and filling the gaps between public and private education. We plan to launch a fundraising campaign via Kickstarter.

The idea that we have is to put together a campaign to bring the Wawa Laptop to the largest number of schools that do not have access to technology, to provide children with the tools they need to upgrade their skills, and help make them the next leaders required by the country and region, with education, information and knowledge. For more information, please visit the Wawa Laptop website at www.wawaperu.org.

Materials

- ODROID-C2
- ODROID-C2 RTC Shield
- AmeriDroid USB Audio Adapter
- 3 Watt Stereo Amplifier
- 8 Ohm, 2 Watt Mini Speaker
- Hardkernel Wi-Fi Dongle
- Pantalla 10.1 IPS HD Display
- Zortrax Impresora 3D Printer and Z-ULTRAT (3D Printed Case Filament)
- Portable Solar Powered External Battery
- Teclado + Trackpad
- Bluetooth Wireless Keyboard
- Hardkernel 720P Camera

Design mockups of the Wawa Laptop

The Wawa “Treasure Box” packaging design

A final look at the Wawa for our upcoming Kickstarter project
Can you believe we are on the 40th issue already?

It’s about time we recap our antics, let’s go!
In November of 2013, there was a message in the ODROID forum, where some users were thinking about doing an e-magazine for the ODROID. Soon enough, a bunch of them gathered together to publish the very first issue of our beloved magazine.

Note: Click any magazine image to view its online PDF

ISSUE #1

The first issue, in fact, took about two months to get all the articles, assemble the very first PDF, and get it published on the magazine.odroid.com website. It was 27 pages long and it was then that our mellow, relaxed and funny editorial style began.

Table of Contents

- **4 Getting Started with the ODROID-U3**
- **7 Using ODROIDs in High Performance Computing (HPC): ARM Head and Shoulders Above the Competition**
- **8 Installing an OS on an Odroid: Chronicles of a Mad Scientist**
- **10 Linux Gaming on Odroid: The next Evolution in Gaming**
- **12 Using ODROIDs in Commercial Applications of High Performance Computing (HPC)**
- **14 Real-Time Mobile Eye Tracking on the ODROID Development Platform**
- **16 Running Linux Programs Under Android: A Guide to Linux Chroot**
- **18 I/O Ports on ODROID-U3: Get Started with Tinkering**
- **20 On the Performance of SD Cards: Know More About Your Storage Options**
- **21 Playing Youtube Content on Linux**
- **22 ODROID-U3 vs. ODROID-U2: The Next-Generation U3 Improves Upon the Popular U2**
- **23 ODROID-U3 vs. Raspberry Pi: Need More Bang for Your Buck? U3 Will Get You There!**
- **26 Meet an ODROIDian: A Personal One-On-One With Justin Lee, CEO of Hardkernel**

In the beginning our text boxes were splashingly yellow!

And our codes on the screen were on an old green screen CRT
ISSUE #2

Table of Contents

4 Converting a Monitor to a Giant Android Tablet
7 Installing Android on an ODROID: The Mad Scientist Chronicles Continue
8 High Performance Computing at Home: Compute Like You Never Did Before
11 Fine-Grained Power Control on ODROID Clusters: 24 High Performance Cores for 35 Watts
14 USB Gadget Drivers: Make Your ODROID Communicate with Your Old-school PC
18 Linux Gaming: The Right System for Your Games
24 Estimating Radio Network Interference With Multi-threaded Java
27 Vi/Vim Graphical Cheat Sheet
28 How to Install Rebel: A Beginner’s Guide
29 Programming with Rebel: Reducing Complexity in Development
32 I/O Shield Access: Using the C/C++ Language for ODROID-U3
34 Using an ODROID-XU as a WiFi Router: Get to 802.11AC With Style
37 The Art of Multi-boxing: 1080p Home Media Center Using Pocket Rocket and Whisper
42 Meet an ODROIDian: Mauro Ribeiro, the Software Genius Behind ODROID’s Linux Kernels
26 Meet an ODROIDian: A Personal One-On-One With Justin Lee, CEO of Hardkernel

ISSUE #3

Table of Contents

4 Getting Started with the ODROID-U3
7 Using ODROIDs in High Performance Computing (HPC): ARM Head and Shoulders Above the Competition
8 Installing an OS on an Odroid: Chronicles of a Mad Scientist
10 Linux Gaming on Odroid: The next Evolution in Gaming
12 Using ODROIDs in Commercial Applications of High Performance Computing (HPC)
14 Real-Time Mobile Eye Tracking on the ODROID Development Platform
16 Running Linux Programs Under Android: A Guide to Linux Chroot
18 I/O Ports on ODROID-U3: Get Started with Tinkering
20 On the Performance of SD Cards: Know More About Your Storage Options
21 Playing Youtube Content on Linux
22 ODROID-U3 vs. ODROID-U2: The Next-Generation U3 Improves Upon the Popular U2
23 ODROID-U3 vs. Raspberry Pi: Need More Bang for Your Buck? U3 Will Get You There!
26 Meet an ODROIDian: A Personal One-On-One With Justin Lee, CEO of Hardkernel
40th ISSUE

On issue four, we packed an ODROID inside a truck, showing the world that we could take our computers inside everything we wanted and take them everywhere.

Table of Contents

6 Build Android on ODROID-U3: From Scratch to Smash, Take Total Control of Your Android System
8 Shairport: Turn Your ODROID to an iTunes Airport Audio Station
9 Portable Image Backup: Creating a Recovery File for Your Favorite Operating System
10 Rename Your Files from Uppercase to Lowercase in One Command Line
10 Protect Yourself from Superuser Accidents
11 Build Your Own Ubuntu From Scratch: Using Linaro’s RootFS To Compile Linux Like a Pro!
14 How to Install the Oracle Java Development Kit (JDK) Version 8: Save Time with Java’s “Code Once, Run Anywhere” Architecture
16 Using ODROIDs in High Performance Computing: What a Difference a Kernel Makes
17 Android Gaming: Vector – Parkour Packed Action
18 How to setup a Minecraft server: Creeeepers!
20 Download Youtube Videos to Watch Offline
21 Create a Papercraft Doll to Go Alongside Your Minecraft Server
22 Learn Rebol: Writing More Useful Programs with Amazingly Small and Easy-To-Understand Code – Part 2
27 Be Heard With Ubercaster: A Real-Time Audio Broadcaster Hotspot
29 ODROID-U3 I2C Communication: Inter-Integrated Circuits for the Rest Of Us
32 Heavy-Duty Portable Linux Tablet with LTE Router
34 How I Built a Truck PC with My ODROID: Nevermind the Products on the Market, Get the Most Bang for Your Buck!
38 Meet an ODROIDian: Marian Mihailescu, One of Our top Forum Contributors

We had an amazing tutorial teaching how to build a minecraft server, and as a bonus, we published a cool creeper papercraft for you to build!

With this column, we started to phase out our blasting yellow colors on our template.
In this issue, we started our love affair with robots! Robots everywhere, robots forever, alongside with the premier of the ODROID-UPS and the ODROID-SHOW accessories.

Table of Contents

6 Android booting process: Understand the Innards of how your ODROID boots up to Android
8 Pipe Viewer: Get More Interactive With Your Data Progress Tools
8 The Force is Strong with Traceroute
10 How to Compile Doom on Your ODROID: Play this Timeless Classic Custom Compiled for Your Machine
13 Recompile the Mali Video Drivers: Fixing the “Blank Screen” and “Slow Windows” Issues when Upgrading to Ubuntu 14.04
14 2 Systems, 1 ODROID, Pure Fun! How to Make a Dual Boot System with Android and Ubuntu
18 Getting Started with Your ODROID: How to Copy an Image File to an SD Card or eMMC
20 Get Yourself a Little More Personality on Your Sudo
21 Sort by File Size in a Directory
21 Split a Huge File
22 On the Thermal Behavior of ODROIDs: The Performance Difference Between the Xu and U3 in Greater Detail
26 Say Goodbye to Nano and Set Your Editor to VI
26 Indiegogo Campaign Promises ODROID Compatibility With Stretch Goal
27 ODROID-SHOW: A Powerful Mini LCD Screen for the U3
32 ODROID-UPS Kit: A Compact Affordable Backup Solution
34 OS Spotlight: Fully Loaded Ubuntu 12.11 with Unity 2D Desktop Environment
37 Monitor Your Linux with Nmon
38 Build an ODROID-Powered Off-Road Unmanned Ground Vehicle: Part 1 – Overview, Platform Assembly, and Power Distribution
41 Meet an ODROIDian: Simone (@Sert00), A Long-Time ODROID Enthusiast and Helpful Computer Expert

It wasn’t christmas, but felt like it with that many goodies!
ISSUE #6 – Table of Contents

