
Create your own

ODROID
ARCADE
Station

Create your own

• IOT Doorbell:
Get a picture of
anyone that rings
your house

• Home data
center: deploy
your projects

with ease

ODROID
LineageOS • RemotePI Board • HIFI Shield 2 • Android Development

Magazine
ODROID

ODROID
ARCADE
Station
The complete tutorial for your setup

Year Four
Issue #39
Mar 2017

What we stand for.
We strive to symbolize the edge of technology,
future, youth, humanity, and engineering.

Our philosophy is based on Developers.
And our efforts to keep close relationships with
developers around the world.

For that, you can always count on having the quality
and sophistication that is the hallmark of our products.

Simple, modern and distinctive.
So you can have the best to accomplish
everything you can dream of.

We are now shipping the ODROID-C2
and ODROID-XU4 devices to
EU countries! Come and visit
our online store to shop!

Address: Max-Pollin-Straße 1
85104 Pförring Germany

Telephone & Fax
phone: +49 (0) 8403 / 920-920
email: service@pollin.de

Our ODROID products can be found at
http://bit.ly/1tXPXwe

mailto:service@pollin.de
http://bit.ly/1tXPXwe

EDITORIAL

ODROID Magazine, published monthly at http://magazine.odroid.com, is your source for all things ODROIDian.
Hard Kernel, Ltd. • 704 Anyang K-Center, Gwanyang, Dongan, Anyang, Gyeonggi, South Korea, 431-815
Hardkernel manufactures the ODROID family of quad-core development boards and the world’s first ARM big.LITTLE single board computer.
For information on submitting articles, contact odroidmagazine@gmail.com, or visit http://bit.ly/1ypImXs.
You can join the growing ODROID community with members from over 135 countries at http://forum.odroid.com.
Explore the new technologies offered by Hardkernel at http://www.hardkernel.com.

Everyone loves games, especially the engineers at Hardker-
nel. Our featured project this month is a custom project
built by Brian, John and Charles to highlight the power of

the ODROID platform as a versatile game and console emulator.
Using the WiringPi library and the popular ODROID GameS-

tation Turbo gaming image, they
designed an Arcade Box that looks
awesome and runs your favorite
games in 1080p resolution. You can

build your own and have a great conver-
sation piece for your next gaming party!

Miltos created a useful remote doorbell to see
who’s at your door by sending an email with

a picture, John shows us how to build a home
data center with an ODROID-XU4, and Bo continues his Chroni-

cles of a Mad Scientist with an ultrasonic sensor for his vehicle. Tobias
presents OpenFodder, a Cannon Fodder clone that captures the beauty of the original
game, Nanik discusses analyzing network usage in Android, and Bruno brings us an-
other installment of his Android Gaming series with Causality.

http://magazine.odroid.com
mailto:odroidmagazine@gmail.com
http://bit.ly/1ypImXs
http://forum.odroid.com
http://www.hardkernel.com

Manuel Adamuz, Spanish Editor
I am 31 years old and live in Seville, Spain, and was born in Granada. I am married to a wonderful woman and have
a child. A few years ago I worked as a computer technician and programmer, but my current job is related to quality
management and information technology: ISO 9001, ISO 27001, and ISO 20000. I am passionate about computer
science, especially microcomputers such as the ODROID and Raspberry Pi. I love experimenting with these com-

puters. My wife says I’m crazy because I just think of ODROIDs! My other great hobby is mountain biking, and I
occasionally participate in semi-professional competitions.

Andrew Ruggeri, Assistant Editor
I am a Biomedical Systems engineer located in New England currently working in the Aerospace industry. An 8-bit
68HC11 microcontroller and assembly code are what got me interested in embedded systems. Nowadays, most proj-
ects I do are in C and C++, or high-level languages such as C# and Java. For many projects, I use ODROID boards,
but I still try to use 8bit controllers whenever I can (I’m an ATMEL fan). Apart from electronics, I’m an analog
analogue photography and film development geek who enjoys trying to speak foreign languages.

Venkat Bommakanti, Assistant Editor
I’m a computer enthusiast from the San Francisco Bay Area in California. I try to incorporate many of my interests
into single board computer projects, such as hardware tinkering, metal and woodworking, reusing salvaged materials,
software development, and creating audiophile music recordings. I enjoy learning something new all the time, and
try to share my joy and enthusiasm with the community.

Josh Sherman, Assistant Editor
I’m from the New York area, and volunteer my time as a writer and editor for ODROID Magazine. I tinker with
computers of all shapes and sizes: tearing apart tablets, turning Raspberry Pis into PlayStations, and experimenting
with ODROIDs and other SoCs. I love getting into the nitty gritty in order to learn more, and enjoy teaching oth-
ers by writing stories and guides about Linux, ARM, and other fun experimental projects.

Nicole Scott, Art Editor
Nicole is a Digital Strategist and Transmedia Producer specializing in online optimization and inbound marketing
strategies, social media management, and media production for print, web, video, and film. Managing multiple ac-
counts with agencies and filmmakers, from web design and programming, Analytics and Adwords, to video editing
and DVD authoring, Nicole helps clients with the all aspects of online visibility. Nicole owns anODROID-U2,
a number of ODROID-U3’s, and Xu4’s, and looks forward to using the latest technologies for both personal and

business endeavors. Nicole’s web site can be found at http://www.nicolecscott.com.

James LeFevour, Art Editor
I’m a Digital Media Specialist who is also enjoying freelance work in social network marketing and website administra-
tion. The more I learn about ODROID capabilities, the more excited I am to try new things I’m learning about. Being
a transplant to San Diego from the Midwest, I am still quite enamored with many aspects that I think most West Coast
people take for granted. I live with my lovely wife and our adorable pet rabbit; the latter keeps my books and computer

equipment in constant peril, the former consoles me when said peril manifests.

Bruno Doiche, Senior Art Editor
Played about 20 games this month, but found only one worth writing about!

OUR AMAZING ODROIDIAN STAFF:

Rob Roy, Chief Editor
I’m a computer programmer in San Francisco, CA, designing and building web applications for local clients on my
network cluster of ODROIDs. My primary languages are jQuery, Angular JS and HTML5/CSS3. I also develop pre-
built operating systems, custom kernels and optimized applications for the ODROID platform based on Hardkernel’s
official releases, for which I have won several Monthly Forum Awards. I use my ODROIDs for a variety of purposes,

including media center, web server, application development, workstation, and gaming console. You can check out my
100GB collection of ODROID software, prebuilt kernels and OS images at http://bit.ly/1fsaXQs.

http://
http://

INDEX

home Data center - 20

linux gaming: open fodder - 12

android gaming: causality - 14

XU4 Manual - 19

hifi shield 2 - 18

android development - 29

arcadebox - 23

lineageos - 11

meet an odroidian - 32

remote pi - 15

Doorbell - 6

ultrasonic sensor - 30

In this project, we’ll turn the ODROID-C2 (http://bit.
ly/1oTJBya) into a smart IoT doorbell that takes a photo
of whoever rings it, and emails that photo to the owner’s

Gmail account. Additionally, the device will also archive those
photos by date and time, giving the owner the ability to check
for any suspicious activity or simply to keep records of all the
people who ring the bell. It’s easy to see how this “smart” door-
bell using the ODROID-C2 under the hood is a powerful se-
curity and observatory tool, and will be useful for every house.

Hardware
requirements

•	 ODROID-C2 (http://bit.ly/1oTJBya)
•	 ODROID webcamera (http://bit.ly/2iBHKPD)
•	 Wi-fi adapter (http://bit.ly/1M4LdiC)
•	 1x mini breadboard
•	 1x 1 KΩ resistor
•	 1x 10 KΩ resistor
•	 1x button
•	 ~8x dumpon wires (the C Tinkering Kit http://bit.

ly/1YNPN6k is a great choice for this and future proj-
ects)

Software
requirements

•	 Ubuntu 16.04 v2.0 from Hardkernel (http://bit.
ly/2cBibbk)

•	 Python 2.7 or 3.3 (preinstalled on Ubuntu)
•	 WiringPi Library for controlling the ODROID-C2

GPIO Pins. You can learn how to install this at http://
bit.ly/2ba6h8o

Building the IoT
device

For our wired connections, we used the male to female

and male to male Dupont wires. The female side of the male
to female Dupont wire connects to the male header of the
ODROID-C2, and the other side connects into the holes of
the breadboard. Please refer to Hardkernel’s pin layout sche-
matic as you create the connections. The schematic can be
found at http://bit.ly/2aXAlmt. Physical pin 1 is VCC and
provides 3.3V to our circuit, and we connect the pin on the
first vertical line, the one near the edge, of our Breadboard.
Since we are going to use pin 6 as the common ground, we
connect that to the second vertical line of our breadboard. The
rest of the circuit is very simple, and you can follow the dia-
gram as shown in Figure 1.

The ODROID Webcam needs to be plugged into the
ODROID-C2 via one of the USB ports available on the board
as a final step. The doorbell is controlled through pin 15 as you
can see in the figure. Now that the hardware is ready, let’s dive

IoT Doorbell
Get an email alert of the person at your door
by Miltiadis Melissas (@miltos)

DOORBELL

Figure 1 - Doorbell Diagram

ODROID MAGAZINE	 6

http://bit.ly/1oTJBya
http://bit.ly/1oTJBya
http://bit.ly/1oTJBya
http://bit.ly/2iBHKPD
http://bit.ly/1M4LdiC
http://bit.ly/1YNPN6k
http://bit.ly/1YNPN6k
http://bit.ly/2cBibbk
http://bit.ly/2cBibbk
http://bit.ly/2ba6h8o
http://bit.ly/2ba6h8o
http://bit.ly/2aXAlmt

into the code and make that bell ring
“intelligently”!

Software
The core of this code was pulled from

a Github project available at http://bit.
ly/2jEXRbR. Nevertheless, this sample
code was heavily modified in order to
run properly on the ODROID-C2.
Most importantly of all the remap-
ping from RPi.GPIO to WiringPi2 li-
brary has been done, since WiringPi2
is the supported by the ODROID-C2.
Please refer to the excellent GPIO guide
provided by Hardkernel at http://bit.
ly/2jEUjWX. All code describe in the
following sections in placed between ‘<
… >’, with the description written bel-
low.

