
We celebrate the reach
of our gadgets spanning
the globe in the portable

computing revolution

• IoT Environmental
Wine Cellar
Preserver and
Notifier

• Setup a rear
view camera for
your bike using

the oCAM

Magazine
ODROID

ODROIDS
Around

the
World

ODROID
Deluge Bittorrent Client • Chatbot • Portable Arcade Station • Clipgrab

Year Four
Issue #37
Jan 2017

What we stand for.
We strive to symbolize the edge of technology,
future, youth, humanity, and engineering.

Our philosophy is based on Developers.
And our efforts to keep close relationships with
developers around the world.

For that, you can always count on having the quality
and sophistication that is the hallmark of our products.

Simple, modern and distinctive.
So you can have the best to accomplish
everything you can dream of.

We are now shipping the ODROID-C2
and ODROID-XU4 devices to
EU countries! Come and visit
our online store to shop!

Address: Max-Pollin-Straße 1
85104 Pförring Germany

Telephone & Fax
phone: +49 (0) 8403 / 920-920
email: service@pollin.de

Our ODROID products can be found at
http://bit.ly/1tXPXwe

mailto:service@pollin.de
http://bit.ly/1tXPXwe

EDITORIAL

ODROID Magazine, published monthly at http://magazine.odroid.com, is your source for all things ODROIDian.
Hard Kernel, Ltd. • 704 Anyang K-Center, Gwanyang, Dongan, Anyang, Gyeonggi, South Korea, 431-815
Hardkernel manufactures the ODROID family of quad-core development boards and the world’s first ARM big.LITTLE single board computer.
For information on submitting articles, contact odroidmagazine@gmail.com, or visit http://bit.ly/1ypImXs.
You can join the growing ODROID community with members from over 135 countries at http://forum.odroid.com.
Explore the new technologies offered by Hardkernel at http://www.hardkernel.com.

ODROID Magazine is now in its 4th year! We are very excit-
ed to continue presenting community-contributed articles
and projects that highlight the versatility and portability

of Hardkernel’s fantastic line of single board computers. Some
of the projects that we have featured in the past year include

a water-cooled ODROID-XU4, an
Ambilight 4K system, a 42” touch-
screen table, and a portable laptop.
We look forward to seeing what in-

novative and unique projects ODROID-
ians will create in 2017 and beyond.

IoT projects have become a very popular use
of ODROIDs, and our resident IoT expert Mil-

tiadis presents a project that combines two of
his pastimes, wine and computers, to monitor his wine cellar in

order to make sure that his valuable collection is aged properly. The
system also notifies him via SMS when the wines are ready to enjoy. Max details how to
set up a chatbot, Brian demonstrates a rear view bike camera to stay safe while riding,
@synportack24 gives an overview of the Deluge BitTorrent client, and Tobias shows
us how to download online videos for offline viewing. Our featured Android games this
month include Pixel Dodgers and Chrome Death for hours of fun!

http://magazine.odroid.com
mailto:odroidmagazine@gmail.com
http://bit.ly/1ypImXs
http://forum.odroid.com
http://www.hardkernel.com

Manuel Adamuz, Spanish Editor
I am 31 years old and live in Seville, Spain, and was born in Granada. I am married to a wonderful woman and have
a child. A few years ago I worked as a computer technician and programmer, but my current job is related to quality
management and information technology: ISO 9001, ISO 27001, and ISO 20000. I am passionate about computer
science, especially microcomputers such as the ODROID and Raspberry Pi. I love experimenting with these com-

puters. My wife says I’m crazy because I just think of ODROIDs! My other great hobby is mountain biking, and I
occasionally participate in semi-professional competitions.

Andrew Ruggeri, Assistant Editor
I am a Biomedical Systems engineer located in New England currently working in the Aerospace industry. An 8-bit
68HC11 microcontroller and assembly code are what got me interested in embedded systems. Nowadays, most proj-
ects I do are in C and C++, or high-level languages such as C# and Java. For many projects, I use ODROID boards,
but I still try to use 8bit controllers whenever I can (I’m an ATMEL fan). Apart from electronics, I’m an analog
analogue photography and film development geek who enjoys trying to speak foreign languages.