6 Programming Your ODROID-SHOW: Using the Rebol Programming Language to Improve the Hardware Interface
7 Recompiling Mali Drivers: Updating to the Latest Release (R4PO-00Rel1)
8 Got Wiimote? Make Yourself An Awesome Gyroscopic Mouse
9 Package YourCompiled Software for Installation: Compiling Doom – Part 2
17 Describing the Mathematical Function Atan2: A Useful Tool For Programming Applications That Require Real-Time Trigonometry
20 Framebuffer Terminal Console For Those Gui-Less Moments
20 Installing Mathematical Tools From the Ubuntu Software Center: Create Beautiful 3D Graphs For Your Office and Impress Your Colleagues
22 Android Image Files: A Peek Into the Compressed Files That Make Android Portable and Lightweight
26 Resizing Android Partitions: Make Full Use Of Your Large SD Card Or eMMC
28 Quick Pictorial Guide For Resizing An Android SD or eMMC
30 How to Feed Your Cat Over the Internet: A Guide For Attaching Step Motors to the ODROID-U3
33 Make a Custom Lego Case For Your U3
34 How to Enable Multi-Channel Audio Output with XBMC: Using the USB-S/PDIF Peripheral to Deliver Digital 5.1 Surround Sound
35 Travel Back in Time with Telnet: Dust Off That Old 1200 baud Modem
36 OS Spotlight: Dream Machine and Whisper
39 You’ve got Mail… Or should! Subscribe to the Hardkernel Email List
40 Meet An ODROIDian: Ruppi Kim, One of the Founding Members of Hardkernel
ISSUE #7 – Table of Contents

6 High Performance Computing at Home: Cluster User and File Management
9 Bash Bang! Because Command Line Never Gets Out of Fashion
9 Find What You Need With grep: The Quick Way to Look for Content
11 Using Xbox 360 Controllers with Android: Configure Them With Retroarch and Play Thousands of Games
12 Convert an OS Image to Run on an ODROID-XU: Upgrade Your Linux Software to Match Your Shiny New Hardware
13 Control Your Bandwidth: Know Your Interface I/O Status
13 Security: Control Your User Access
14 OS Spotlight: GameStation Turbo, An Inside View of the Popular Gaming and Media Center Image
18 Fractal Generators For Linux
19 Portable Solar Computing: Power Your ODROID Using Free Energy From the Sun
20 Building Native Android Applications with Red: Part 2 – Compiling an Android App
21 Easy ODROID-X/X2 Dual Boot Switch: Boot From Android or Linux with a Flick of a Button
22 Liquid Cooled ODROID-XU
23 Remote Desktop for ODROID-U3: Using VNC & XRDP Protocols
26 ODROID Powered Off-Road Unmanned Ground Vehicle! Part 2: Interfacing with Motors and Sensors
29 Change Your Heartbeat: Controlling the Alive LED on the U3
30 ODROID Weather Board: Intelligent Weather Monitoring on Your ODROID
32 Meet an ODROIDian: Denis Odintsov (@Oversun), Black Belt Programmer and XBMC Expert
<table>
<thead>
<tr>
<th>Issue #8 – Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Android Development: Using the Linux Kernel – A Guide to the Android-Specific Drivers</td>
</tr>
<tr>
<td>9 Mount Your Internal SD Card When Booting from eMMC in Linux</td>
</tr>
<tr>
<td>10 Introducing the ODROID-W: A Miniature Raspberry Pi-Compatible Wearable Computer</td>
</tr>
<tr>
<td>14 Search with Google BBS: What if Google Were Invented in the 1980s?</td>
</tr>
<tr>
<td>14 Fixing Android Overscan: A Simple App to Change the Desktop Resolution</td>
</tr>
<tr>
<td>15 All About Hardkernel’s eMMC Modules: The ODROID Advantage</td>
</tr>
<tr>
<td>17 Linux Kernel Compilation: Get Full Control of Your Operating System Like a Linux Jedi</td>
</tr>
<tr>
<td>21 Youtube Player Alternative: Use Tampermonkey to Watch Videos</td>
</tr>
<tr>
<td>22 Interesting Linux Commands Part 1: Cute Programs For Your Next Coffee Break</td>
</tr>
<tr>
<td>23 ODROID-U3 vs. ODROID-U3+: The Next Generation in the ODROID-U Series</td>
</tr>
<tr>
<td>25 Install a Home Web Server: Using Lighttpd and Nginx to Publish Your Websites</td>
</tr>
<tr>
<td>25 Interesting Linux Commands Part 2: Cute Programs for Your Next Coffee Break</td>
</tr>
<tr>
<td>30 ODROID-VU Affordable 9” USB HDMI Touch Screen: A Portable Multitouch Screen for Android, Linux and Windows</td>
</tr>
<tr>
<td>32 PepperFlash Chrome Plugin for Lubuntu 14.04: An Easy Way to Watch Adobe Flash on Your ODROID Linux System</td>
</tr>
<tr>
<td>33 Android Gaming: Mupen64Plus – Turn Your ODROID Into a Nintendo 64 Retro Gaming Console</td>
</tr>
<tr>
<td>34 IO Shield Demystified: How to Create an Intermediary between the Hardware and the Human</td>
</tr>
<tr>
<td>36 Digging (Into) the ODROID-SHOW: Unlock the Arduino Hardware’s Full Potential</td>
</tr>
<tr>
<td>41 OS Spotlight: Pocket Rocket and Couch Potato – Android 4.x Prebuilt Images for the Ultimate Set-Top Box, Now Available in KitKat</td>
</tr>
<tr>
<td>47 Meet an ODROIDian: Bo Lechnowsky, Expert Maker and Inspirational Inventor</td>
</tr>
</tbody>
</table>
ISSUE #9 - Table of Contents

- 6 Playing Sega Games in HD 1080p: A Blast from the Past
- 7 Linux Gaming: Playing Native Games on the ODROID – Part I
- 9 Building an All-In-One DIY Laptop: Take Your U3 Anywhere
- 10 Bash Basics: Shebangs and Shebangs
- 12 Installing Freedomotic: A Building Automation Framework
- 13 Installing WICD: A Network Connection Manager
- 14 3Dponics: An Open Source ODROID-Powered Gardening System
- 18 Wall-E: Building Your Own Robot At Home – Part I
- 23 Weather Forecast on the Desktop: What Chance Is There to Catch Fish Next Weekend?
- 25 Digging (Into) the ODROID-SHOW: Part 2 – Making Connections
- 28 Headless 10-Node ODROID-U3 Cluster: The Ultimate Affordable Home Supercomputer
- 30 Android Development: Inside the Android APK
- 33 Meet an ODROIDian: Tobias Schaaf, Linux Ninja and ODROID Enthusiast

ISSUE #10 - Table of Contents

- 6 Inter-Integrated Circuit Communication (I2C): Establishing a Connection between U3 and Arduino
- 9 Android Development: Creating a Custom Android Application
- 14 8-Bit Computing Bonanza: Have Fun Playing Your Favorite MSX Games
- 15 Linux Gaming: PSP Emulation Comparison Between Linux and Android
- 20 OS Spotlight: Quiet Giant – A Lightweight LAMP, Samba and MineCraft Server
- 22 ODROID-XU3: The Fastest Computer Made by Hardkernel So Far!
- 24 RetroArch: Configuring Xbox 360 Controllers with RetroArch v1.0.0.2+
- 25 Smartpower: Use and Protocol Analysis
- 32 All About Debian: An Epic Infographic
- 33 Tune Your Linux Desktop to Monitor Performance and Weather: Using Conky and Harmattan
- 37 Hardkernel at ARM TechCon 2014: Showing Off the XU3
- 38 Meet an ODROIDian: Bruno Doiche, Art Editor of ODROID Magazine
ISSUE #11 – Table of Contents
6 KVM Virtualization on the ODROID-XU3: A Brave New World of Computing
8 Installing NativeBOINC: A Pictorial Guide
11 Infographic: History of Ubuntu
12 Building a BOINC Monster: 96 Cores for Only 135 Watts
13 Microsoft-Free Mining with Freeminer: Now that Mojang has Set Sail for Redmond, How About An Open Source Game?
14 Fake86: An Extremely Fast 8086/8088 Virtualizer
16 Linux Gaming: DOSBox Emulator – Play Your Original DOS Games in HD
19 Using Dual Monitors with an ODROID-XU3
20 OS Spotlight: Code Monkey – Hardware and Software Developer’s All-In-One Operating System Image
23 Easily Rotate Your Screen on Android: Defeat Your Virtual Enemies Without Rotating Your Entire Monitor
26 Building a Weather Board Application: Create a Miniature Weather Data Collection System
28 How to Install Node.js: A Modern JavaScript-Based Web Application Platform
30 Open Media Vault: Open Source Network Attached Storage for Debian GNU/Linux
32 Meet an ODROIDian: Alexey Guseynov (@Kibergus), Software Engineer Extraordinaire

ISSUE #12 – Table of Contents
6 Liquid Cooling: Xu3 Cluster and Xu+E
9 OS Spotlight: Max2Play – Easily Control Your ODROID Via Web Interface
11 FS-UAE Amiga Emulator: Has Anybody Talked About the Coolest Computer Before ODROIDs? We sure like to!
12 ODROID-C1: A Powerful Raspberry Pi Replacement
15 ODROID-C1 vs. Raspberry Pi B+: Our Second Affordable Computer Showdown
17 Behind The Scenes: The Amazing Staff of Your Favorite Tech Magazine
18 GameCade: A Miniature Arcade Console with Authentic Controllers
19 Linux Gaming: Improved DOS Remakes of Classic Games
22 Fun With RTL-SDR: FM Radio and Real-Time Flight Tracking
26 ZX Spectrum: A Retro Handheld Gaming Device
29 Android Development: Adding Boot Animation to the Initialization Process
33 The Android Story: Infographic
34 Meet An ODROIDian: Suriyan Ramasami – ODROID Enthusiast and Talented Computer Hobbyist
ISSUE #13 - Table of Contents