The basic
odroidbell.py code

<import wiringpi2 as odroid>

We start by importing the wiringpi2
library. Instructions on how to install
this library for controlling the GPIO
pins of the ODROID-C2 can be found
at http://bit.ly/2ba6h8o.

<import time>

We import the time module.

<import os>

DOORBELL

Figure 2 - The C2 complete system

We import the os module.

<import glob>

We import the glob module.

<import sys>

We import the sys module.

<odroid.wiringPiSetup()>

We set up the wiringPi2 module ac-
cording to the table provide by Hardker-
nel at http://bit.ly/2aXAlmt.

<Button = 3>

This is actually the physical pin
15 according to the table at http://bit.
ly/2aXAlmt.

<odroid.pinMode(Button,0)>

We set the button as an input.

<odroid.

pullUpDnControl(Button,1)>

We activate the pull Up and Down
resistor. Pull up at this case as the argu-
ment 1 denotes that.

#loop

We are entering a loop...as IoT de-
vices are always at a standby mode.

<print(“Program Running”)>

This is just for monitoring purposes.

while True:#loops forever till

keyboard interrupt (ctr + C)>

 <if odroid.digitalRead(Button)

== False: #when button is un-

pressed:>

 <sys.stderr.write(“.”)>

If the button of the doorbell is not
pressed, we print dots on the screen us-
ing the sys library.

<time.sleep(1)>

We are checking for button press ev-
ery second.

<else:>

 <print(“Button Pressed”)>

The button has been pressed.

 # ------| photo & Bell

|------ #

 #Get FileName

 <now = time.strftime(“Date%m-

%d-%yTime%H-%M-%S”)>

We declare the variable now with the
date and time that we will use on the
photo.

 #Make command to run odroidC2.

sh

 <command = “bash odroidC2.sh

“ + str(now)>

We invoke the odroidC2.sh shell
script (see below)

 # -- odroidC2.sh is an Shell

script that

 # -- is responsible for tak-

ing the photo and

 # -- making the Doorbell

Noise

ODROID MAGAZINE	 7

http://bit.ly/2jEXRbR
http://bit.ly/2jEXRbR
http://bit.ly/2jEUjWX
http://bit.ly/2jEUjWX
http://bit.ly/2ba6h8o
http://bit.ly/2aXAlmt
http://bit.ly/2aXAlmt
http://bit.ly/2aXAlmt

Change back to the parent directory.

<mpv ringtone.mp3>

Finally we make that bell ring using
a program called mpv, which is already
included in Ubuntu 16.04 v2.0 from
Hardkernel (http://bit.ly/2cBibbk). In
other word we use the Mplayer to parse
this file.

Gmail code setup
Most people already have a Gmail

account. If you don’t, it’s very easy to
create one, and most important of all,
it’s free. In actuality, in order for this
Gmail script to work correctly, we need
two email accounts: the sender’s email
and the recipient’s email account and
it’s always like that. Of course, you can
send an email to and from the same ac-
count, but it’s more elegant to create a
second email account for the purpose of
this project to keep track of photos with
the time stamp separately. I also recom-
mend that the recipient’s email account
be the one used on your mobile phone
so that the device will notify you when-
ever someone is at your door. Don’t for-
get to allow “less secure apps” have ac-
cess to your Gmail account (http://bit.
ly/124TgWN).

Let’s exam the python script called
IoTOdroid.py.

<from email.mime.text import MIM-

EText>

<from email.mime.multipart import

MIMEMultipart>

We use those two modules because
we need to send a clean email, with a
sender, a receiver and a subject line.

<from email.mime.application im-

port MIMEApplication>

We also import the module respon-
sible for the MIME attachment. MIME
stands for Multipurpose Internet Mail

Make room for the next cycle (next
doorbell ring).

OdroidC2.sh shell
script

The OdroidC2.sh script is responsi-
ble for taking the photo and making the
doorbell noise. The role of the ‘Now’
argument is to pass the filename of the
photo to the Gmail script. In other
words it is the connector between our ba-
sic code, odroidbell.py, and the Odroid-
IoTNotifier.py script. The OdroidC2.sh
script is very simple:

<cd photos>

We change from present directory to
the <photos> directory.

<echo “Taking the Photo”>

<now=$1>

“Now” is the filename’s timestamp.

<echo>?

<fswebcam -d /dev/video0 $now.

jpg>

This is the basic command for tak-
ing the photo. We use the fswebcam
command. If the fswebcam application
is not installed on your system you can
install it with the following command:

$ sudo apt-get install fswebcam

The syntax of the command is obvi-
ous: it’s taking a photo and passing the
time stamp as a filename. With every
button press, OdroidC2.sh is triggered
by odroidbell.py. The -d switch sets the
source to use, in our case /dev/video0.

<echo “Pic Taken”>

<echo””>

<echo “Ringing Bell”>

<echo “”>

<cd ..>

 # --- We insert the “Now” ar-

gument so the python

 # --- script knows what the

filename of the

 # --- picture will be so it

can pass it on into the

 # --- email script (so it

knows what file to email

 #run command

 <os.system(command)>

We invoke the system command for
running the email script below.

 #diagnostics

 <print(“Filename:”, now)>

We print the filename of photo with
the present date and time.

 # ----| Email |---- #

 <print(“Email”)#email>

 <emailcommand = ‘sudo python

IoTOdroid.py “This person is at

your door”’ + ‘ “photos/’ + now +

‘.jpg”’>

We email the photo to the owner’s
Gmail account with the date and time
and a subject of “This person is at your
door”.

 <os.system(emailcommand) #run-

ning the Email script with:>

 #-- the subject as “Someone

is ringing the doorbell” and the

filename

 #-- We made before at the

-Photo & Bell- section

And finally we send it.

 # -- End Diagnostic Info

 print(“Done Process”)

All is done, so end the script

 #-space out for next “Press of

Button”

 <print(“”)>

 <print(“”)>

DOORBELL

ODROID MAGAZINE	 8

http://bit.ly/2cBibbk
http://bit.ly/124TgWN
http://bit.ly/124TgWN

Figure 3 - Email alert that someone is
at the door

mode. TLS stands for Transport Layer
Security, so any SMTP command com-
ing after this mode is encrypted.

<server.login(‘<From

Email>’,’<From password>’)>

It’s time to enter to our Gmail ac-
count, therefore we need the appropriate
credentials.

<server.sendmail(msg[‘From’],

emaillist , msg.as_string())>

Using the previous command, we fi-
nally we send the email. Try to avoid
spoofing and put your real email address
here. The parameter, emaillist, is the one
we defined before and the last parameter
(msa.as_string()) the message as a string
with the attachment, which is, in this
case, the photo. The results are shown
in Figure 3.

Testing and running
the code

From the terminal (CTRL-T), we
run the odroidbell.py with sudo privi-
leges:

$ sudo python odroidbell.py

The IoT device at this stage is set to
standby mode, and the message “Pro-
gram is running” appears on the screen.
At the same time, the dots “.” will appear
on the screen, one by one, indicating to
the user the normal usage of the device.
When someone presses the button, the
OdroidC2.sh script is executed with a

The receiver’s email address.

<msg.preamble = ‘Multipart

massage.\n’>

The preamble attribute contains the
leading extra-armor text for MIME doc-
uments, that’s why we included it here.

<part = MIMEText(“Hello! The

doorbell is ringing! A photo of

the person ringing the doorbell

has been attached.”)>

The body of the message.

<msg.attach(part)>

<part =

MIMEApplication(open(str(sys.

argv[2]),”rb”).read())>

<part.add_header(‘Content-

Disposition’, ‘attachment’,

filename=str(sys.argv[2]))>

We attach the photo to the message

<server = smtplib.SMTP(“smtp.

gmail.com:587”)>

We specify the smtp server we want
to use and the port that goes with it:
Gmail’s server with port 587. You can
use port 465 too but, it’s a good idea to
check with Google for the correct num-
ber of ports, just in case something has
changed.

<server.ehlo()>

We identify ODROID-C2 to the
Google server. So, why do we use “ehlo”
instead of “helo”? The reason is simple:
we identify ODROID-C2 to an extend-
ed SMTP server (ESMTP) instead of a
simple SMTP server, so the command
“ehlo” distinguishes between the two.

<server.starttls()>

We set and we are entering to TLS

Extensions. It’s a way of identifying files
on the Internet according to their nature
and format.

<import smtplib>

<from smtplib import SMTP>

This is the native and basic library
in Python to send emails and there-
fore there is no need to install external
libraries:smtplib. From this library, we
import the SMTP function.

<import sys>

We import the System-specific pa-
rameters and functions module as we
will need the <argv>script from this
module (see below).

<recipients = [‘<YourEmail>’]>

Your email address, as you are the re-
cipient of those photos.

<emaillist = [elem.strip().

split(‘,’) for elem in recipi-

ents]>

We make an email list in which we
strip and split the appropriate characters
from each element in recipients list.

<msg = MIMEMultipart()>

We define the variable message (msg)
as a Multipurpose Internet Mail Exten-
sions by calling the MIMEMultipart
function.

<msg[‘Subject’] = str(sys.

argv[1])>

The subject of our message.

<msg[‘From’] = ‘<From Email>’>

Your email address.