Venkat Bommakanti, Assistant Editor
I’m a computer enthusiast from the San Francisco Bay Area in California. I try to incorporate many of my interests
into single board computer projects, such as hardware tinkering, metal and woodworking, reusing salvaged materials,
software development, and creating audiophile music recordings. I enjoy learning something new all the time, and
try to share my joy and enthusiasm with the community.

Josh Sherman, Assistant Editor
I’m from the New York area, and volunteer my time as a writer and editor for ODROID Magazine. I tinker with
computers of all shapes and sizes: tearing apart tablets, turning Raspberry Pis into PlayStations, and experimenting
with ODROIDs and other SoCs. I love getting into the nitty gritty in order to learn more, and enjoy teaching oth-
ers by writing stories and guides about Linux, ARM, and other fun experimental projects.

Nicole Scott, Art Editor
Nicole is a Digital Strategist and Transmedia Producer specializing in online optimization and inbound marketing
strategies, social media management, and media production for print, web, video, and film. Managing multiple ac-
counts with agencies and filmmakers, from web design and programming, Analytics and Adwords, to video editing
and DVD authoring, Nicole helps clients with the all aspects of online visibility. Nicole owns anODROID-U2,
a number of ODROID-U3’s, and Xu4’s, and looks forward to using the latest technologies for both personal and

business endeavors. Nicole’s web site can be found at http://www.nicolecscott.com.

James LeFevour, Art Editor
I’m a Digital Media Specialist who is also enjoying freelance work in social network marketing and website administra-
tion. The more I learn about ODROID capabilities, the more excited I am to try new things I’m learning about. Being
a transplant to San Diego from the Midwest, I am still quite enamored with many aspects that I think most West Coast
people take for granted. I live with my lovely wife and our adorable pet rabbit; the latter keeps my books and computer

equipment in constant peril, the former consoles me when said peril manifests.

Bruno Doiche, Senior Art Editor
It has passed four years, and Bruno still holds his b eer glass high and make you wonder: Isn’t that beer now hot? Didn’t he

tire of holding it for so long? Or is it just a picture?

OUR AMAZING ODROIDIAN STAFF:

Rob Roy, Chief Editor
I’m a computer programmer in San Francisco, CA, designing and building web applications for local clients on my
network cluster of ODROIDs. My primary languages are jQuery, Angular JS and HTML5/CSS3. I also develop pre-
built operating systems, custom kernels and optimized applications for the ODROID platform based on Hardkernel’s
official releases, for which I have won several Monthly Forum Awards. I use my ODROIDs for a variety of purposes,

including media center, web server, application development, workstation, and gaming console. You can check out my
100GB collection of ODROID software, prebuilt kernels and OS images at http://bit.ly/1fsaXQs.

http://
http://

INDEX

portable arcade station - 19

telegram chatbot - 14

android gaming: chrome death - 16

c2 manual - 18

android gaming: Pixel dodgers - 17

clip grab - 22

ODROIDs around the world - 20

Deluge - 12

rear view camera - 24

Odroid-C1/C2 papercase - 17

wine cellar - 6

kodi screensaver - 23

32-Bit Executable - 28

Meet an ODROIDIAN - 29

project, we’ll be using a cloud-based
communication (PaaS) company for the
proper delivery of those SMS messages
(i.e Twilio). Please refer to our previous
article published on Hardkernel’s Octo-
ber’s issue (http://bit.ly/2fFXJHQ) for
details on how to use such a service. An
LED is also added to the device which is
controlled programmatically, indicating
to a user physically in the room whether
ideal conditions are in the wine cellar at
that moment.

Building the circuit
We will use a breadboard to hold our

electronics together just as we did with
our previous IoT project, the street and
the home lights controller with SMS no-
tifier (http://bit.ly/2fFXJHQ), in order
to avoid any soldering and the hassle of
designing a PCB for our prototype. We
will connect various circuit components
with the ODROID-C2 GPIO pins us-

Any good wine preserver knows
how important it is to store wine
in conditions as close to a tradi-

tional wine cellar as possible in order to
ensure the taste and quality of the fine
beverage. Those conditions are based on
the temperature, the humidity and the
lighting of the space used as a wine cel-
lar. In particular, the temperature must
be held as close as possible to 12 degrees
Celsius, though fluctuations between 10
and 14 degrees are acceptable, in order
to guarantee a good aging process. With
respect to humidity, it must be at least
50% to ensure a warm and moist envi-
ronment for the wine. Lastly, it must be
a dark room as often as possible, as light
can cause oxidation and unnaturally ac-
celerate the aging process. All of these
elements must be in a delicate balance to
ensure your wine ages beautifully.