6 GNU Radio: Bring Your Personal Radio Broadcasts into the 21st Century
7 Android Gaming: Metal Slug Defense – A Whole New Take on a Beloved Series
8 My Very OwnCloud: Keep Your Files Secure with a Personal Cloud Server
16 Android Gaming: HeavenStrike Rivals – A Classic RPG for the Final Fantasy Lover in All of Us
17 User-Contributed Kernel Repository: Manage Your Software Packages with Automatic Updates Using Apt-Get
19 Upgrade From 13.10 to 14.04: Stay Secure Until April 2019 with an LTS Release
20 Linux Gaming: A Comparison of the Gaming Power of the U3 vs XU3
25 Guide: Community Images
26 Docker: Develop, Ship and Run Any Application, Anywhere Part 1 – Getting Started with Containers
30 Infographic: History of Linux
31 Setting Up ASP.NET and Mono: Building a Microsoft-Free Server Stack
32 Android Development: The Power of Zygote
34 Fancy Graphics With Java: Poiju
38 Seafile: Personal Cloud Software
41 Guide: History of ODROIDs
43 Meet An ODROIDian: Nanik Tolaram, Java Jedi

ISSUE #14 - Table of Contents

6 X86 Emulation: A Look into Exagear
9 Android Gaming: Pew Pew – Shoot ‘Em Up Fun with Space and Asteroids!
10 tasksel: Easily Install Metapackages from the CLI
11 Android Gaming: Fish Out of Water – Skim Your Mouse Around on Virtual Seas
12 Remote Desktop: Using Guacamole
15 OS Spotlight: Ubuntu Studio – A Unique Set of Open-Source MultiMedia-Focused Tools
18 Android Gaming: Plants Vs. Zombies 2 – Classics Never Die, Especially When Undead
19 Play With the Weather Board: Technology for All Four Seasons
29 Android Development: Device Configuration
31 ODROID-C1 Minimal Install: Get Back to Basics
35 ODROID Magazine on Google+: Follow Us for the Latest Updates
36 Hardware Tinkering: Interfacing the ODROID-C1 with a 16-Channel Relay
40 ODROID Forums: The Perfect Place to Communicate with Hardkernel Developers
41 Docker: Develop, Ship and Run Any Application, Anywhere – Part 2 – Pre-Built Images
48 Infographic: Debian vs. Ubuntu
49 Meet an ODROIDian: Venkat Bommakanti, Jack of All Trades
ISSUE #15 – Table of Contents

6 KitKat 4.4.2: ODROID-C1 Review
8 Powering the ODROID-C1 Using the MicroUSB Port: Cellphone Charger Use is Just a Solder Away
8 Android Gaming: Crossy Road – Part Classic, Part Revamp, Absolute Fun
9 Home Theater PC: How the ODROID-C1 Measures Up
10 Android 5.0 Lollipop: The Next Generation of Google’s Android Code
10 Infographic: Raspberry Pi vs. ODROID-C1
11 Docker on the ODROID: Useful Tips
20 Flying ODROID: Get Yourself Airborne
24 Android Development: Dissecting and Modifying the APK File
26 Android Gaming: Angry Birds Transformers – A Great Mix of Old and New Heroes
27 Oscilloscope: Using the ODROID-C1 as a Bench Oscilloscope
32 High Performance Computing: Building an Affordable and Portable CI or U3 Cluster
33 Navio+ for the ODROID-C1: Autopiloting Your Drone
34 Linux Gaming: Discovering the World of Nintendo DS(i) Emulation
38 Android Gaming: Clash of Clans – Epic Battles on a Big Screen
41 Map Dpad on Xbox 360 Controllers in Android: Get Full Use of Your Gamepad
41 Android Gaming: Boom! Tanks – Simple Kill or Be Killed Tank Battle
42 Meet An ODROIDian: Jeremy Kenney (@Cartridge), Our Retro Gaming Wizard

ISSUE #16 – Table of Contents

6 Kali Linux: Take your ODROID to the Edge with the Most Advanced Penetration Testing Distribution Ever Created
10 EMMC Recovery: Take Advantage of Flash Block Utilization to Recover Your Data
10 Android Gaming: Only One – A Tribute to the Action Genre Like You Always Wanted
11 Build Your Own Ambilight: Add an Extra Dimension to Your Videos
14 Installing Linux an on External USB Drive: Get More Space on Your Root Partition
15 GPIO Shutdown: Add an External Shutdown To Stop Your Device with a Single Touch
16 OpenHAB: A Guide to Open Source Home Automation
26 ODROID-CI Triple Boot: Pack Ubuntu/Debian Linux, Android and OpenELEC into a Single Physical Volume
27 Improved Xu3 Fan: Staying Quiet
28 Linux Gaming: The Original Warcraft Series
31 ODROID-C1 Video Contest: Show Others What You Know
32 Android Development: Introducing the New Low Memory Killer Daemon
33 Android Gaming: Iron Force – Explosive Tank Battles
33 Android Gaming – Beach Buggy Racing: Action Cartoon-Style Racing in the Best Location on Earth... the Beach!
34 Meet an ODROIDian: Anthony Salter (@ViridianGames), Devoted Father and Entertainment Expert
ISSUE #17 – Table of Contents

6 Arx Fatalis: A Long-Awaited Game Makes a Star Appearance
8 ODROID Magazine Kickstarter Campaign: Get the Deluxe Printed Version Sent to Your Home
9 Android Gaming: Does Not Commute – The Craziest Driving Game Around
10 Android Gaming: Transformers Battle Tactics – A Fun Way to Play Against Your Friends in Epic Robot Battles
10 Fixing Consumer Electronics Control (CEC): Enable Remote Control via HDMI
11 Android Gaming: Hearthstone Heroes of Warcraft – The Greatest Electronic Card Game to Date
12 Linux Gaming: Nintendo 64 Emulation – Part I – Embark on the Ultimate 90s Gaming Journey
19 OpenGTS: A Powerful Open-Source GPS Tracking System
34 Use an ODROID-C1 as a Wall Dashboard: Keep track of Your enterprise Projects in Real Time on a Large Screen
37 Improve Your ODROID-XU3 Fan: Go Even Quieter
38 Retro Gaming Console: Put Some New Life in Your Old Console Case
40 Quake II: The Game That Revolutionized the First Person Shooter Genre
43 ARM Solar Challenge: Join the Race to Create a Functional Solar-Powered Micro-Data Center
44 Electronic Superpowers: Observing a Solar Eclipse on a Cloudy Day
46 Convert a USB Charger into a Tiny Linux Box: The Ultimate Travel Server
49 Meet an ODROIDian: Daniel Mehrwald (@AreaScout), Retro Emulation and Gaming Aficionado

ISSUE #18 – Table of Contents

6 ODROID-u3 Car PC: Replacing the Standard Factory Equipment
9 ODGPSS Logger: Combine OBDII and GPS Data for Complete Vehicle Tracking
16 ODROID Forums: The Perfect Place to Communicate with Hardkernel Developers
17 Linux Gaming: Nintendo 64 Emulation – Part 2
26 3.2” Touchscreen Driver Installation for the ODROID-C1
28 Linux Retroarch Nintendo 64 Core for the ODROID-u3
28 Community Images for the ODROID-C1
29 The Original ODROID: Where It All started
30 Comparison of the Top 4 SB-Cs: One board to Rule them All
37 Text to Speech with the ODROID-C1 USB Audio Adapter
38 All-In-One Desktop Case for the ODROID-C1
41 Guzunty Pi for the ODROID-U3: Using a CPLD As a Programmable Level Shifter
46 Android Development: Creating a Custom Web Server Service
47 UltraStar Deluxe Karaoke: Become an ODROID Rock Star
50 Tekken 6: The Ultimate Fighting Game
51 Meet an ODROIDian: Markham Thomas (@mlinuxguy), A Highly Experienced and Well-Traveled Linux Expert
ODROID MAGAZINE 24

ISSUE #19 – Table of Contents

6 Making Video Games for Amstrad CPC with ODROID: Have Fun With This Blast From the Past
8 Linux Kernel Build Scripts: Tweak Your System
9 Android Gaming: Nubs’ Adventure – Challenging and Enjoyable 2D Platformer
10 Linux Gaming: Rare Gaming Gems – Part I
15 Android Gaming: Kung Fury Street Rage – The Best Worst Movie Ever Made on YouTube is Now the Best Worst Ripoff Game Ever
16 Android Development: Building Android Studio
19 Jodre: Java Library for Controlling the GPIO Pins of the ODROID-C1
20 Experience Peace: White Noise Generator
21 ODROID-C1 Music Stand: Jamming with Style
24 OS Spotlight: DietPi for ODROID-C1
29 ODROID Magazine: Now Available on Google Play Store
30 Meet an ODROIDian: Chris McMurrough, Robotics Expert