<msg[‘Reply-to’] = ‘xyz@gmail.

com’>

DOORBELL

ODROID MAGAZINE	 9

Button = 3

odroid.pinMode(Button,0)

odroid.pullUpDnControl(Button,1)

#loop

print(“Program Running”)

while True:#loops forever till

keyboard interupt (ctr + C)

 if odroid.digitalRead(Button)

== False: #when button not

pressed:

 sys.stderr.write(“.”)

 time.sleep(1)

 else:

 print(“Button Pressed”)

 # ------| photo & Bell

|------ #

 #Get FileName

 now = time.strftime(“Date%m-

%d-%yTime%H-%M-%S”)

 #Make command to run

odroidC2.sh

 command = “bash odroidC2.sh “

+ str(now)

 # -- odroidC2.sh is an Shell

script that

 # -- is responsible for tak-

ing the photo and

 # -- making the Doorbell

Noise

 # --- We insert the “Now” ar-

gument so the python

 # --- script knows what the

file name of the

 # --- picture will be so it

can pass it on into the

 # --- email script (so it

knows what file to email

 #run command

 os.system(command)

 #diagnostics

 print(“Filename:”, now)

 # ----| Email |---- #

 print(“Email”)#email

Figure 4 - Doorbell Python script
running

 emailcommand = ‘sudo python

IoTOdroid.py “Someone is ringing

the doorbell”’ + ‘ “photos/’ +

now + ‘.jpg”’

 os.system(emailcommand) #run-

ning the Email script with:

 #-- the subject as “Someone

is ringing the doorebell” and the

filename

 #-- We made before at the

-Photo & Bell- section

 # -- End Diagnostic Info

 print(“Done Process”)

 #-space out for next “Press

of Button”

 print(“”)

 print(“”)

OdroidC2.sh:

#!/bin/sh

cd photos

echo “Taking the Photo”

now=$1 #Now is the filename time

stamp

#take pic

fswebcam -d /dev/video0 $now.jpg

echo “Pic Taken”

echo””

#ring Bell

echo “Ringing Bell”

echo “”

echo “”

cd ..

mpv ringtone.mp3

IoTOdroid.py:

from email.mime.text import MIM-

EText

from email.mime.application im-

port MIMEApplication

from email.mime.multipart import

MIMEMultipart

from smtplib import SMTP

import smtplib

import sys

recipients = [‘abc@gmail.com’]

emaillist = [elem.strip().

two-fold purpose: First, it takes a snap-
shot of the person ringing the bell with
the characteristic doorbell ring. Second,
it sends the email via the IoTOdroid.py
to the owner’s Gmail account with the
timestamp of the photo attached. After
that, it goes back to standby mode, and
the IoT doorbell rings.

Final notes
This project could certainly be en-

hanced in many ways. For example, a
LED could be added on this IoT door-
bell as an indicator of its proper usage.
A more complex device, similar to this,
could actually make use of a commercial
doorbell with the aid of a relay board
module. It’s not also difficult to add
the ability of a short video clip record-
ing alongside the photo shots taken from
the web camera, making the “smart”
doorbell even smarter. Besides, as the
old saying goes, “perfect is the enemy of
good”!

IoT doorbell code
A copy of the code can be found in

the following section, at the very end of
this article is a link to the github page
contain this code as well.

Odroidbell.py:

import wiringpi2 as odroid

import time

import os

import glob

import sys

odroid.wiringPiSetup()

DOORBELL

ODROID MAGAZINE	 10

split(‘,’) for elem in recipi-

ents]

msg = MIMEMultipart()

msg[‘Subject’] = str(sys.argv[1])

msg[‘From’] = ‘xyz@gmail.com’

msg[‘Reply-to’] = ‘abc@gmail.com’

msg.preamble = ‘Multipart

massage.\n’

part = MIMEText(“Hello! There is

someone ringing your doorbell. A

picture of this person has been

atached.”)

msg.attach(part)

part =

MIMEApplication(open(str(sys.

argv[2]),”rb”).read())

part.add_header(‘Content-

Disposition’, ‘attachment’,

filename=str(sys.argv[2]))

msg.attach(part)

server = smtplib.SMTP(“smtp.

gmail.com:587”)

server.ehlo()

server.starttls()

server.login(‘xyz@gmail.

com’,’yourpassword here’)

server.sendmail(msg[‘From’],

emaillist , msg.as_string())

The project code is available for
download at http://bit.ly/2jMAdMY us-
ing the following command:

$ git clone \

https://github.com/miltiadisme-

lissas/\

IoT.OdroidC2.Doorbell.git

DOORBELL

Horror struck Cyanogenmod us-
ers at the end of 2016, when
Cyanogen suddenly pulled the

plug and left all users that relied on
Cyanogenmod without support. How-
ever, a solution came in no time in the
form of LineageOS. If you are a fellow
ODROID-XU3/XU4 user, it is the per-
fect time to collaborate on the Linea-
geOS release on the ODROID forums:

Features
- Android 7.1.1 Nougat LineageOS 14.1
- Kernel 3.10.9
- OpenGL ES 1.1/2.0/3.0 (GPU accelera-
tion)
- OpenCL 1.1 EP (GPU acceleration)
- Multi-user feature is enabled (Up to 8
users)
- On board Ethernet and external USB 3.0
Gigabit Ethernet support
- RTL8188CUS , RTL8191SU and Ralink
Wireless USB dongle support
- USB Bluetooth support (BLE, A2dp
Sink).
- USB GPS dongle support.
- USB tethering.
- Portable Wi-Fi hotspot.
- Android native USB DAC support

LineageOS-14.1 for
ODROID-XU3/XU4
Forget cyanogen, the future is here
by @voodik
edited by Bruno Doiche

LINEAGEOS

- USB UVC Webcam support
- HDMI-CEC support
- Selinux Enforce

Known issues
Only Bluetooth low energy

v4.0(BLE) modules are supported at this
moment. See Bluetooth Module 2

How to install.
For first time you need prepare your

emmc/sd with spercial selfinstall images.
You can find it here

http://oph.mdrjr.net/voodik/5422/

ODROID-XU3/Android/CM-14.1-ATV/

Alpha-0.1_11.02.17/

Write the image to your eMMC/sd
via Win32DiskImager and boot it up!
You will need to wait patiently during
the first booting process, since the up-
date process might take up to 20 min-
utes.

Kernel Source
$ git clone https://github.com/\

voodik/android_kernel_hardkernel\

_odroidxu3 -b cm-14.0_5422

ODROID MAGAZINE	 11

http://bit.ly/2jMAdMY
http://oph.mdrjr.net/voodik/5422/ODROID-XU3/Android/CM-14.1-ATV/Alpha-0.1_11.02.17
http://oph.mdrjr.net/voodik/5422/ODROID-XU3/Android/CM-14.1-ATV/Alpha-0.1_11.02.17
http://oph.mdrjr.net/voodik/5422/ODROID-XU3/Android/CM-14.1-ATV/Alpha-0.1_11.02.17
https://github.com/voodik/android_kernel_hardkernel_odroidxu3
https://github.com/voodik/android_kernel_hardkernel_odroidxu3
https://github.com/voodik/android_kernel_hardkernel_odroidxu3

Genesis. The game had different settings
to play in, such as jungle, snow, and des-
ert.	

Open Fodder featured 23 missions
that were each split up into several phas-
es. In total, this meant 72 levels of lead-

This month, I’d like to talk about a
game called Open Fodder, which
is a remake of the classic Amiga

game Cannon Fodder developed by Sen-
sible Software way back in 1993. It uses
the original game data from Cannon
Fodder to bring a near-original experi-
ence to your ODROID.

Many popular Linux games these
days, such as Stratagus, and Freeciv, are in
fact remakes of classic DOS games from
the mid to late 1990s, and Open Fodder
is no different. The Cannon Fodder re-
make is an action-strategy shoot ’em up
game where you control a small group of
soldiers that goes through dozens of lev-
els to kill enemy soldiers, destroy tanks,
blow up buildings, and defeat your en-
emies. The game was first released for
Amiga way back in 1993, and was also
ported by its developers to MS-DOS,
the Atari Jaguar, SNES, 3DO, and Sega

ing your squad to victory. At the time of
release, the game was highly praised by
several Amiga gaming magazines, scor-
ing as high as 95 percent and consid-
ered among the best games launched in
1993. Overall, it’s still concerned one of
the best games ever made for the Amiga
platform during its 11-year lifetime.

On a more political note, the game
also makes a rather stark commentary
on war itself as you play and lead your
soldiers to their inevitable deaths. Each
mission brings up a fresh group of re-
cruits that line up waiting to join the

Linux Gaming
Open Fodder
by Tobias Schaaf (@meveric)

LINUX GAMING

Figure 1 - The Cannon Fodder logo, the
game Open Fodder is based on

Figures 2, 3 and 4 - A look at the Jungle,
Desert, and Snow levels in Open Fodder

Figures 5 and 6 - As you progress in the
game, your long line of recruits gradu-
ally become crosses lining a cemetery

ODROID MAGAZINE	 12

sion pack “data disc” than a sequel, as
it mostly featured more missions, rather
than new features. There was also the
Amiga X-Mas special, which featured
some different missions based on the
Cannon Fodder game.

Playing Open Fodder
Open Fodder is a remake of the Can-

non Fodder gaming engine, bringing
the game to modern operating systems.
Much like other game engine ports (like
OpenTTD) you can use the original
game data with this engine port to play
the game on your modern device. This
port also has a version ported to ARM-
based devices, meaning we can run it on
our ODROIDs too!

It’s still under development, but is
working quite nicely already. As usual it
can be installed from my repository and
since it only requires SDL2 and SDL2
Mixer as it’s main dependency it should
work on Debian and Ubuntu alike and
can be found in my all/main package list
for armhf and jessie/main for arm64.

It can be installed with this com-
mand on an ODROID device running
Debian, assuming you have my reposi-

fight. The expendable soldiers (hence
the name cannon fodder) gradually be-
come crosses lined up across a military
cemetery as you complete each mission,
with more lining up just as you bury
their predecessors! The developers cer-
tainly had a sense of humor though, as
the very first soldiers in your squad (and
hence those almost certain to die) are in
fact bearing the six person team’s own
names.

On a different note, the game had
some other interesting facts about it. For
one, it has its own theme song, “War,
never been so much fun”, which plays
during the intro of the game. One of the
game’s developers, Jon Hare, composed
the music himself along with composer
Richard Joseph! If you had the Amiga
CD32, you may also remember a bonus
track with a short movie featuring the
developers shooting at each other with
toy guns (http://bit.ly/2l67bFy). They
certainly seemed to have a lot of fun
making this game!

Cannon Fodder also had a few se-
quels, as well as some bonus missions
released. Cannon Fodder 2 came out
a year later, but was more of an expan-

LINUX GAMING

tories already configured, or if you’re us-
ing one of my Debian images (http://bit.
ly/13v98ly):

$ apt-get install \

 openfodder-odroid

I’ve slightly altered the game to al-
ways run in full-screen mode, but you
can switch to Window mode simply by
pressing F11 when you have the game
running, if you want that.

Converting the Game
Data

On its own, my version of Open
Fodder comes with the Amiga X-Mas
special, as well as the demo levels avail-
able for free. If you want to play the real
game, then you’ll need to import that
data from a legitimate CD of Cannon
Fodder.

If you’re using an ODROID to play
Open Fodder, you can find the game
data folders in the $HOME/.openfod-
der/Data folder. For example, /home/
odroid/.openfodder/Data/Dos_CD is
one such game data folder. There are
several game data folders you can use de-
pending on which version your Cannon
Fodder game is.