This project is the capstone of my
previous 3 articles regarding the Internet
of Things (IoT) using an ODROID-C2.
This IoT device, the environmental wine
cellar preserver and notifier, so to speak,
monitors the fermentation conditions
in the wine cellar using a temperature,
humidity, and light sensor. The most
important feature in this project is the
ability to receive an SMS alert if ideal
fermentation conditions are not being
met, however the fermentation data can
also be transmitted daily to the cloud
for remote monitoring as well. In this

ing Dupont Jumper Wires, as shown in
Figure 2. Here’s a list of all the hardware
and software we’ll be using for this proj-
ect:

Hardware:
•	 ODROID-C2 running Ubuntu

16.04
•	 5V/2A Power Supply from Hard-

Kernel (http://bit.ly/1X0bgdt)
•	 Breadboard and Dupont male to

female jumpers
•	 A DHT11 Temperature and Hu-

midity Sensor
•	 A Photo resistor
•	 (2) Resistors (4.7K and 220Ω)
•	 A 1 μF Capacitor
•	 An RGB LED

Software:
•	 Ubuntu 16.04 v2.0 from Hard-

kernel (http://bit.ly/2cBibbk)
•	 Python 2.7 or 3.3 (preinstalled

IoT Environmental
Wine Cellar
Preserver and Notifier
by Miltiadis Melissas (@miltos)

WINE CELLAR

Figure 1 - A Wine Cellar is an opportunity ripe for fermentation

ODROID MAGAZINE	 6

http://bit.ly/2fFXJHQ
http://bit.ly/2fFXJHQ
http://bit.ly/1X0bgdt
http://bit.ly/2cBibbk

Using Twilio
Please refer to the article in the

ODROID Magazine November issue
(http://bit.ly/2fFXJHQ) for informa-
tion on how to set up an account for
Twilio and how to use this cloud based
communication (PaaS) service. What
we actually need are the API keys (ac-
count_sid, auth_token) for using this
service and a python script for triggering
SMS messages to the user when certain
conditions are being met. The following
piece of code does exactly this:

def sent_SMS():

 from twilio.rest import

TwilioRestClient

 account_sid = “xxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxx” # Your

Account SID from www.twilio.com/

console

 auth_token = “xxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx” # Your Auth

Token from www.twilio.com/console

 client =

TwilioRestClient(account_sid,

auth_token)

 message = client.messages.

create(body=”Alert!!! The condi-

your ODROID-C2 with a short circuit
from a wrong connection. Just be care-
ful and double check everything before
powering it back on.

Writing the Code
We divided the code into sections

(chunks of code) for easier reading. We
start by importing the necessary mod-
ules. Then we define the pins on the
ODROID-C2 that we are going to use.
On the next step, we set up the wiringPi
module according to Hardkernel’s map
guide (http://bit.ly/2aXAlmt). We pro-
ceed by setting up the operation LED.
Next, we interface the photoresistor and
the DHT11 sensor with the ODROID-
C2. Of course, before doing that, we
define the variables needed for control-
ling them in Python. The next chunk of
code is important as we are pulling data
from the DHT11 sensor. Thankfully
enough, there is a piece of code available
in GitHub at http://bit.ly/2gAaUfK for
doing the job. Since we are going to use
the Twilio service, we set that up next.
Last, but not least, we check for the right
conditions in the wine cellar. The tem-
perature should be around 12 degrees
Celsius, the humidity at least 50%, and
the absence/presence of light. The last
piece of code is merely for validation
purposes. Please refer to the block dia-
gram in Figure 3.

on Ubuntu)
•	 WiringPi Library for controlling

the ODROID-C2 GPIO Pins.
You can learn how to install this
at http://bit.ly/2ba6h8o