ISSUE #20 – Table of Contents

6 PS3 Wireless Controllers: Your Drivers for Wireless Fun
7 Building Android on the ODROID-C1: A Walkthrough for Compiling KitKat
9 Linux Gaming: Super Puzzle Fighter II Turbo
10 ODROID-XU4: A Fresh Look at Our Newest Board
12 Grails: The Groovy Version of Ruby on Rails
16 Using BuildRoot: Create a Simple Media Player
18 ODROID-C1 User Manual: A Guide for All Expertise Levels
19 Stepmania: Dancing Entertainment
22 Linux Gaming: Rare Gaming Gems – Part 2
26 Fruit MIDI: Building a Grape Piano
29 ODROID Magazine: Now Available on Google Play Store
30 Meet an ODROIDian: Nicole C. Scott, Multi-Faceted Artist and Social Media Guru
ISSUE #21 — Table of Contents
6 XU4 Cloudshell: A DIY Personal Cloud Server Kit
8 Netflix Under Linux on the ODROID-C1: Chill Out with a Movie
10 ODROID-C1+: A Board for Everyone
12 OS Spotlight: Ubuntu Server 14.04 LTS – An Optimized Server Environment for your ODROID
14 OS Spotlight: Unified Android and Debian Distribution – The Best of Both Worlds
16 Android Gaming: Need Something to Do While You’re Sick? Exterminate Mankind While You Recover with Plague Inc.
17 XU4 Cluster: A Thorough Look at Several Available Options for High Performance Computing
18 Slay the Dragon, Save the Village: Sword of Xolan Proves that No Matter How High Def Our Displays Get, We Will Always Love Pixels
19 Luci, My Lamp: A Supercool Robotic Companion Powered by an ODROID-U3
24 Arjuna: An ODROID-Based Piano Teaching Device
26 Logical Volume Management Basics: Work Differently with Your Disk Space from Now On
28 QT5: Building a Single Application User Interface
32 SAMIO: Easily Build Powerful I/O Applications
39 ODROID Forums: The Perfect Place to Communicate with Hardkernel Developers
41 Meet an ODROIDian: Uli Middleberg, Linux Wizard and Docker Specialist

ISSUE #22 — Table of Contents
6 OS Spotlight: Lakka on the ODROID-C1 – DIY Retro Emulation Console
8 Logical Volume Management: Make Your Data Migration Easier with LVM
9 ODROID-XU4 Fan Control: The Cool Way to Manage Your XU4 Temperature and Power Usage
10 Apache Tomcat: A Powerful Java-Based Web Page and Applet Server
17 Community Wiki: Contribute to the Expanding ODROID Knowledge Base
17 Adrenaline-Charged Fun: Speed Ninja, the New Endless Runner You Were Looking For
18 Plex Media Server: Your Media on All Your Devices
26 Using the USB-UART with Mac OSX: Helping Our Mac Users Get Console Access to Their ODROIDs
28 Android Development: Building Android for the ODROID-C1 – Part 2
30 FreeOrion: Conquer the Galaxy
31 Haxima Nazghul: A New Adventure for Ultima V Fans
32 Using Python with the ODROID-SHOW: SHOWtime Makes Everything Easier
33 Prince of Persia: Rescue the Princess in This Classic DOS Side-Scroller
34 Linux Gaming: DreamCast – Sega’s Last Big Console Comes to the ODROID Platform
41 Meet an ODROIDian: William Henning (@Mikronauts), Robotics Authority and Prolific Tech Blogger
ISSUE #23 – Table of Contents

6 Get More Out of Das U-Boot: Inside the ODROID Boot Loader
15 Gigalomania: Practice the Art of War
15 USB Cleaning: A Quick and Easy Fix for Disabled USB Ports
16 Logical Volume Management: Manipulating Volume Groups
17 Touchscreen At Its Best: Tiki Taka Soccer is the Perfect Game for Every Touchscreen User
18 Linux Gaming: OpenGL Compatibility Using GLShim
22 Community Wiki: Contribute to the Expanding ODROID Knowledge Base
23 LFTP and CRON: Server Syncing Made Easy
27 Build a Customized Spam Filter: Regain Control Over Your Inbox
30 HiFi-Shield for the ODROID-C1+: Make Your ODROID Sound Great
32 Gently Release the Handbrake: Transcode Videos to Any Format
34 CloudShell With an ODROID-XU4 as a Home Server: An All-In-One Personal Cloud Device
37 Cute but Challenging: Dungeon Boss is a Superb Fit for the Casual Player
38 RuneAudio Music Player: Build Your Own Professional Quality Home Audio Kiosk
43 7-Inch HDMI Multi-Touch Screen for the ODROID-C1+: An Affordable Interactive Portable Monitor
46 Meet an ODROIDian: Manuel Adamuz, ODROID Magazine Spanish Editor

ISSUE #24 – Table of Contents

6 Logical Volume Management: Beyond Barriers with LVM
8 New Hardkernel Offices: A Quick Tour of the Headquarters
10 Linux Containers: Quickly Prepare a Fully Configured Isolated System for Testing
18 Faro: The Humanoid Goalkeeper Robot
20 Using Android NDK in Android Studio and Gradle: Working with WiringPi in Android
23 Frets on Fire: Release Your Inner Rock Star
22 Community Wiki: Contribute to the Expanding ODROID Knowledge Base
23 LFTP and CRON: Server Syncing Made Easy
24 ODROID-XU4 Multi-boot Scripts: The Easy Way
26 Linux Gaming: Fallout – A Post-Nuclear Role Playing Game
30 Reading Temperature and Humidity From an SHT15 Sensor: An Introduction to the GPIO Interface
33 Android Gaming: Five Nights at Freddy’s – Jump Scares and Creepy Toys
34 Fan-Made Zelda Games: Your Favorite Fantasy World Expands
37 ODROID-C1+ OTG Jumper: Solderless USB Power
38 Android Development: Inside the System Server
40 Meet an ODROIDian: Saleem Almajed (@Xeosal), Emerging Technology Expert and Avid Musician
41 Community Wiki: Contribute to the Expanding ODROID Knowledge Base
ISSUE #25 – Table of Contents

6 Thiny- Provisioned Logical Volumes: The Ability to Dynamically Allocate Capacity
8 Debian Jessie for ODROID- XU4: A Minimal Server Image
10 Linux Kernel Compilation: How to Customize Your Operating System
13 Universal Image Installer
14 CPU and Fan Control: Tame Your XU3 and XU4 Heat Output When You Don’t Need Full Octa-Core Power
15 Community Wiki: Contribute to the Expanding ODROID Knowledge Base
16 ODROID Magazine Website: A New Design For Our Third Year
17 Android 6.0 Marshmallow for ODROID- XU4: The Newest Android For Your Newest ODROID
18 Universal Motion Joypad: Are You Ready to Drive a Race Car?
21 Respect Your Coworker’s Job: Please, Don’t Touch Anything Shows That Ignorance Is Blissful Fun
22 Lakka for ODROID- XU4: The Ultimate Gaming System
23 Linux Gaming: Strategy Games on the ODROID – Part I
28 ODROID- XU4 Case: A Sleek, Modern and Silent Enclosure
30 OS Spotlight: Tizen for ODROID- XU4
35 Meet an ODROIDian: Georg Mill, Innovative and Creative Hardware Maker

ISSUE #26 – Table of Contents

6 Internet Small Computer System Interface: iSCSI Made Simple
8 A Look at Cyanogenmod: Getting Started with a Clean, Lightweight Flavor of Android
9 Overscan Fix in Ubuntu for ODROID-C1/C1+: Synchronize Your ODROID With Your Monitor
10 Fire Detection for Surveillance Cameras: Taming Fire With a Webcam and an ODROID
13 Linux Gaming: Running Windows 2000 Games on an ODROID
18 ODROID-C0: A Compact Board for Portable and Lightweight Applications
20 ODROID- XU4 User Manual: A Guide For All Expertise Levels
21 OS Spotlight: Odrobian Retrogaming Arcade (ORGa) For ODROID-C1/ C1+
24 Munin: An Open Source Performance Analyzer
28 The OWEN Robot Kit: A Sample Project For the New ODROID-C0
31 Android Development: Accessing the Bluetooth Stack
33 Meet an ODROIDian: David Lima, Quintessential Enterprise Storage Expert and System Administrator
ISSUE #27 – Table of Contents

6 ODROID-VU7 Backlight: Adding a Digital Control System
8 Super Eyes: Hand Tracking and Surveillance with the OCam
11 ShowMeStuff: A Smart Kiosk System for Your ODROID-SHOW
12 Byobu: Your Linux Terminal on Steroids
15 Half-Life: Black Mesa Has Come to the ODROID Platform
16 Exagear: Get More From Your ODROID with TeamViewer, Spotify and Skype
19 Using ZRAM: Memory Expansion through Compression
21 MQTT Basics: IoT Made Easy
23 ODROID-C2: 64-Bit Low-Cost Powerhouse
25 Real Time Linux Kernel: The ODROID-C0’s Best Friend
27 Toner Reset: Extending the Life of Your Laser Printer Cartridges
29 Meet an ODROIDian: Christopher Dean (@TPimp), Accomplished Qt5 Developer and Hardware Virtuoso

ISSUE #28 – Table of Contents

6 Wooden Game Cabinet: For Retro Fans
11 Android Development: Build Your Own Android SDK
15 Unicorn: CPU Instruction Emulation for ARM
15 Awkaster: Retrotastic Terminal Based FPS Gaming
16 Linux Gaming: An ODROID-W Housed in a Gameboy Advance SP Case
18 Versatile Multiscope: An Oscilloscope Project For Your Home
20 XMage: An Online Magic: The Gathering Free-For-All
22 Object Tracking Using OCam and ODROID-XU4: An Easy Step-By-Step Guide
24 Linux Gaming: RVGL – Re-Volt on OpenGL
26 Cut The Rope 2: Help Nom-Nom Get His Candy
27 Kismet: Wireless Network Monitoring
28 Meet an ODROIDian: Adrian Popa (@mad_ady), Premiere SBC Enthusiast
ISSUE #29 - Table of Contents