Dos_CD
Although the game supports many

different game sources, currently only
Dos_CD seems to be a “fully supported”
Open Fodder version with the least bugs
and issues. The other game sources may
have glitches.

Here’s a quick tip: Although it’s called
Dos_CD, it will take any DOS version
of Cannon Fodder you can find. If you
have the disk version of Cannon Fod-
der, just copy the CF_ENG.DAT into
the Dos_CD folder. The original DOS
CD version had a file called cf_cd.dat.
Rename it to CF_ENG.DAT and copy
it to the Dos_CD folder. If you happen
to have the GoG version of the game,
you also only need to copy CF_ENG.
DAT over to the Dos_CD folder. This

Figure 7 - Sensible Software - The developers of Cannon Fodder

ODROID MAGAZINE	 13

http://bit.ly/2l67bFy
http://bit.ly/13v98ly
http://bit.ly/13v98ly

hard version of the game, but it also fun
to play. So either put the original Amiga
files here, or the FodderNew files from
the “Cannon Fodder Collection”.

Dos2_CD
Dos2_CD is actually the folder for

Cannon Fodder 2 DOS version, but it
also works with the GoG version. Un-
fortunately, it has a few issues, the big-
gest being that the game doesn’t have
any sound or music at all. Aside from
that, everything seems to be there, but I
don’t know how it reacts in later levels.
The Data folder also comes with a WAV,
Plus, AmigaFormat_XMAS and Custom
folder. WAV is default sound effects for
all games, (Cannon Fodder) Plus is a
Demo from the Amiga Power magazine
issue #31, and AmigaFormat_XMAS is
the Amiga Format Christmas Special.
There’s also a Custom folder which al-
lows you to play other games and maps
as well, but they require the DOS (CD)
version or else they are not even shown.

Final notes
Open Fodder is a nice project that al-

lows you to play this awesome game on
modern systems. I really like it, and I’m
looking forward to see how it progresses.
I hope the Amiga versions as well as Can-
non Fodder 2 are soon fully supported.
Maybe we can even see some graphical
improvements in time. I wouldn’t mind
seeing updated graphics, since the game
is rather old, and the graphics are not the
best in 1080p.

is a quick and legal way to get the game
if you’re interested!

Make sure the name of the file is all
capital letters, since the game is very
picky about this. Try to match ev-
erything exactly to ensure things run
smoothly.

Amiga_CD
Amiga CD32 had a version of this

game as well. This is the version which
included the video I linked above. On
the Amiga CD32 CD, there is a folder
called Fodder. The content of this folder
needs to be copied over to the Amiga_
CD folder. You can extract the second
track of the CD and store it as Track2.
flv in the same folder in order to have
the video file.

I encountered some issues when I fol-
lowed this, and later found again that the
game searched for a lot of files in capital
letters, so I used the following command
to copy all files to have them in capital
letters as well in the folder Amiga_CD:

$ for files in `ls`; do cp $files

`echo $files | tr ‘[:lower:]’

‘[:upper:]’`; done

That way it was working for me, but
the game had some glitches. For exam-
ple, the helicopter animation on the start
of each mission was missing, and the
cursor when you save a file is somewhat
messed up. Aside from that, I haven’t
seen any major issues in the Amiga
CD32 version.

Amiga
The description from the Open Fod-

der developer says to, “Use the WHD-
Load installer on an Amiga (or WinU-
AE) to extract the game files, and copy all
the extracted files into the Data/Amiga
folder”. I haven’t tested this, but if you
have the unofficial Amiga CD32 “Can-
non Fodder Collection”, you can copy
the content of the FodderNew in this
folder, which will result in completely
different levels. This feels like an extra

LINUX GAMINGANDROID GAMES

Causality
A time travel
paradox puzzle
game for your
discretion
by Bruno Doiche

Set yourself amongside strange
and alien
landscapes,

and help a group
of stranded astro-
nauts find a route
to safety. Each lev-
el you face repre-
sents a hazardous
moment where you need to complete
it by taking your astronaut to an exit
that matches their color. The time-
frames are short but extremely fun
to do it. Although you are participat-
ing in only a fraction of time of your
character’s lives, be warned: you will
spend a bunch of time on your play-
ing this game!

https://play.google.com/store/
apps/details?id=com.lojugames.
android.Causality

The isometric 3D environment is
beautiful, and I often found myself
failing the level because the graphics
are so enthralling

ODROID MAGAZINE	 14

https://play.google.com/store/apps/details?id=com.lojugames.android.Causality
https://play.google.com/store/apps/details?id=com.lojugames.android.Causality
https://play.google.com/store/apps/details?id=com.lojugames.android.Causality

The RemotePi GPIO pins 8 and 10
need to be connected to different ones on
the ODROID-C2, because there seems
to be a conflict. The UART interface
occupies these pins, and the ODROID’s
default state (1=high on Pin 8) is also
not what the RemotePi Board expects
(GPIO must go into default 0=low for
cutting power after shutdown). But
since you need to use cables anyway for
connecting the RemotePi, this is not a
big deal, since you can just repin the
cables to other GPIO pins.

As we bypass the ODROID’s power
circuit by powering it through GPIO,
the device’s 2.5/2.6A over-current pro-
tection is also bypassed, but don’t wor-
ry. The RemotePi also has over-current
protection that should ideally match
the same value, which is the case for
the RemotePi Board for the Raspberry
Pi 3. However, the RemotePi Board
for the Raspberry Pi 2 is only 2A. This
is fine, because the value is lower than
the ODROID’s 2.6A, so the RemotePi’s
polyfuse would trigger earlier if I attach
too many non externally powered USB

The RemotePi Board (http://bit.
ly/2l8JcWU), which turns any re-
mote control into a power switch

for your single board computer, can be
made compatible with the ODROID-
C2 if you follow this guide. If you use
your device as a media center, this board
provides an IR receiver and a power
circuit as well as a power button. You
can power on and off your ODROID
completely via an arbitrary Infrared (IR)
signal, and just push the power button
for safe shutdown and reboot. The Re-
motePi Board is responsible for standby
mode, which draw only some negligible
power while the ODROID is complete-
ly off. Finally, the board powers your
device through GPIO, so it requires a
microUSB cable to be plugged into the
RemotePi Board instead of using the
normal power adapter.

Hardware
configuration

Since the RemotePi Board was origi-
nally intended for the Raspberry Pi 2,
you’ll need to use additional wires in-
stead of just putting it on top in order
to avoid interfering with the heatsink, so
you must rewire some pins. It’s neces-
sary to use wires of adequate diameter
for the 5V and Ground pins, since the
current could be 2A - 2.6A, depending
on how many USB devices you connect
to your device.

drives, which is not a good idea on an
SBC anyway. However, because of this
amperage difference, a RemotePi Board
for the Raspberry Pi 3 would be the best
choice for this project.

As a result of the rewiring, the Re-
motePi’s firmware can no longer be
configured the normal way, although
I’ve never made use of this feature. If
it becomes necessary to configure or up-
date the firmware, you would need to re-
wire the RemotePi pins 8 and 10 to the
ODROID’s pins 8 and 10 during the
firmware update, then back again after
the update has been completed. Alterna-
tively, you could just attach a Raspberry
Pi on top to update the firmware. This
sounds like a lot of trouble, but actually
it’s only extending the header connec-
tion and changing one line in the main
script, and two lines in another optional
script if you make use of it.

Rewiring the GPIO
connection

Because the RemotePi is originally
designed for a Raspberry Pi, it is unfor-

RemotePi Board for
the ODROID-C2
by @inifity85

REMOTEPI

Figure 1 - RemotePi Board

ODROID MAGAZINE	 15

http://bit.ly/2l8JcWU
http://bit.ly/2l8JcWU

system shutdown. Finally, it will cut the
power completely.

irswitch.sh (just change the original
MSL Digital script GPIOpin1=14 to
GPIOpin1=225):

#!/bin/bash

prevent restarting XBMC at

shutdown. This is only used for

OpenElec before V5

LOCKDIR=”/var/lock/”

LOCKFILE=”xbmc.disabled”

this is the GPIO pin receiving

the shut-down signal

Raspberry Pi pin8: GPIOpin1=14;

Odroid-C2 pin26: GPIOpin1=225

GPIOpin1=225

functions

add_omit_pids() {

omit_pids=”$omit_pids -o $1”

}

safe_shutdown () {

for OpenElec before V5

touch “$LOCKDIR/$LOCKFILE”

for OpenElec V5 and later

systemctl stop kodi

add_omit_pids $(pidof connmand)

add_omit_pids $(pidof dbus-dae-

mon)

killall5 -15 $omit_pids

for seq in `seq 1 10` ; do

usleep 500000

clear > /dev/tty1

killall5 -18 $omit_pids || break

done

sync

umount -a >/dev/null 2>&1

poweroff -f

}

echo “$GPIOpin1” > /sys/class/

gpio/export

echo “in” > /sys/class/gpio/

gpio$GPIOpin1/direction

while true; do

 sleep 1

 power=$(cat /sys/class/gpio/

gpio$GPIOpin1/value)

 if [$power != 0]; then

 echo “out” > /sys/class/gpio/

gpio$GPIOpin1/direction

you may have chosen this for placing
it somewhere in a custom case, so the
built-in receiver might be hidden and
useless. In that case, you can deactivate
the ODROID IR in favour of the ex-
ternal GPIO-IR receiver on RemotePi
Board, and connect pin 12. More in-
formation about switching to the GPIO-
IR receiver in LibreELEC is available at
http://bit.ly/2lpDl27.

Shutdown scripts for
LibreELEC

The two scripts discussed below can
be downloaded from the MSL Digital
Solutions support page at http://bit.
ly/2kMxyVG. That page also contains a
guide for applying these scripts to other
operating systems such as Volumio and
RuneAudio.

The irswitch.sh script is for safe shut-
down via IR-Remote and push-button.
After pushing the button, the system
will shut down safely, then RemotePi
will wait for the GPIO225 to reach state
0 (low), which comes after a successful
system safe shutdown. Finally, it will cut
the power completely.