Building the IoT
device

For our wired connections, we used
the male to female Dupont wires. The fe-
male side of this kind of jumper connects
to the male header of the ODROID-C2,
and the other male side connects into
the holes of the Breadboard. Please re-
fer to Hardkernel’s pin layout schematic
as you create the connections, which is
also available at (http://bit.ly/2aXAlmt).
Physical Pin 1 provides the VCC (3.3V)
to our circuit, and we connect it on the
second vertical line of our Breadboard.
Since we are going to use Pin 6 as the
common Ground, we connect that to
the first vertical line of our Breadboard,
near the edge. The DHT11 sensor has
three pins, so we connect Pin 1 to 3.3V
on the board, Pin 2 (brown wire) in the
middle to ODROID-C2, Pin 7, and the
last one (Pin 3) to the common Ground.
This is visualized in Figure 2. Next, the
photoresistor/photocell is connected to
physical Pin 18 on one of its side, the
other one goes to VCC (3.3V). Please
note that this red Dupont wire/jumper
connected to the vertical line of our
Breadboard. Extra care must be given
to the polarity of the capacitor (1uF),
since we need to connect its negative
side marked by (-) symbol with the com-
mon Ground. The positive side of the
capacitor is connected to the photoresis-
tor through the yellow Dupont wire and
from there to physical Pin 18. Finally,
the operational LED is connected to
physical Pin 16 for its anode (+) while
the cathode (-) is connected of course to
the common Ground through a 220Ω
resistor. That’s it! All of our physical
wiring is now connected.

Before connecting anything to your
ODROID-C2, disconnect the power. It
is important to note that you can destroy

WINE CELLAR

Figure 2 - A closer look at the bread-
board breakdown

Figure 3 - A breakdown of the various
code chunks and related hardware in use

ODROID MAGAZINE	 7

http://bit.ly/2fFXJHQ
http://bit.ly/2aXAlmt
http://bit.ly/2gAaUfK
http://bit.ly/2ba6h8o
http://bit.ly/2aXAlmt

def printData():

 global Humidity

 global Temperature

 print “H: “+Humidity

 print “T: “+Temperature

 #Checking here if the condi-

tions in the Wine Cellar is met

 if (int(Humidity)<50) or

((int(Temperature)<10) or

(int(Temperature)>14)):

	 print (“Alert!!! Tem-

perature and/or Humidity out of

range!”)

 #sent_SMS()

 ...

#}}}

We connect the DHT11 to the
ODROID-C2 using the wiringPi li-
brary, and the way we do it is not much
different than the method used with the
photoresistor. Since both of those ele-
ments are sensors, we directly read data
from their input pin and store it in an
variable or in an array. In the case of the
DHT11, we are storing data in an array
and this line of code does exactly this:

< data.append(odroid.

digitalRead(DHT11pin))>

Here’s a very important note: the
speed at which we read the data from the
DHT11 sensor will significantly influ-
ence the success or failure of the sensor.
After some trial and error, we found the
right value according to ODROID-C2
frequency clock. The next line of code
does the sampling. The value of 2900
gave us 100% accuracy in every DHT11
reading, but there is a range of values
(2900-3300) that you can experiment
with if you wish:

<for i in range(0,2900):>

Later, somewhere in the end of the
code, we extract the values of the hu-
midity with the temperature, and only

we find that such an SMS message is
triggered by a value under 2500:

< #Check the lighting conditions

in your wine cellar

 if (RCtime(5)<2500):

 print (“Alert!!! Light in

the wine cellar!”)

 send_SMS()>

Connecting Twilio
with the DHT11
sensor

Here’s the snippet we’ll use with the
temperature and humidity sensor:

def pullData():

#{{{ Pull data from GPIO.odroid

 global data

 global effectiveData

 global pin

 data = []

 effectiveData = []

 odroid.pinMode(DHT11pin,1)

 odroid.

digitalWrite(DHT11pin,1)

 time.sleep(0.025)

 odroid.

digitalWrite(DHT11pin,0)

 time.sleep(0.14)

 odroid.pinMode(DHT11pin,0)

 odroid.

pullUpDnControl(DHT11pin,2)

 for i in range(0,2900):

 data.append(odroid.

digitalRead(DHT11pin))

 “””

 for i in range(0,len(data)):

 print “%d” % data[i],

 print

 “””

#}}}

 ...

tions on the wine cellar is out

of range!”,

 to=”+xxxxxxxxxx”, # Re-

place with your phone number

 from_=”+xxxxxxxxxx”) # Re-

place with your Twilio number

 print(message.sid)

Connecting Twilio
with the
photoresistor

def RCtime(RCpin):

 reading = 0

 odroid.pinMode(RCpin,1)

 odroid.digitalWrite(RCpin,0)

 time.sleep(0.1)

 odroid.pinMode(RCpin,0)

 # This takes about 1 milli-

second per loop cycle

 while (odroid.

digitalRead(RCpin) == 0):

 reading += 1

 return reading

 ...

def printData():	

 ...