6 Turning Your ODROID Into a Tor Relay: Protecting Freedom One ODROID at a Time
9 ODROID Production: A Retrospective from HardKernel’s Early Years
10 CherryMusic: Your Own Private Music Stream
12 Wireless Injection: A Hands-On Approach to Learning 802.11
19 Augmented Reality: Using the OCam and ODROID-XU4
22 Linux Gaming: Atari Jaguar on ODROID-XU3/XU4
28 Android Development: Android Support Library
31 Battle for the Solar System: Pandoran War – A Fun 2D Mission-Based Space Shooter
32 Baby NAP (Night Activity Program): Part 1 – Hardware Configuration
36 Make Your Own Smart Car With the ODROID-XU4: Bring New Functionality To Your Vehicle
40 Meet an ODROIDian: Miltiadis Melissas

ISSUE #30 - Table of Contents

6 Security Camera: A Great Weekend Project
10 Java Installation Script for Developers: The Perfect Fix For All of Your Cup of Java Needs
19 Camera Calibration Using OCAM and ODROID-XU4: A Technical Tutorial
29 Baby NAP (Night Activity Program): Part 2 – Software Components
36 BASH Script Command Center Minecraft Edition: Useful Scripts for Creating and Managing a Minecraft Server
37 Cartridge Ports: Download Top-Notch Software for Your ODROID
38 Linux Gaming: Strategy Games on the ODROID – Part 2
42 The Impulse T2: An ODROID-XU4 Tilt Touch Table
44 Compiling Synergy for ODROID: Chronicles of a Mad Scientist
47 Samba Server: Setting Up a RAID Array
54 Meet an ODROIDian: Andrew Ruggeri, Assistant Editor of ODROID Magazine
ISSUE #31 - Table of Contents

6 Building an Arch Linux Image with Mate Desktop – part 1
10 Smooth Particle Hydrodynamics: Scientific Calculations Using a Small ODROID Cluster
18 EasyRPG: An RPG Maker 2000 and 2003 Engine
19 Witch Blast: A Really Addictive Dungeon Crawl Shooter
20 Minecraft Client on ODROID
22 An Energy-Efficient, Maximum Performance Gigabit NAS: Using an ODROID-C2 and 128GB eMMC
24 VU7 Tablet: Build Your Own Custom 64-Bit Modular Tablet
26 Attacking WPS-Enabled Wireless Networks
30 Face Detection Using OCAM and ODROID-XU4: How To Recognize Human Features
32 Meet an ODROIDian: Jörg Wolffof Hardkernel

ISSUE #32 - Table of Contents

6 Why Does The Pencil Look Bent? The Behavior of Different Types of Camera Shutters
10 Android Development: Hardware Abstraction Layer (HAL)
12 The Matrix: It Will Always Be Cool
13 Linux Gaming: Spread Some Love (Engine)
15 Hardkernel 5V/6A Power Supply: A High Quality Stable and Low-Noise Power Supply for the ODROID-XU4
16 Taking a Crack at Breaking WPA Networks – Part I: Bulletproofing Your Own System
20 Recalbox for ODROID-XU4: The Ultimate Multimedia And Gaming System
22 ODROID-XU4 Cluster: The Holy Grail of Core Per Watt vs Performance vs Price
24 Xposed Framework: Tame Your Android Upgrades and Handle System Level Changes
25 Brothers: A Tale of Two Sons: A Fantastic Game Finally Ported to Android
26 Volumio 2.0: Your Favorite Integrated Music Player Just Got Better
27 That Level Again: Where All Levels Are The Same Except The Way To Win
28 Meet An ODROIDian: Joshua Sherman, Assistant Editor of ODROID Magazine
ISSUE #33 – Table of Contents
6 Hacking Pokémon Go With an ODROID: How to Perform GPS Spoofing
10 Taking a Crack at Breaking WPA Networks – Part 2
14 ODROID-C1 Laptop: A Custom Home Project Codenamed “Redtop”
18 Installing Hadoop and Spark Onto an ODROID-XU4 Cluster
22 Backup Scripts: Keep Your Data Safe For Your Peace of Mind
27 ODROID-C2 as an IoT Device: Interfacing With The Real World
31 Kodibuntu: Auto-Starting Kodi With a Full Ubuntu Distribution
32 A Car Computer For The Love of Customization: Chronicles of a Mad Scientist
35 Linux Gaming: Sega Saturn and CDEmu
39 The XU4 Punnet: A Printable Card Case for the ODROID-XU4
41 Why Does the Loser Seem to Touch the Finish Line First? Interesting Experiments to Understand the Difference of Shutter Mechanisms
42 ODROID-VU7 Plus: Your Favorite Touchscreen Now Offers Higher Resolution
43 Meet an ODROIDian: Radostan Riedel (@raybuntu), Talented Libre-ELEC Developer

ISSUE #34 – Table of Contents
6 Gmail Mechanical Notifier: An ODROID IoT Device and Application
12 Transforming Your ODROID Into an IP Webcam
18 ODROID-XU4 Cooling Tests: Discover the Best Cooling For Your Needs
19 Ultimate Briefcase: Get Ready to Rumble In a Frantic Survival Game
20 Industrial Automation: Remote Monitor Modbus Register Using an ODROID-XU4
22 NVIDIA Game Streaming On the ODROID-C2: play Modern games On Your ODROID
24 Linux Gaming: Some Great Games for the ODROID-C2
26 Compiling Android Lollipop for the ODROID-C2: Using Linux Mint 18 or Ubuntu 16.04
26 Android Gaming: Reaper, Tale of a Pale Swordsman
29 Gentoo for the ODROID-C2: Creating Your Own Custom Installation
32 Meet an ODROIDian: Sebastien Chevalier (@ptitseb), GLShim Developer
ISSUE #35 - Table of Contents
6 Building An IoT Device Using an ODROID-C2: Street and Home Lights Controller With SMS Notifier
15 How To Get Fancy Color Images From A Simple Sensor Image: Using The Bayer Pattern To Create An RGB Color Image
17 Alarm Central: Part I – RF24 Window Sensor and MIRF Library
22 Ancestor: A Game Full Of Fun With Perfect Gameplay, Visuals and Details
23 Ultra-HD 4K Ambilight: Create A Spectacular Synchronized Visual Background For Your Home Theater
26 Docker IOI: Part I – Why Docker?
31 Linux Gaming: Get Serious With The Serious-Engine
33 Android Development: Android WiFi Stack
36 MythTV: Running The Open-Source Home Entertainment Application On Your ODROID-C2
39 Android Nougat: Impress Your Friends With The Latest Android Version
40 Accelerated Video playback For Browsing On The ODROID-C2: Watch Your Web Media Content In Full HD
44 Meet An ODROIDian: Joachim Althof

ISSUE #36 - Table of Contents
6 Hardkernel at ARM TechCon 2016: Showcasing the ODROID-C2
8 Retro Gaming with Exagear
10 Linux Gaming: Choosing the Right Game Controller For Your Playstyle
14 Missiles: There Is No Better Way Of Flying Than Dodging Relentless Attacks
15 Installing A thermal Receipt printer On Linux: Chronicles Of A Mad Scientist
16 Boot.Ini Persistence: Preserving Changes During An Upgrade
17 Software Equalizer For Android: Chronicles Of A Mad Scientist
18 Using The Hardware Encoder Functions of the ODROID-XU4
22 How To Use An ODROID As A Bluetooth Speaker: Music For The Masses
24 ODROID-C2 Real-Time Kernel: Getting Started With An RTOS
25 Ruling The World With Synergy: Chronicles Of A Mad Scientist
26 Why Add Liquid Cooling to An ODROID-XU3 or XU4?
29 Docker IOI: Part 2 – Swarm Mode
34 Designing Your Own ODROID Seedbox: Harness The Power Of The Cloudshell
41 Meet An ODROIDian: Daniel Haze (@Fourdee)
ISSUE #37 - Table of Contents
6 Iot Environmental Wine Cellarer Preserver and Notifier
12 Deluge: Your New Favorite BitTorrent Client
14 Telegram Chatbot: Advanced Home Automation
16 Chrome Death: A Cyberpunk-Themed Action Game That Will Keep
Your Adrenaline Pumping
17 ODROID-C1/C2 Paper Case
17 Pixel Dodgers: Fasten Your Fingers And Dodge Fireballs
18 ODROID-C2 Manual: A Guide For All Expertise Levels
19 Portable Arcade Station
20 ODROID Around The World: The International Reach of Hardkernel’s
Popular Single Board Computers
22 ClipGrab: Download Your Favorite Videos For Offline Viewing
23 Kodi Screensaver: Control Your CEC-Compatible TV Monitor With
This Smooth Feature
24 Rear View Camera: Staying Safe On Your Bicycle
29 32-Bit Executable on 64-Bit Ubuntu: Chronicles Of A Mad Scientist
30 Meet An ODROIDian: Fabien Thiriet (@Fab)