The shutdown.sh script is for safe
shutdown via program interface or
script. After navigating to the power-
off button in GUI, the system will shut
down safely, then RemotePi will wait
for the GPIO225 to reach state 0 (low),
which comes after a successful and safe

tunately not just plug and play. You’ll
need to rewire two pins besides using
wires for all pins anyway, as shown in
Figure 2. Rewire RemotePi PIN 8 to
ODROID-C2 PIN 26, and RemotePi
PIN 10 to ODROID-C2 PIN 7.

If you don’t want to use the Remot-
ePi Board IR receiver for remote con-
trolling LibreELEC, then pin 12 can be
left disconnected. The board will still
power on and off via learned IR remote
control commands, but controlling Li-
breELEC GUI will be taken over by the
ODROID’s built-in IR receiver. How-
ever, if you bought a RemotePi board
with external LED and IR receiver,

REMOTEPI

Figure 2 - GPIO rewiring

Figure 3 - The RemotePi Board has been
rewired and mounted to a custom case

ODROID MAGAZINE	 16

http://bit.ly/2lpDl27
http://bit.ly/2kMxyVG
http://bit.ly/2kMxyVG

droid remote apps or hotkeys to shut-
down your Media Center, for example.
Those shutdown commands equate to
internal events, similar to navigating to
the Kodi shutdown menu. Without us-
ing this second script, the system would
safely shut down, but the RemotePi
Board would not receive any indication
to monitor GPIO225, thus it would not
cut off power after a successful shut-
down.

Using the RemotePi
Board IR receiver

If you want to use the Remot-
ePi’s IR receiver instead of the onboard
ODROID IR receiver, you’ll have to de-
activate the built-in IR and activate the
GPIO IR receiver. To do this in Ubuntu,
you can refer to Hardkernel’s Wiki arti-
cle at http://bit.ly/2l8KrWg. For Libre-
ELEC, read my mini-guide at http://bit.
ly/2lLKj2A. For questions, comments
or suggestions, please visit the original
thread at http://bit.ly/2mgFGKk.

 echo “1” > /sys/class/gpio/

gpio$GPIOpin1/value

 sleep 3

 safe_shutdown

 fi

done

shutdown.sh (just change GPIO-
pin=15 to GPIOpin=249 and GPIO-
pin1=14 to GPIOpin1=225):

#!/bin/bash

if [“$1” != “reboot”]; then

Raspberry Pi pin10: GPIOpin=15;

Odroid-C2 pin7: GPIOpin=249

 GPIOpin=249

Raspberry Pi pin8: GPIOpin1=14;

Odroid-C2 pin26: GPIOpin1=225

 GPIOpin1=225

 echo “$GPIOpin” > /sys/class/

gpio/export

 # execute shutdown sequence on

pin

 echo “out” > /sys/class/gpio/

gpio$GPIOpin/direction

 echo “1” > /sys/class/gpio/

gpio$GPIOpin/value

 usleep 125000

 echo “0” > /sys/class/gpio/

gpio$GPIOpin/value

 usleep 200000

 echo “1” > /sys/class/gpio/

gpio$GPIOpin/value

 usleep 400000

 echo “0” > /sys/class/gpio/

gpio$GPIOpin/value

 # set GPIO 14 high to feedback

shutdown to RemotePi Board

 # because the irswitch.sh has

already been terminated

 echo “$GPIOpin1” > /sys/class/

gpio/export

 echo “out” > /sys/class/gpio/

gpio$GPIOpin1/direction

 echo “1” > /sys/class/gpio/

gpio$GPIOpin1/value

 usleep 4000000

fi

The shutdown.sh script is useful if
you sometimes use Yatse or Kore an-

REMOTEPI

ODROID Talk
Subreddit

 http://www.reddit.com/r/odroid

ODROID
Magazine

is on
Reddit!

ODROID MAGAZINE	 17

http://bit.ly/2l8KrWg
http://bit.ly/2lLKj2A
http://bit.ly/2lLKj2A
http://bit.ly/2mgFGKk

The HiFi Shield 2 (USD$39 http://bit.ly/2lHSlZJ) is a
high-resolution Digital to Analog Converter (DAC)
for the ODROID-C2 and ODROID-C1+. This is a

special sound card for the ODROID-C2 and C1+ that is op-
timized for the best fidelity audio playback quality. It delivers
a nicely balanced sound: solid, deep, wide and nicely layered.
We’ve analyzed the the audio quality of the HiFi Shield 2 DAC
output with the famous industry standard equipment called
Audio Precision. The Audio Precision is a high performance
audio analyzer optimized for the digital audio product.

Using Texas Instrument’s high-end PCM5242 DAC chip,
known as Burr-Brown, the HiFi Shield 2 supports 16, 24, 32 bit
audio formats with minimal THD+N ratio (0.002%) and ideal
dynamics (114dB+), plus amazing sampling rates of 384kHz.
One dedicated S/PDIF interface supports up to 192kHz/24bit
resolution via an optical (Toslink) output.

Using the I2S expansion port on the C2 / C1+, it doesn’t
need to occupy a USB port, and allows the user to select their
audio playback system of choice, such as Volumio and Debian
(DietPi) for HiFi audio playback.

HIFI SHIELD 2

HiFi Shield 2
the best audio you can
achieve on AN odroid
edited by Rob Roy (@robroy)

ODROID-C2 and HIFI Shield 2: Audio PB +J

Annotated board closeup

ODROID-C2 / C1+ 7 pin I2S pinmap

The audio output is otherwise standard, with
the red output corresponding to the left audio
channel, and the white output corresponding
to the right audio channel.

ODROID MAGAZINE	 18

http://bit.ly/2lHSlZJ

Details
The Ubuntu/Linux setup guide for ODROID-C2 is avail-

able at http://bit.ly/2brrGdG, and for the ODROID-C1+ at
http://bit.ly/2lI7AC7. The official Volumio 2 operating sys-
tem can be downloaded from http://bit.ly/2kOJNAV, and the
Debian-based DietPi image is at http://bit.ly/2ls45yM. You
can view the schematics at http://bit.ly/2mnukV4.

HiFi Shield2 Block Diagram

Features
• Volume control via I2C interface is great feature

to keep great audio quality with various audio out-
put volume

• The output ports include gold-plated stereo RCA
terminals

• An ultra-low noise dropout regulator is popu-
lated for the power supply, significantly reducing
power supply noise and greatly increasing the sig-
nal to noise ratio

• The I2S interface allows for direct decoding of
the digital input to analog output using master clock
synchronization

• The PCB surface is comprised of gold-plating on
top of 2 oz of copper, ensuring signal continuity and
reducing signal reflection and refraction

• Balanced (differential signal) audio output sol-
dering pads are available

• The dedicated S/PDIF interface is new, which
supports up to 192kHz/24bit resolution via a new
Optical (Toslink) output

• This HiFi shield is not compatible with Android,
and Hardkernel has no plan to support the Android
OS to enable the I2S driver for the Android Kernel
and HAL

The ODROID-XU4 User Manual, available for down-
load at http://bit.ly/1U9Q8yg, has been revised recent-
ly to reflect some of the newer peripherals, such as the

Expansion Board, SmartPower2, and oCam. Since Hardker-
nel also now offers Ubuntu 16.04, all of the code examples
were updated to be compatible with the new operating sys-
tem. If you have feedback, questions, or suggestions, visit the
ODROID forum thread at http://bit.ly/1RykBrT.

UPDATED XU4
MANUAL
REVISED FOR UBUNTU 16.04
AND NEWER PERIPHERALS
edited by Rob Roy (@robroy)

XU4 MANUAL

The ODROID-XU4 manual gives detailed explanations of the dif-
ferent operating systems, software, and peripherals available
for the ODROID-XU4

ODROID MAGAZINE	 19

http://bit.ly/2brrGdG
http://bit.ly/2lI7AC7
http://bit.ly/2kOJNAV
http://bit.ly/2ls45yM
http://bit.ly/2mnukV4
http://bit.ly/1U9Q8yg
http://bit.ly/1RykBrT

DevOps is hard. Large software projects, such as Mesos
and Kubernetes, devops teams as found in most tech
organizations, and companies such as CoreOS exist to

support developers in getting their apps out the door and run-
ning. However, what’s a good solution for a lone developer, or
a small home network? How can we use code as infrastructure?

I use a Macintosh OSX laptop for development, but for
long-lived applications or apps to run at night, I need a remote
always-on environment, since my laptop will be offline or on
the train with me while commuting. It makes sense to not use
the development machine as an environment for deployment.

The ODROID-XU4 is an ideal computer for a remote de-
ployment environment, because it’s inexpensive, flexible, has
great specifications, and can run Linux. The goal of this article
is to explain how to keep deployment code in your project re-
pository, as well as automate deployments and execution.

Arch Linux
Arch Linux is a free and open-source Linux distribution that

was first released in 2002. It focuses on elegance, code correct-
ness, minimalism and simplicity, and expects the user to make
some effort to understand the system’s operation. Arch Linux
notably uses a rolling release model, so all that is needed to ob-
tain the latest system software is a regular system update.

Arch Linux can be difficult to pick up, as it uses different
tools than a Debian distribution. The package manager is
called via “pacman” rather than “apt-get”, and there is a popular
add-on package manager called “yaourt”. Many common tools
or services aren’t installed by default.

Arch Linux is mainly for x86 processors, but a project called
Arch Linux ARM (ALARM) has an ARM distribution of Arch
Linux for ARMv7 and ARMv8 AArch64 architectures. Hard-
kernel, the manufacturer of ODROIDs, is actually a sponsor of
the Arch Linux ARM project.

Network Setup
You’ll want to give your device a reserved DHCP LAN IP

HOME DATA CENTER

Home Data center
Code deployment with ArchLinux
by John Skilbeck

address, and ideally a hostname that gets propagated over your
network through your router’s DNS server. That way, on our
development/local environment, we can use a hostname to al-
ways resolve to the remote/deployment environment.

For example, on my network I reserve 192.168.2.49 to my
ODROID’s MAC address. I also setup a DNS entry that maps
that IP address to “odroid”. Using a custom router firmware
like Tomato USB or DD-WRT makes this extremely easy, since
those firmwares turn your router into a small Linux computer
with a slick GUI webapp, but implementing that is outside
the scope of this article. If going across subnets, make sure to
port forward an external port that maps to the SSH port of the
odroid device, since Git runs over SSH.

Project Setup
Logically, you’ll want to standardize your deploy workflow.

That will make working across projects extremely easy, and
remove a lot of the mental context switching you use when
working across projects. We’ll create a folder for housing all
of our files related to deployments. Place any executable files
in “deploy/bin”, and any cron files in “deploy/tasks” (more on
that later).

John’s home data center is a work of art

ODROID MAGAZINE	 20

Navigate to the project directory in a Terminal window,
then type the following commands:

$ mkdir -p deploy/bin

$ mkdir -p deploy/tasks

$ cd deploy/bin && touch run-job && \

 chmod u+x run-job && cd -

$ cd deploy/tasks && touch crontab

You could also standardize where you place your source
code. That way, it becomes very easy for another party to see
how your project is organized, and to know what is source code
and what is not.

$ mkdir src

$ cd src && (place source code here, ie python: core.

py, clojure: core.clj, nodejs: app.js)

Abstracting the entry point
Starting an app can be confusing with all the various com-

mands to run in various languages. For example, you might
use Java “java -jar [my-jar].jar”, or python “python my-app.
py”, and your app also might require various arguments. This
should all be simplified into a single file and abstracted into a
file “deploy/bin/run-job”:

#!/bin/sh

set -e

CMD=”src/duck”

exec $CMD $@

Creating the cron file
Arch Linux doesn’t come with a cron daemon or client by

default. Install it with “sudo pacman -Syu cronie”. Using cron,
you can run commands at specified time intervals using special
cron syntax. This is normally stored in a user’s crontab file,
which you access with “crontab -e”. However, this is too man-
ual, and we want to use code as infrastructure. Cron also has
some helpful subdirectories in “/etc/cron.*”, like “/etc/cron.
daily” and “/etc/cron.hourly”, and if we place files here, they
will be run at those intervals specified.

Review the file from “deploy/tasks/crontab” that we’ll place
in “/etc/cron.d”, which is done automatically with our “post-
receive” script:

variables

SHELL=/bin/bash

PATH=:/bin:/usr/bin:/usr/local/bin:/usr/sbin:/usr/lo-

cal/sbin

MAILTO=[your-email-address]@gmail.com

cmd=”deploy/bin/run-job”

app_dir=”/home/skilbjo/deploy/app/duckdns”

jobs

5 * * * * skilbjo cd “$app_dir” ; $cmd >/dev/null

Here is an overview of a simple project structure. The only
project executable is a single shell script in “src/”:

 $ tree

 .

 ├── README.md

 ├── deploy

 │ ├── bin

 │ │ ├── post-receive

 │ │ └── run-job

 │ └── tasks

 │ └── crontab

 └── src

 └── duck

4 directories, 5 files

Git
First we’ll want to add a remote url in our project on our

local environment:

$ git remote add odroid ssh://odroid/~/deploy/git/

duckdns.git

Note that depending on your network topology, this url
might need to be adjusted. If you can’t assign hostnames, then
the git url would look like this, where 192.168.2.49 is your
device’s LAN IP address:

$ ssh://192.168.2.49/~/deploy/git/duckdns.git

If you have a different user in your ODROID environment
than your development environment, then the url would look
like this, where “skilbjo” is your username:

$ ssh://skilbjo@odroid/~/deploy/git/duckdns.git

If your remote server is on a different subnet and you are
portforwarding, your url would

look like this, where “2222” is your external port:

$ ssh://192.168.1.2:2222/~/deploy/git/duckdns.git

In the home directory of your remote environment, create a
folder called “~/deploy” with

two subfolders: “~/deploy/app” and “~/deploy/git”. The

HOME DATA CENTER

ODROID MAGAZINE	 21

“~/deploy/git” subdirectories will be the endpoints of our push-
es, and with a hook, they will then execute some deployment
commands in the “~/deploy/app” subdirectories.

First, navigate to the home directory of the remote environ-
ment, then type the following commands:

$ mkdir -p ~/deploy/app

$ mkdir -p ~/deploy/git

$ mkdir -p ~/deploy/git/duckdns.git

$ mkdir -p ~/deploy/app/duckdns

Now, in “~/deploy/git/duckdns.git/hooks”, create an ex-
ecutable file called “post-receive”, which will be triggered with
every push to the endpoint.

$ cd ~/deploy/app/git/duckdns.git/hooks

$ touch post-receive && chmod u+x post-receive

$ vim post-receive

Fill the executable with the following in the remote environ-
ment’s “~/deploy/git/duckdns.git/hooks” directory:

#!/usr/bin/env bash

set -eou pipefail

user=$(whoami)

dir=”/home/${user}/deploy/app”

app=$(basename $(pwd) | sed -e ‘s/.git//’)

deploy_dir=”$dir/$app”

cron_dir=”/etc/cron.d”

GIT_WORK_TREE=”$deploy_dir” git checkout -f

cd “$deploy_dir”

build steps here

case “$user” in

 (skilbjo) sudo cp deploy/tasks/crontab “$cron_

dir/$app” ;;

esac

you can also do project-specific build steps in

this section, like install

dependencies, ## (ie npm install), compile source

code (ie lein uberjar),

as well as if a long-lived app, run commands as

well (ie java -jar my_jar.jar)

echo “all done”

exit 0

Deployment
Now we’re ready to deploy because our local environment is

setup to hit the deployment server’s endpoint, our remote envi-
ronment is setup to receive the notification and check out the
source code, run any build steps, and place a job in the system’s
cron directory for launching. Deploy everything with the fol-
lowing command in the local environment’s project directory:

$ git push odroid

Additionally, to see how this has been implemented in a
sample project, visit http://bit.ly/2lthYKW.

Next steps
Some features that can be added to the flow above are mul-

tiple environments, either with
multiple ODROIDs, or with a single ODROID treating it

as a utility server. This can be done
with subdirectories under “~/deploy” such as “~/deploy/

staging/app/my_app” or “~/deploy/production/app/my_app”.
Additionally, you could add a continuous integration ser-

vice like CircleCI that would run a test suite from every push
to GitHub, and if successful, build a Docker image. You could
then have have a file in the remote environment that would
checkout an image from a Docker repository and run that im-
age at a specified interval. This is what many of the distributed
DevOps softwares do, such as Mesos and Kubernetes, but in a
much more feature rich environment than bare-bones BASH
and Linux.

References

Arch Linux Wikipedia article http://bit.ly/2l71ADK
Arch Linux ARM home page https://archlinuxarm.org
Article that I read three years ago that inspired the idea of
writing my own article http://bit.ly/2m5JAct

HOME DATA CENTER

ODROID MAGAZINE	 22

http://bit.ly/2lthYKW
http://bit.ly/2l71ADK
https://archlinuxarm.org
http://bit.ly/2m5JAct

The odroid
Arcade Box
Have the perfect experience With
your favorite arcade games
by Brian Kim, Charles Park and John Lee

ARCADE BOX

ODROIDs have better performance than the com-
petitor boards, especially in video rendering, which
means that ODROID boards are very suitable for

playing games, which many ODROID users do. There are
already several game platform operating systems available,
such as Lakka (http://bit.ly/1NO8BBC) and ODROID
GameStation Turbo (http://bit.ly/1ASFO5O). In order to
enjoy our gaming sessions more, we made our own arcade
box with simple GPIO buttons and joysticks, and called it
the ODROID Arcade Box. We choose an ODROID-XU4
for this project because it has the best GPU performance
of all the current ODROID devices. This article describes
how to recreate the ODROID Arcade Box for yourself.

Requirements
(Figure 3 –)
We decided to make the ODROID Arcade Box using

MDF (Medium-Density Fibreboard). The XU4 Shifter
Shield is also useful in order to utilize the expansion pins
of the ODROID-XU4. Joysticks, buttons and cables were

Our first simple prototype

ODROID MAGAZINE	 23

http://bit.ly/1NO8BBC
http://bit.ly/1ASFO5O

12T MDF Panel
2EA 600x220
2EA 600x75
2EA 220x75
Drill
Crimper
Stripper
Measuring tape
Utility knife
Long Nose Plier
ODROID-XU4
XU4 Shifter shield

SMPS
HDMI, USB, Ethernet ex-
tenders
Power socket & Switch
2EA Hinges
Door catcher
4EA foot rubber
Screws
19EA Buttons
2EA Joystick
Wires
Terminals

the input components, and an SMPS (Switched-
Mode Power Supply) was used for the power sup-
ply. The detailed tools and parts list are listed here:

The ODROID Arcade Box needs a total of 27
inputs (19 inputs for buttons and 8 inputs for joy-
sticks). The ODROID-XU4’s digital 24 GPIO
inputs are not sufficient for all 27 inputs, so we
created two additional ADC ports for the three
additional buttons. The ADC input values are
based on input voltage, and the digital and analog
input values are processed in the GPIO key dae-
mon, which is described below.

Design and assembly
The panels of the ODROID Arcade Box must

be designed and manufactured so that the but-
tons and joysticks are well placed. We chose 12T
MDF considered for price and durability. Your
design can be done with any familiar CAD tool such as
Google Sketch or SolidWorks. Although there are many
layout templates for joypad panels available, we chose a
standard Japanese arcade layout.

The first step of assembly is to attach the sheet to the
MDF panel. This step was easy, but took longer than the
other steps. After that, we inserted the joysticks, power
socket, switch and buttons on the top MDF panel. The
HDMI, Ethernet and USB extenders were inserted on the
back of the MDF panel. The next step was to assemble
each MDF panel by using a drill to make holes in it, then
using screws to hold it together.

The last step of assembling the ODROID Arcade Box
was wiring the ODROID-XU4 expansion pins to the in-
put components. In this project, we designed the external
GPIO inputs, as shown in page 26. The Select and Temp
buttons are connected to ADC expansion ports, as shown
on page 26 too.

Software Setup
We developed a new GPIO key daemon called gpio_

keyd (http://bit.ly/2ljOZKg). The gpio_keyd daemon is
able to map GPIO inputs and key events using uinput and
wiringPi, which is a pin-based GPIO access library. It’s de-
signed to be familiar to people who have used the Arduino
wiring system. Although the upstream wiringPi library
supports only Raspberry Pi, Hardkernel offers a wiringPi
fork for ODROIDs in its GitHub repository (http://bit.
ly/1Eq3UpF). The module uinput is a Linux kernel mod-
ule that handles the input subsystem from user land. It
can be used to create and handle input devices from an
application.

We choose ODROID GameStation Turbo (http://bit.