ISSUE #38 - Table of Contents
6 Dual and Triple Boot For ODROID-C2: Easily Switch Between Operating
Systems On A Single ODROID
8 Setting Up Your XU4 As A General-Purpose Network Attached Storage
(NAS) Device: Your Home Swiss Army Knife Server
16 The Amazing ODROID-VU8: A Portable All-In-One ODROID Touch-
screen Tablet With 1024 x 768 Resolution
19 Buildroot: Now Available For ODROID-C0/C1/C1+
20 Sky Force Reloaded: What Do We Love On A Shoot ‘Em Up? Bullet
Hell!
20 HomeBridge Home Automation: Easily Integrate Your Home’s Tech-
nologies
21 Tap ’N’ Slash: Uncomplicated Slashing With Fast Reflexes
23 Linux Gaming: PPSSPP Speed Comparison
29 SmartPower2: Your Energy-Saving Best Friend
29 ODROID-C2 Power Consumption: A Simple Tweak That Will Work
Wonders
30 Meet An ODROIDian: Richard Bown (@richard-g8jvm)
ISSUE #39 – Table of Contents

6 IoT Doorbell: Get An Email Alert Of The Person At Your Door
12 Linux Gaming: Open Fodder
14 Causality: A Time Travel Paradox Puzzle Game For Your Discretion
15 RemotePi Board For the ODROID-C2
18 HiFi Shield 2: The Best Audio You Can Achieve On An ODROID
19 Updated XU4 Manual: Revised For Ubuntu and Newer Peripherals
20 Home Data Center: Code Deployment With ArchLinux
23 The ODROID Arcade Box: Have The Perfect Experience With Your Favorite Arcade Games
28 Android Development: Analyzing Application Network Usage
30 Sensing The Presence: Chronicles Of A Mad Scientist
32 Meet an ODROIDian: Viacheslav Alekseev

ISSUE #40 – Wait a minute... Is this some sort of an inception thing?

But thanks for being around these forty issues! We’re just getting started!
A new Hardkernel distributor has just opened an online store in the United States, which offers their complete catalog of products, including the ODROID-XU4, ODROID-C0, ODROID-C1+ and ODROID-C2. The site calculates bulk discounts for a number of products and several shipping options for fast delivery. It will be opening in mid-April, so make sure to visit the new website at www.odroidinc.com for all of your single board computer needs.
CLOUDSHELL-2
FOR THE
ODROID-XU4
A DIY HIGH-PERFORMANCE
NAS WITH RAID
by Brian Kim and John Lee

The CloudShell-2 for the ODROID-XU4 is an affordable DIY Network Attached Storage (NAS) Solution with RAID support. Like the original CloudShell, it includes a color LCD and IR receiver on the front, but adds support for USB Attached SCSI (UAS or UASP) and useful data storage technologies (RAID-0, RAID-1 and SPAN). It offers dual slots for 3.5” HDD/SSD drives, which is also compatible with 2.5” HDD/SSD drives. The CloudShell-2 also includes a USB 3.0 to SATA bridge (JMicron JMS561), which supports UAS and allows installation of a dual 3.5”/2.5” SATA HDD/SSD drive.

Specifications

ODROID-XU4 (not included)
• CPU: Exynos-5422 Cortex A15 and Cortex A7 big.LITTLE processor
• Architecture: ARM 32bit
• CPU Frequency: Quad 2 GHz(A15) + Quad 1.5 GHz(A7)
• Memory: 2 Gbyte LPDDR3 RAM
• Support OS: Ubuntu 16.04 on Kernel 4.9 LTS, Android 4.4.4 on Kernel 3.10 LTS

Storage
• 2 Drive Bays
• Supported size : 3.5” SATA HDD

Supported RAID Type
• Basic(PM)
• JBOD
• RAID 0
• RAID 1

External Ports (with ODROID-XU4)
• USB 2.0 Port, USB 3.0 Port
• Gigabit Ethernet Port
• HDMI Port

Appearance
• Color: Clear, Smoky Blue
• Size (Height x Width x Depth): 140 mm x 110 mm x 221.5 mm
• Weight: 0.64kg(without HDD), 2.15kg(with 2 x HDD)

Others
• Fan 92 mm x 92 mm (cool, quiet mode)
• IR Receiver (remote controller not included)
• 2.8” 320x240 TFT LCD
• 15V 4A Power Input

Figure 1 - Hardware Details of the CloudShell-2 Board

Figure 2 - Block Diagram of the CloudShell-2
levels, depending on the required level of redundancy and performance. The different schemes, or data distribution layouts, are named by the word RAID followed by a number, for example, RAID 0 or RAID 1. Each schema, or RAID level, provides a different balance among the key goals: reliability, availability, performance, and cost.

Improvements over the CloudShell

One of the key features of the CloudShell-2 is USB-Attached SCSI (UAS). UAS is a new computer protocol used to move data to and from USB storage devices. UAS depends on the USB protocol, and uses the standard SCSI command set. UAS provides faster transfers compared to previous USB Storage protocols, which is called Bulk-Only Transport (BOT). UAS was introduced as part of the USB 3.0 standard, but can also be used with devices complying with the slower USB 2.0 standard, assuming compatible hardware, firmware and drivers.

Another important feature of the CloudShell-2 is Redundant Array of Independent Disks (RAID). RAID is a data storage virtualization technology that combines multiple physical disk drive components into a single logical unit for the purposes of data redundancy, performance improvement, or both. Data is distributed across the drives in one of several ways, referred to as RAID levels, depending on the required level of redundancy and performance. The different schemes, or data distribution layouts, are named by the word RAID followed by a number, for example, RAID 0 or RAID 1. Each schema, or RAID level, provides a different balance among the key goals: reliability, availability, performance, and cost.

Interoperability

Interoperability is a key feature of the CloudShell-2, allowing for seamless integration with various operating systems and applications. The CloudShell-2 is designed to be compatible with a wide range of devices and software, ensuring smooth deployment and use in diverse environments.

Ease of Use

The CloudShell-2 is user-friendly, with an intuitive interface that simplifies setup and configuration. Whether you're a professional IT administrator or a casual user, the CloudShell-2 is designed to be accessible, with step-by-step guides and support resources available for assistance.

Conclusion

In conclusion, the CloudShell-2 is a powerful and versatile tool that offers a wide range of features and benefits for those looking to enhance their storage and computing capabilities. From its advanced features like RAID and UAS to its user-friendly design, the CloudShell-2 is a top choice for anyone in need of reliable and efficient storage solutions.
into a single, large logical disk. CloudShell-2 provides both spanning and independent disk modes as SPAN and PM mode.

RAID settings

There are four data storage modes on the CloudShell-2: RAID 0, RAID 1, SPAN and PM. This means that the hard disks will be detected separately in PM mode.

To select the RAID mode, set the RAID Mode DIP Switch to the setting that you want, then apply power while pressing the RAID Setup Key button until booting is complete.

FTP and SAMBA

This section describes how to install file servers like FTP and Samba, which are usually installed by default on commercial NAS devices. We used an Ubuntu 16.04.2 trial image with the 4.9.x LTS Kernel (http://bit.ly/2nKRPMn) for this, because the previous 3.10.x kernel does not support UAS. For instructions on how to burn the Ubuntu image to SD card or eMMC, please refer to http://bit.ly/2nKNn9. In order to access the terminal of ODROID-XU4, use an SSH client to remote into the device, or access the serial console via the USB-UART module kit (http://bit.ly/1nhQuIm). The SSH server is installed by default in Ubuntu 16.04.2.

The first step is to update the system to the latest software versions:

```
$ sudo apt update && sudo apt upgrade && sudo apt dist-upgrade
```

Next, add the mount point of the HDD/SSD storage. The dual HDD/SSDs will be detected as “/dev/sda” which is the single logical storage in RAID 0/RAID 1/SPAN mode, and will be detected as “/dev/sda” and “/dev/sdb” in PM mode. Note that the next step includes formatting of the HDD/SSD. If the storage contains important data, make sure to backup the data before
running the commands below.

```bash
$ su -
# mkfs.ext4 /dev/sda
# mkdir /media/hdd
# echo "/dev/sda /media/hdd ext4 defaults 0 1" >> /
etc/fstab
# reboot
```

Create a new account called “cloudshell”, which will be used for FTP and Samba access. This account does not need an available shell, so, set “/bin/false” for the shell for security reasons. The home directory of the cloudshell user is where the HDD/SSD is mounted (/media/hdd).

```bash
$ su -
# echo "/bin/false" >> /etc/
shells
# useradd cloudshell -d /media/
hdd -s /bin/false
# passwd cloudshell
(Set the password of cloudshell)
# chown cloudshell.cloudshell -R
/media/hdd/
# chmod 755 -R /media/hdd/
```

Next, install FTP and Samba server, selecting “standalone” when prompted:

```bash
$ sudo apt install -y proftpd
samba
```

The proftpd configuration file is located at /etc/proftpd/proftpd.conf. If you need to set up anonymous access, modify the /etc/proftpd/proftpd.conf file. There are a lot of configuration options for FTP and Samba server. In this article, we will use only the basic setting. Add the following configuration options to the end of the /etc/samba/smb.conf file:

```
[Shared]
comment = CloudShell-2 File Server
path = /media/hdd
guest ok = yes
browseable = yes
create mask = 0644
directory mask = 0755
read only = no
writable = yes
force user = cloudshell
```

Protocol feature for improved Samba performance. Add the configurations below to the [global] section of the /etc/
samba/smb.conf file:

```
write cache size = 524288
getwd cache = yes
use sendfile = yes
min receivefile size = 16384
socket options = TCP_NODELAY IP-
TOS_LOWDELAY
```

Performance optimization

This section describes some performance optimizations known well to the ODROID community. Exynos
5422, which is the CPU installed in the ODROID-XU4, uses the big.LITTLE architecture. The little cores (Cortex-
A7) are assigned to CPU 0 - CPU 3, and the big cores (Cortex-A15) are assigned to CPU 4 - 7. Although their CPU or-
dering can change via kernel modification, the little core is used as CPU 0. It is necessary to adjust the network and
storage interrupts assigned to CPU 0.