ARCADE BOX

Tools , parts and what they are just below:

Expansion ports schematic

ODROID MAGAZINE	 24

http://bit.ly/2ljOZKg
http://bit.ly/1Eq3UpF
http://bit.ly/1Eq3UpF
http://bit.ly/1ASFO5O

ly/1ASFO5O) as the software platform for our ODROID
Arcade Box, which has uinput built in. You should make
sure the uinput device file exists in your chosen operating
system, because some of them do not have uinput devices.

$ ls /dev/uinput

If your operating system does not have a /dev/uinput
device file, then it will be necessary to rebuild and install a
new kernel with the INPUT_UINPUT option configura-
tion option set. The Wiki page at http://bit.ly/1YIToBI
describes how to build and install the kernel image from
source code.

$ make menuconfig

Device Drivers

-> Input device support

 -> Generic input layer

 -> Miscellaneous device

 -> User level driver support <*>

Note that wiringPi must be installed before installing
gpio_keyd. On the ODROID GameStation image, the
sudo commands must be run as root, because the “odroid”
account is not designated as a sudo user.

$ git clone https://github.com/hardkernel/wiringPi.

git

$ cd wiringPi

$ sudo ./build

Download the gpio_keyd source code, which is avail-
able from our GitHub repository. The gpio_keyd build
and installation methods are very simple:

$ git clone https://github.com/bkrepo/gpio_keyd.git

$ cd gpio_keyd

$ make

$ sudo make install

The gpio_keyd script refers to /etc/gpio_keyd.conf as
the default for GPIO and key mapping information. The
configuration file was modified for 27 inputs of ODROID
Arcade Box. Some keys are already used in the game emu-
lator, so we had to change the emulator key settings in or-
der to avoid key collisions between the emulator and GPIO
input keys. Note that <GPIO pin> field in the configura-
tion file refers to the wiringPi number, not the GPIO and
pin number (http://bit.ly/2lbzPIB).

ARCADE BOX

Joypad Layout Blueprint

Assembled ODROID Arcade Box Outline

ODROID MAGAZINE	 25

http://bit.ly/1ASFO5O
http://bit.ly/1YIToBI
https://github.com/hardkernel/wiringPi.git
https://github.com/hardkernel/wiringPi.git
https://github.com/bkrepo/gpio_keyd.git
http://bit.ly/2lbzPIB

Configuration file sample for 27 inputs: /etc/gpio_keyd.
conf

Digital input
# <Key code>	 <GPIO type>	 <GPIO pin>	 <Active
value>
User 1
KEY_LEFT	 digital		 15		 0
KEY_RIGHT	 digital		 1		 0
KEY_UP	 digital		 4		 0
KEY_DOWN	 digital		 16		 0
KEY_A		 digital		 2		 0
KEY_S		 digital		 3		 0
KEY_D		 digital		 30		 0
KEY_F		 digital		 21		 0
KEY_Z		 digital		 8		 0
KEY_X		 digital		 9		 0
KEY_C		 digital		 7		 0
KEY_V		 digital		 0		 0
User 2
KEY_BACKSLASH	digital		 12		 0
KEY_SLASH		 digital		 13		 0
KEY_SEMICOLON	digital		 14		 0
KEY_LEFTBRACE	digital		 5		 0
KEY_Y		 digital		 26		 0
KEY_U		 digital		 27		 0
KEY_I		 digital		 22		 0
KEY_O		 digital		 23		 0
KEY_H		 digital		 6		 0
KEY_J		 digital		 10		 0
KEY_K		 digital		 11		 0
KEY_L		 digital		 31		 0

Analog input
# <Key code>	 <GPIO type>	 <ADC port>	 <ADC ac-
tive value>
KEY_B		 analog		 0		 0
KEY_N		 analog		 0		 2045
KEY_M		 analog		 1		 2045

To run gpio_keyd daemon at every startup is conve-
nient for ODROID Arcade Box.

/etc/init.d/gpio_keyd
#! /bin/sh

ARCADE BOX

External GPIO mappings for the Buttons and Joysticks

ODROID Arcade Box Wiring

ODROID MAGAZINE	 26

BEGIN INIT INFO
Provides: gpio_keyd
Required-Start: $all
Required-Stop:
Default-Start: 2 3 4 5
Default-Stop:
Short-Description: Run /usr/bin/gpio_keyd if it ex-
ist
END INIT INFO

PATH=/sbin:/usr/sbin:/bin:/usr/bin

. /lib/init/vars.sh

. /lib/lsb/init-functions

do_start() {
	 if [-x /usr/bin/gpio_keyd]; then
		 /usr/bin/gpio_keyd -d
		 ES=$?
		 [“$VERBOSE” != no] && log_end_msg $ES
		 return $ES
	 fi
}

case “$1” in
 start)
	 do_start
 ;;
 restart|reload|force-reload)
 echo “Error: argument ‘$1’ not supported” >&2
 exit 3
 ;;
 stop)
	 killall gpio_keyd
 exit 0
 ;;
 *)
 echo “Usage: $0 start|stop” >&2
 exit 3
 ;;
Esac

$ sudo chmod +x /etc/init.d/gpio_keyd
$ sudo update-rc.d
gpio_keyd defaults
$ sudo reboot

In the above com-
mands, the gpio_keyd
script runs as a daemon
using the “-d” option.
Usage of gpio_keyd can
be checked with the
“–h” option. Double-
check the keys used by
the game or the emula-
tor, then set the gpio_
keyd settings correctly.
Then, you are ready to
play and enjoy your
games with your new
ODROID Arcade Box.

ARCADE BOX

The King of Fighters 98, John vs. Brian

ODROID MAGAZINE	 27

Settings
The normal way we analyze network

traffic data is by using the Data Usage via
the Settings apps as shown in Figure 1.

The data usage shows the total incom-
ing and outgoing amount of data traffic
that has been used by an application. If
you select the application, you will see
a screen like Figure 2 that shows more
detail information about foreground and
background usage of the application.

Information shown inside the Set-
tings app are stored inside /data/system/
netstats, which requires root access. By
removing everything inside this folder,
one can reset the network stats shown in
the Settings app.

Network Stats
The Settings app can give us a high

level overview of the data network stats,
which is a good start, but sometimes we
require more detailed analysis, which

As a developer, we want our apps
to be efficient and often we
would like to know how much

network bandwidth our app is using.
This is useful for a number of reasons:

•	 To monitor and make sure that
our app is really our app and not
app that has been hacked and
published under different name
in the play store

•	 To make sure we are not taking
unnecessary bandwidth of user’s
data plan

•	 To ensure the device that we are
using is not accessing the inter-
net without our knowledge

In this article, we will look into the
different ways you can look into getting
the network usage data.

can be done via the dumpsys command.
Android provides a powerful tool call
dumpsys that allow us to get a snapshot
or dump of the system, which can in-
clude information about the network,
memory and other components. Read
through the Android documentation at
http://bit.ly/2kK9dep to get more sys-
tem information. For network related
information, we would be interested in
the command:

$ dumpsys netstats detail

Figure 3 shows a snapshot of what
can be seen from a Nexus 7 tablet run-
ning Lollipop 5.1.1.

There are a few things that are impor-
tant to understand about the stats:

•	 UID stats shows the breakdown
for apps into background and
foreground.

•	 uid shows the userid of the ap-
plication which can be used to
correlate with the package infor-
mation (which we will see in the
dumpsys package detail section)
to know which application these
network stats are for.

•	 tag is useful if you want to see
how much data each connection
in your application is using. An
example of this can be seen in
Figure 4, which shows uid 10007
has the following different tags:

Android Development
Analyzing Application Network Usage
by Nanik Tolaram

ANDROID DEVELOPMENT

Figure 1 - Data usage inside Settings

Figure 2 - App data usage breakdown

ODROID MAGAZINE	 28

http://bit.ly/2kK9dep

plication that the network stats we are
reading.

Sample app
The sample app for this article

can be downloaded from http://bit.
ly/2m8WenA, which shows how to
tag network connection from differ-
ent sections of the application that can
help analyze data traffic volume from
the app. Figure 6 shows an example of
how it looks like using Android Device
Monitor (inside Studio go to Tools →
Android → Android Device Monitor):

As can be seen in the graph, the sample
app has 3 different connections, and each
one is accessing a different website. By tag-
ging them with different codes, we are able
to see the amount of data traffic each connec-
tion causes, and this will assist us to see if our
application is using bandwidth efficiently.

The code in the following code snip-
pet displays the usage of internal API
TrafficStats. This API tag shows the
thread that is currently using a sock-
et with an id, and all traffic that goes
through the same connection will be re-
corded together. This is how the app is
able to group the 3 different connections
together. Internally, Android uses the
xt_qtaguid module in the kernel to do
this type of tagging. There is more in-

0x30000401, 0x30003201,
0x30002804, 0x10000401 and
0x30000407. These different
tags help the developer know
how much data each part of the
application is using. This par-
ticular network stats output is
linked to the Google Framework
package which is part of the
Google Play Store.

We will see in the next section how to
write an application by tagging the thread
that makes the network connection, to de-
termine how much data is used.

Package Stats
In the previous section, I discussed

the uid that is found when running the
dumpsys netstats command. Now we
need to know which uid corresponds to
which application in the device and this
is done by using the following command:

$ dumpsys package detail

This command will give a long list of
information about the packages that are
installed in your device. For the network
stats, we are interested in the section
shown in Figure 5.

The highlighted section shows the
userId that relates to the uid shown in
network stats. By relating this number,
we know the package name of the ap-

ANDROID DEVELOPMENT

Figure 3 - Dumpsys netstats detail

Figure 4 - UID tag stats

Figure 5 - dumpsys package detail

Figure 6 - Network Tag

formation about this available at http://
bit.ly/2kU8KXB.

public void getUsingNormalURLC

onnection(String urlText, int

threadTag)

 	 throws IOException

{

 URL url = null;

 TrafficStats.

setThreadStatsTag(threadTag);

 HttpURLConnection urlConnec-

tion = getConnection(url);

 try {

 }

 } finally {

 TrafficStats.clearThread-

StatsTag();

 }

}

ODROID MAGAZINE	 29

http://bit.ly/2m8WenA
http://bit.ly/2m8WenA
http://bit.ly/2kU8KXB
http://bit.ly/2kU8KXB

Annoyed, you climb into your world domination 4x4,
a vehicle which looks like an old farm truck from the
outside, but inside looks more like the control system

of a space shuttle, because the delivery driver at the oriental
restaurant called in sick. Now you have to drive over to pick
up your own food. “How primitive,” you think to yourself as
you back out of your secret garage. Just as you are about to
bring the vehicle to a stop, you hear a loud crash! You get out
and hurry around to the rear of the 4x4 where you see an oblit-
erated trashcan. You pull what little hair you have left above
your ears and think, “those Neanderthal garbage collectors left
my can in the middle of my driveway again!” Now you have to
pick up your dinner AND a new trash can.

As you drive off to run your errands, you consider how you
can avoid this inconvenience in the future. Several thoughts
come to mind:

Lidar system to 3D scan the surroundings in real time and sound
alarms when necessary
Automated robot arm on the back of the 4x4 that uses video pro-
cessing to sense objects, grab them and move them out of the way
A simple back-up camera

You consider the feasibility of each:

Super cool, but too complicated and expensive
Even more cool and a fitting project for a mad scientist, but too
complicated and expensive
I already have two of those, but was too preoccupied in thought to
pay attention to them!

What you need is something simple, uncomplicated and
inexpensive that can sound an alarm to alert you, even when
you are deep in thought. “Aha!” You remember seeing a new
product at ameriDroid that can do just that. It’s a USB-con-
nected microcontroller that supports up to 6 ultrasonic sensors
with simple serial commands (http://bit.ly/2l26ptV). “Per-
fect!” you think to yourself.

As you return to your subterranean laboratory, Kung Pao
chicken in hand, you hurry over to your wall of monitors,
pull up the ameriDroid website, and order a “USB Ultrasonic
Ranging Sensor” kit with 6 sensors and cases.

You feel a sense of relief as you return to the 12 projects you
were already working on while you wait a couple of days for
your order to arrive. While eating your Kung Pao, you draw
a diagram of how you want to arrange the sensors on the back
of your vehicle.

A couple of days later, the kit arrives. You immediately set
to assembling the kit and mounting the sensors on the back
of your 4x4, being careful to use silicone sealant to protect the
sensors from any rain, sleet and snow you may encounter on
your world domination adventures.

Next, you refer to the instructions provided by ameriDroid
with the kit on how to control and read the sensors from your
trusty ODROID-C2 and VU7 that you mounted in the dash
for just this purpose.

Connecting the USB cable
The supplied USB cable should be connected to the micro-

controller (the small circuit board with the rows of pins stick-
ing out of it). The microcontroller has a row of 4 or 6 pins on

Sensing the Presence
Chronicles of a Mad Scientist
by Bo Lechnowsky

ULTRASONIC SENSOR

ODROID MAGAZINE	 30

http://bit.ly/2l26ptV

one end. If it has 6 pins, concentrate on the 4 center pins and
follow the directions below:

Black - Connect to GND
Red - Connect to VCC
Green - Connect to RXI
White - Connect to TXD

Connecting the
ultrasonic sensors

On each ultrasonic sensor, there are four labeled pins: Vcc,
Trig, Echo, Gnd. For the first ultrasonic sensor, connect pin 2
on the microcontroller to the “Trig” pin on the ultrasonic sen-
sor. Connect pin 3 on the microcontroller to the “Echo” pin
on the sensor. Connect the “Vcc” pin on the sensor to 5V DC
(the “VCC” pin on the microcontroller supplies 5V DC), and
the “Gnd” pin on the sensor to a ground connection, such as
one of the “GND” pins on the microcontroller.

If you are connecting up a second ultrasonic sensor, connect
“Trig” to pin 4 and “Echo” to pin 5. Continue connecting to
the next higher pin numbers for additional sensors, up to pins
12 and 13 if you want to connect six ultrasonic sensors.

Software connection
Use a terminal program like PuTTY, Screen or your favor-

ite programming or scripting language to connect to the serial
port that appears when you connect the ultrasonic sensor. This
will vary based on the operating system used to connect to the
microcontroller. In Windows, “Device Manager” is the com-
mon way to find this out. In Linux, “dmesg” or “lsusb” are
common ways to detect which port it is connected to. You may
see something called “PL2303”, which is the microcontroller
connection. If you receive garbage in your terminal when you
connect, make sure the serial settings are 9600 baud, 8 bits,
none (parity) and 1 stop bit. Here is a list of the commands
that are accepted by the microcontroller:

•	 debug on: Enables detailed feedback. This is disabled
by default, and will provide some clairifcation on input
errors.

•	 debug off: Disables detailed feedback.
•	 init x y: Initializes an HC-SR04 on the pins specified:

X is trigger, Y is echo. These must be digital pins. De-
vice 0 is preset to pins 2 and 3, so those pins do not
need to be specified. Invalid pin selections will return
an exclamation mark.

•	 ping: Outputs a single read of the previously used HC-
SR04. If none have been used yet, it will use device
0. If the command is followed by a single space and
a number between 0-100 (exclusive), that number of
reads will be made, outputting first the average of those

ULTRASONIC SENSOR

reads, then the number of failed reads (which do not
count towards the average), then the minimum and
maximum read values separated by spaces. In any case,
if a signal times out, -1 will be returned.

•	 start: Constantly pings all connected devices in se-
quence. Because the devices are used one at a time,
the flow of data from this command will be faster if
the devices measure short distances. If this command
is followed by a single space and a number greater than
0, the board will wait that many milliseconds between
reading from the last device and reading from the first
device. Output from this command will be each de-
vice’s reading (with a single space after each), and a re-
turn after the last device.

•	 stop: stops the ‘start’ operation, which is only effective
after “start has been issued.

•	 mode: outputs the current measuring mode: M for
Metric (millimeters), I for Imperial (tenths of an inch),
or R for Raw (the pulse length in microseconds re-
turned by the HC-SR04). The default is M.

•	 timeout: outputs the current timeout for signal reads.
Timeout is the longest amount of microseconds that
the board will wait before declaring the HC-SR04 to
have made a bad read, which is not necessarily the same
thing as the longest pulse the board will accept from the
HC-SR04. When the board measures the pulse from
the HC-SR04, it first waits for the HC-SR04 to begin
sending a pulse at all. This time counts towards the
timeout. When this command is followed by a space
and a number, timeout will be set to that number. The
default is 1 second (1,000,000 microseconds).

•	 ver: outputs version information and credits.

If any command (or no command) is preceded by a single
digit from 0-5 (inclusive) followed by a space, the device which
corresponds to that digit will be selected for use with the next
“ping” command. Each time the board is ready for a com-
mand, it will output “>” to the serial. The only exception is
after the “start” command, which will not prompt for input
until after “stop” has been recognized.

ODROID MAGAZINE	 31

How did you get started with computers?
When I started my business, I had to decide which

hardware platform would be used for road traffic data ac-
quisition. Just so you don’t hate me, my traffic cameras
are not those which are used to issue speeding tickets or
anything like that. My system is dedicated to smoothing
traffic flow by determining the optimal traffic signal con-
trols. Previously, I used an industrial PC to run my soft-
ware image recognition engine. I now use the ODROID
family of devices for this task instead.

What attracted you to the ODROID platform?
 In 2012, I used Google to search for a very com-

pact but powerful platform for my needs, which was the

Please tell us a little about yourself.
I’m a 47-year old electronics and software engineer from

Russia. I was born deep in Siberia, and after I finished
school, I moved to Moscow to study at the university. Be-
ing a student at the Moscow Aviation Institute (MAI) was
an amazing experience, probably the best in my life. In the
early 1990s, a microcomputer era came to Russia, and I used
to play a long game of upgrade leaps starting from the z80
CPU to the i486 and beyond. After I finished my univer-
sity studies and post graduate work, I became an engineer.
I worked a few jobs at different companies, and eventually
decided to start my own business. In 2006, I established a
small startup for creating automobile traffic counting sys-
tems. I’m married and have a 21-year old daughter named
Lena, who works as a nurse. My wife Nadezhda is a produc-
tion dress designer, but she now works as web designer. She
is fond of digital photography and likes her DSLR camera
very much.

Meet an ODROIDian
Viacheslav Alekseev
edited by Rob Roy (@robroy)

MEET AN ODROIDIAN

Viacheslav enjoys playing guitar and listening to music

1995, at the MAI campus, testing one of the world’s first com-
mercial VR harnesses, which ran at 640x480 @ 30fps. It used a
magnetic sensor at the nape for head positioning. The best prank
to play on someone was to bring a magnet near the rear side and
shake it. It guaranteed screams when the 3D world rolled around!

ODROID MAGAZINE	 32

ODROID-X2 board. With its four cores running at 1.7
GHz, it easily computed automobile traffic counting algo-
rithms. Later on, I switched to using the U3 and the XU4.

Which ODROID is your favorite and why?
At the moment, the XU4 is my favorite. My system is

based on a real-time video frame processing, so the USB
3.0 bus on the XU4 is quite good as a camera video cap-
ture interface. For my system, it is very important to have
a good bridge between the video camera and the CPU. I
will probably have to look to the lower level interfaces like
MIPI CSI-2, which is unfortunately absent on the XU4.
Recently, I’ve been learning how to use the oCam GS BW
camera. The camera is good by itself, but for industrial
outdoor use, I have to implement a software automatic ex-
posure control and probably lens aperture control, which
is still under consideration.

What hobbies and interests do you have apart from computers?

MEET AN ODROIDIAN

An old gem, the Nixdorf mini computer

An old gem, the Nixdorf mini computer

MEET AN ODROIDIAN

I enjoy driving and reading about cars, and watching
the F1 racing championships. I also like travelling, fish-
ing, listening to music, and playing guitar. I have a Sibe-
rian cat named Leia, and am a Star Wars fan.

What advice do you have for someone wanting to learn more
about programming?

Making software is very cool and mystical. It’s a fu-
sion of art and technology. Nothing is more inspirational
than when your application starts to live. However, there
is always the other side of the Force. Be ready for end-
lessly educating yourself. Software development is one of
the fastest changing activities. If you plan to stop making
software in one or two years, you can stop learning now.
Knowledge will come to be outdated in a couple of years
or so. To be at the highest level, you must always run. It’s
similar to the song like “Run like Hell” by Pink Floyd. If
you ready to live in such a way, you will be successful.

ODROID MAGAZINE	 33