A maximum transmission unit (MTU) is the largest size packet or frame in mac layer. The MTU size is set to
1500 by default. ODROID-XU4 supports the large MTU size called jumbo frame.

Receive Packet Steering (RPS) is used to direct packets to specific CPUs for processing. RPS helps to prevent the
hardware queue of a single network interface card from becoming a bottleneck in network traffic. Add the lines below in
/etc/rc.local, which modifies the MTU size, interrupt assignments and RPS settings:

```
$ ifconfig eth0 mtu 6975
$ echo 5 > /proc/irq/143/smp_affinity_list
$ echo 6 > /proc/irq/144/smp_affinity_list
$ echo f > /sys/class/net/eth0/
queues/rx-0/rps_cpus
```

To improve Samba performance, some modifications are necessary in the Samba configuration file. These configuration options enable caches and adjust

For more information about NAS settings, please refer to “Setting up your XU4 as a General-Purpose Network At-
tached Storage (NAS) Device” article in the February 2017 issue of ODROID

Enable TFT LCD

The TFT LCD of CloudShell-2 works via SPI. The fbtft_device module is able to display the frame buffer console on the TFT LCD. In order to enable the TFT LCD, add the module configurations as shown below:

```
$ sudo -s
# echo "options fbtft_device
name=hktft9340 busnum=1 ro-
tate=270" > /etc/modprobe.d/
odroid-cloudshell.conf
# echo "spi_s3c64xx" >> /etc/
modules
# echo "spidev" >> /etc/
modules
```

The commands above will ensure that the LCD is configured at every boot. Next, remove the blacklists on the Serial Peripheral Interface (SPI) by editing the file /etc/modprobe.d/blacklist-
odroid.conf:

```
# Comment the required lines
# IO Board
blacklist ioboard_bh1780
blacklist ioboard_bmp180
```
If the system uses the lightdm desktop manager for the GUI desktop environment, then disable lightdm in order to use the framebuffer console:

```bash
$ sudo systemctl disable lightdm
```

Reboot the ODROID-XU4 with the HDMI cable disconnected, which will allow the frame buffer console to be displayed on the TFT LCD.

Performance Results

As shown in Figures 18 and 19, both I/O read/write performances and file server upload/download performances results are very impressive. Further information is available in the Hardkernel Wiki page at http://bit.ly/2mXC2Vr.

Google Cloud Print (http://bit.ly/2ynbEB) is a technology that allows you to print over the web from anywhere to any printer. Using Google Cloud Print, you can make your home and work printers available to you and anyone you choose, from the applications you use every day. Google Cloud Print works on your phone, tablet, Chromebook, PC, and any other web-connected device you want to print from, including your ODROID.

To set up Google Cloud Print on an ODROID-C2, first install the Ubuntu 16.04 LTS edition. You’ll want to use the one with a GUI (http://bit.ly/2ost3g8), as it’s easier to configure cloud print using Chromium’s own compatibility with Google’s cloud printing technology.

Once you’re finished installing your Ubuntu image, it’s time to install a VNC Server. It’s always easier to leave an ODROID somewhere as a convenient, headless device, than to constantly need to plug a screen into it:

```bash
$ sudo apt-get install tightvnc-server
```

Before we get started VNCing into our ODROID, we need to set a password we can use once we connect. You can do this by typing:

```bash
$ vncserver
```

Once you do this, you’ll be prompted to enter a password and confirm it.

Next, let’s add a printer to our ODROID that we can use for Cloud Print. I used a network printer, otherwise you’ll want to connect to your printer in whatever way is necessary, such as to a Windows computer via SAMBA if that’s where it’s connected via USB. Since we’re using Ubuntu 16.04 LTS, we have a host of built-in drivers for network, SAMBA, and even direct USB access to printers of all shapes and sizes.

Click System in the MATE environment menu, then select “Control Center” and “Printers” to open the printer dialog. Add your printer, click “Forward”, and select your printer’s specific driver, which in my case was a Samsung network printer with an IP assigned by my router. Click “Apply”, then print a test page to make sure everything is working before proceeding. We want to make sure the ODROID can print on its own successfully, in case we have problems later on.

Google Cloud Print is easy to use because it’s compatible with countless devices by using your Google Account to
send out print requests. This means you can use any device that can detect a printer on the network (and run Chrome) as a server to receive print requests, while using almost any device that can access your Google Drive (such as an Android smartphone, your laptop, etc.) to send out print requests. Open Chromium, then select the menu on the top right and click “Settings”.

Next, scroll down and click “Show Advanced Settings”. Continue scrolling to “Google Cloud Print” and click “Manage” and then select “Add Printer”. You’ll need to log into your Google Account in order to give your ODROID an account to associate with for receiving and sending print requests.

If you successfully added your printer earlier, then your device should be available in a list of devices that Google is requesting to add to your Google Cloud Print account. To confirm this, click “Add” button at the bottom of the screen.

That’s it! You’re all set. What’s great is that you can now print stuff at home, even while you’re not there. This is especially convenient if you like to have coupons, forms, and other stuff you may print while at work, but wish to have waiting for you when you get home.
CONTROL ANY ELECTRICAL DEVICE WITH AN ODROID-C2
A SAMPLE PROJECT
by Miltiadis Melissas (miltos)

It was always a 20th-century dream that there will be an era when every electrical apparatus at home will be controlled by a single click from any web enabled device, such as a PC, tablet, or smart TV, from everywhere. This era has come, and today we will present you with a way to control almost any electrical device with a single click from any other device that has access to the web.

We will use a spotlight as an example, but this could be easily substituted with a refrigerator, a washing machine, or an electric coffee pot, for example. We did one simplification, however, which is to electrify the spotlight with 12V DC instead of 220V AC current, primarily for safety reasons. We encourage the users of this guide to do the same, as it is very easy to expose oneself to hazardous electrical shocks!

The relay module we use with the ODROID-C2 in this project can easily be connected to a 220V power source, driving any electric device (up to 10A). Experienced users can try to work with these voltages, making sure to take all safety precautions. Let us delve into the endless potential of the ODROID-C2.

Hardware requirements
- 5V 1/2/4/8 Channel Relay Board Module ARM AVR DSP PIC (http://ebay.eu/2ncLWD8)
- Lambda JM/84211 3W 3000K 12V or any other compatible spotlight
- Dupon wires female-to-female, male-to-male (http://ebay.eu/2mDWf6Q)
- 4 X LS 14500 3.7V 2300mAh Li-ion batteries (http://ebay.eu/2m0F7EI)

Software requirements
- Python 2.3 or 3.3 preinstalled with Ubuntu
- WiringPi Library for controlling the ODROID-C2 GPIO pins. You can learn how to install this at http://bit.ly/2ba6h8o
- CoffeeCup Free HTML Editor (http://bit.ly/2ICxgB8)
- PuTTY * - We are going to need to be able to connect to our ODROID-C2 via SSH, and PuTTY is the perfect client to do this (http://bit.ly/2kFVngX)
- FileZilla - We are going to need a way to transfer files onto the ODROID-C2 using SFTP, which is FTP over SSH (http://bit.ly/1gEw9op)

The design of this project is very simple, and the Songle relay plays the most critical role. We have connected the GND of the Songle relay with the pin6 of ODROID-C2 (GND). The VCC pin of the relay is connected directly to pin2 of ODROID-C2, which provides 5V to this circuit and electrically the electric coil of the relay). Finally, the INT1 pin of the relay is connected directly to pin7 of our ODROID, which is the pin that actually controls the relay, which is the ONs and OFFs of this device. From the other side of the Songle relay, there is a simple switch on which we have connected the spotlight through the battery or the mains. Please refer to the schematic in Figure 1 for a clear idea of this circuity. As a technical reference regarding the ODROID-C2 pins, we have used the excellent PIN Map provided by Hardkernel at http://bit.
ly/2aXAlmt. According to this map, pin2=5V, pin6=GND and pin7=GPIOX.BIT21 (General Purpose Input/Output Pin). All of the connections were made by using the Dupon female-to-female, male-to-male or male-to-female wires. Now that our hardware is ready, let us see how to build the software and bring it all together.

Designing a simple web page

We used the free CoffeeCup HTML editor to design a simple HTML web page for controlling the spotlight. On this page, we added the images of two buttons in order to control the spotlight, represented by the ON and the OFF buttons. Please refer to Figure 2 for a view of this page. The whole project is controlled by using a Web UI. In order to achieve this, we have hyperlinked those buttons to the relevant Python scripts songleon.py and songleoff.py that control the ON and OFF of the spotlight. Instructions on how to write those programs in Python are provided on the section called “Connecting the Application to the Web below.

When you finally design your website, make sure that your home page is called index.php and not index.html, just to keep things uniform. However, we are only going to be using two PHP scripts, songleon.php and songleoff.php, to control the spotlight. The Python and PHP code we need to write is very simple and well documented.

Installing the server

In order to use the ODROID-C2 as a web server in this project, we have to install all of the necessary server software components. In addition, since we want a simple HTML server, we will install Apache with PHP (server-side scripting-language) support on the ODROID-C2. The following steps can be performed with PuTTY. Accessing the ODROID-C2 with this SSH client is well documented. All you need is the ODROID-C2’s IP address.

Apache server software is the most widely used web server software today. Here’s how to install Apache with PHP support:

```
oodroid@odroid:~# sudo apt-get install apache2 php
libapache2-mod-php
```

When prompted to continue, enter “y” for yes. Next, enable and start Apache:

```
oodroid@odroid:~# systemctl enable apache2
odroid@odroid:~# systemctl start apache2
odroid@odroid:~# systemctl status apache2
```

Test Apache

Open your web browser and navigate to http://localhost/ or http://<server-ip-address>/ . This is the address of your ODROID-C2 on your local network. You can find it by just typing:

```
oodroid@odroid:~# ifconfig
```

You will see a page similar to one shown in Figure 3.

Test PHP

To test PHP, create a sample testphp.php file in Apache document root folder:

```
oodroid@odroid:~# sudo nano /var/www/html/testphp.php
```

Add the following lines and save the file:

```
<?php
phpinfo();
?>
```

Next, restart the Apache service:
import wiringpi2 as odroid
odroid.wiringPiSetup()
odroid.pinMode(7,1)
odroid.digitalWrite(7,1)

Add a hyperlink to songleoff.php to your “off” button, which should make your lamp turn off. You now have a website that can control your lights!

Transfer to Apache

It is very easy to login into your ODROID-C2 apache web server with Filezilla as soon as you know the ODROID-C2’s IP address. If you have previously logged in with SSH into your ODROID-C2 with PuTTy, you can find it out by typing:

$ sudo apt-get install vsftpd

Edit the FTP configuration file by typing:

$ sudo nano /etc/vsftpd.conf

and make the the following changes:

• Hit ctrl+W and search for anonymous_enable=YES, and change it to anonymous_enable=NO
• Remove the # from in front of local_enable=YES
• Remove the # from in front of write_enable=YES
• Skip to the bottom of the file and add force_dot_files=YES
• Hit ctrl+X to exit and enter y to save and hit <ENTER> to confirm

Then, restart vsftpd:

$ sudo service vsftpd restart

Publishing to the web

By now, you should have a website that you can transfer over to the ODROID-C2. Once you have performed all the previous steps and have verified that you can view your website on another computer, we can move onto making the website turn ON our lamp using the 5V 1/2/4/8 Channel Relay Board Module ARM AVR DSP PIC.

Inside your website directory, create a new PHP file called songleon.php containing the following code snippet, then save the file:

```php
<?php
system("echo odroid | sudo -S python /var/www/html/scripts/lights/songleon.py"); header('Location: 'index.php' ); ?>
```

Next, create a folder in the website directory called “scripts”, then create a subfolder inside it called “lights”, and inside there, create a new file called songleon.py. This will be the python script that turns our lamp on. Inside there, enter the following code, then save the file:

```python
import wiringpi2 as odroid
odroid.wiringPiSetup()
odroid.pinMode(7,1)
odroid.digitalWrite(7,0)
```

Go back to your web page in design/edit mode, and make sure the hyperlink for your “on” button links to the songleon.php. Now, when you click the button, the songleon.php script will execute the songleon.py python script, resulting in the lamp turning on. We are finally ready to make it turn off.

Inside the website directory, create a new file called songleoff.php. Inside this, file enter the following code snippet, then save it:

```php
<?php
system("echo odroid | sudo -S python /var/www/html/scripts/lights/songleoff.py"); header('Location: 'index.php' ); ?>
```

Again, make sure your file path is the same, so that this works. Also, set your redirection rules to redirect to the page of your choice. Then, make a new file in the scripts/lights folder called songleoff.py. Inside this file, enter the following code, then save the file:

```python
import wiringpi2 as odroid
odroid.wiringPiSetup()
odroid.pinMode(7,1)
odroid.digitalWrite(7,1)
```

Add a hyperlink to songleoff.php to your “off” button, which should make your lamp turn off. You now have a website that can control your lights!

Transfer to Apache

It is very easy to login into your ODROID-C2 apache web server with Filezilla as soon as you know the ODROID-C2’s IP address. If you have previously logged in with SSH into your ODROID-C2 with PuTTy, you can find it out by typing:

```bash
odroid@odroid:~# ifconfig
```

You have to give your name and password of “odroid” and “odroid”. You will be immediately taken to the ODROID-C2 root file system. From there, navigate to /var/www/html/ folder, and inside this directory, copy the files from your local drive to the above directory. Here are all the files and folders that you have to copy from this local directory:

- index.php
- songleon.php
- songleoff.php and finally the folder /scripts/lights/
- songleon.py and songleoff.py

Now you are done with the main part of project. One final word of advice: in order for you to have access to the execution of the scripts controlling the spotlight (songleon.py and songleoff.py), you have to change the permissions/rights of all the files and folders previously mentioned. We recommend just for the sake of this project to give them full access with read, write, and execute privileges for root:

```
```
by taking advantage of a weak password, a commonly used port, or wrong router settings. For that reason, we advise you to make your network secure and even change the password for the user ODROID-C2 to a stronger one. You now have the knowledge you need to build something innovative and inspiring for you and your peers.

Testing the applications

Let’s see if everything is working. From your computer, laptop, or tablet, navigate to your ODROID-C2’s IP address in the browser, and click the “on” button. Are your spotlights lighting up your room? Now it’s the click the “off” button. Click it and see your room’s spotlight switched off. Success!

Final notes

We could give you a further guidance on how to control any electrical device remotely from the office, during travelling, or you are in an emergency. This is not a difficult step now that you’ve got the basic circuit working in your local network, but be advised that such a step comes with a security risk. Hackers may be interested in controlling your server.
I liked the paper case and the water cooled system that were presented in ODROID Magazine recently. They were both great examples, one of minimalist design and the other of maximum design possibilities. They both inspired me to pursue a design that I had in mind, which was more practical for my application: a split airflow configuration using a single fan to cool both sides of the PCB. The majority of the airflow would be on the heat sink, but some would also go under the bottom of the board, creating a system wide cooling approach of continuous airflow. Along with some system tuning, and as quiet as the Noctua fan is, I plan on running the fan continuously starting at 25% and increasing the RPM quickly to maintain minimal temperatures across a varying spectrum of uses.

The Noctua isolation mounts that came with the 40mm fan were used for the fan and as isolation feet in the vertical position. The gold universal Northbridge heatsink was rotated for better SOC coverage, and the required fin orientation is for side mount cooling. A battery and UART holder was integrated under the top as discussed at http://bit.ly/2ncUuKG, and as seen above the USB3 ports in the photo. The nut holders double as feet in the horizontal position and help protect surfaces.

Operationally, the case design has performed as expected. It has very similar performance characteristics as a top mounted fan with the additional benefit of bottom side cooling. If run passively, the vertical orientation should help heat rise away from the system and minimize thermal pooling underneath. I have a couple of other tweaks that I would like to try in the future, such as adding a raised copper perch of 2-5mm to increase thermal transfer and accommodate airflow under the
heat sink. If I can get sufficient airflow under the heat sink, it may increase the efficiency of the SOC and support chip cooling. I might also try some custom duct work to direct airflow better. The OpenSCAD case design file is attached for anyone interested.

The SCAD design file is available for download at http://bit.ly/2npvsJo. Make sure you have the XU4 Model library (http://bit.ly/2mL0PRF) in the same working directory, which includes supporting accessories.

For comments, questions, and suggestions, please visit the original thread at http://bit.ly/2nbumiy. Components for this case are also available at www.ameridroid.com, which also offers other 3D printed cases.
As a co-founder of Hardkernel, what is your vision for the company?

Our vision is to find, create, share, and enjoy fun technologies and peripherals.

What do you like most about the ODROID community?

My favorite forum is the Projects forum. I am very surprised to try many things with our board, and sometimes I want to try it together. I like that forum because I can think of new ideas and items while watching other projects going on.

How did you get started with computers?

I started my microcomputer club activities on the recommendation of my teacher in high school. On the day that I started my club activities for the first time, I first found out that I had a computer, and it was so fun and so amazing. The first computer I used was an 8-bit computer called MSX. The computer automatically went to the BASIC screen when the power was turned on. I found out that MSX was built with a Z80 processor, and I started learning how to build a microcomputer with the Z80 processor.

How did you meet the other founders of Hardkernel?

We have been working together in Digital Cube Co., Ltd, which specializes in MP3 / PMP development / production from 2000 to 2009. When we left the company in 2009, we got together and discussed the business.

What are some of your favorite projects that you've seen ODROIDs being used for?

My favorite project is the ODROID Arcade Box, which I made together with some friends last month. It is a project that my children and I can enjoy together.
Do you have any personal projects that you’re working on using ODROIDs?

I do not have one yet, but I am thinking of making a CCTV to watch our house puppy while we’re gone.

What is coming up next for Hardkernel and ODROID in 2017?

In 2017, we are planning another 64-bit ARM platform and a 64-bit X86 platform, and we are also considering an upgraded version of XU4.

What other interest and hobbies do you enjoy?

I am very interested in 3D design. I am studying the program of Solidworks and I would like to use the program to make furniture for home or acrylic case suitable for ODROID products.