 #Check the lighting conditions

in your wine cellar

 if (RCtime(5)<2500):

 print (“Alert!!! Light in

the wine cellar!”)

 #send_SMS()

Connecting the photoresistor ele-
ment with Twilio was described fully
in our previous article, “ODROID-
C2 as an Iot device: Street and Home
Lights controller with an SMS noti-
fier“ in ODROID’s November magazine
(http://bit.ly/2fFXJHQ). The critical
part is to define the right threshold of
light through which the SMS message is
triggered by calling the Twilio function.
You should test and find this very spe-
cific level of light according to your wine
cellar’s own light conditions through tri-
al and error. Since we don’t have a wine
cellar, we tested the photoresistor under
the normal conditions in our room, and

WINE CELLAR

ODROID MAGAZINE	 8

http://bit.ly/2fFXJHQ

Figure 4 - A look at the python code
running on the device to alert us

 time.sleep(0.1)

 odroid.pinMode(RCpin,0)

 # This takes about 1 milli-

second per loop cycle

 while (odroid.

digitalRead(RCpin) == 0):

 reading += 1

 return reading

We define the variables needed for
controlling the DHT11 sensor:

def bin2dec(string_num):

 return str(int(string_num,

2))

data = []

effectiveData = []

bits_min=999;

bits_max=0;

HumidityBit = “”

TemperatureBit = “”

crc = “”

crc_OK = False;

Humidity = 0

Temperature = 0

We interface the DHT11 with
Odroid-C2 via GPIO (wiringPi):

def pullData():

#{{{ Pull data from GPIO.odroid

 global data

 global effectiveData

 global pin

 data = []

 effectiveData = []

 odroid.pinMode(DHT11pin,1)

 odroid.

digitalWrite(DHT11pin,1)

 time.sleep(0.025)

 odroid.

digitalWrite(DHT11pin,0)

 time.sleep(0.14)

 odroid.pinMode(DHT11pin,0)

 odroid.

pullUpDnControl(DHT11pin,2)

the IoT device. However, it requires the
user’s personal presence.

Bringing it all
together

Let’s assemble everything in Python.
We’ll need to first import the modules:

#!/usr/bin/python

import wiringpi2 as odroid

import time

import sys

Next, we’ll define the pins as LED-
pin=4 (physical Pin 16) and DHT-
11pin=7 (physical Pin 7):

LEDpin=4

DHT11pin=7

Then, we’ll set up the WiringPi
module according to Hardkernel’s map
guide:

odroid.wiringPiSetup()

And now we’ll set up the operational
LED:

#Set the operational LED

odroid.pinMode(LEDpin,1)

odroid.digitalWrite(LEDpin,1)

We interface the photoresistor by de-
fying the function RCtime(RCpin):

def RCtime(RCpin):

 reading = 0

 odroid.pinMode(RCpin,1)

 odroid.digitalWrite(RCpin,0)

then do we test with the right conditions
in the wine cellar before we trigger the
SMS message, if necessary:

< #Checking here if the condi-

tions in the Wine Cellar is met

 if (int(Humidity)<50) or

((int(Temperature)<10) or

(int(Temperature)>14)):

	 print (“Alert!!! Tem-

perature and/or Humidity out of

range!”)

 sent_SMS()

 for i in range (0,10):

 #disable LED

 	 odroid.

digitalWrite(LEDpin, 0)

 	 # wait 1 second

 	 time.sleep(1)

 	 #enable LED

 	 odroid.

digitalWrite(LEDpin, 1)

 time.sleep(1)

 #cleanup

 odroid.pinMode(LEDpin, 1)

 #Print data

 print RCtime(5) # Read RC

timing using pin #18

 #Check the lighting conditions

in your wine cellar

 if (RCtime(5)<2500):

 print (“Alert!!! Light in

the wine cellar!”)

 send_SMS()

 for i in range (0,10):

 #disable LED

 	 odroid.

digitalWrite(LEDpin, 0)

 	 # wait 1 second

 	 time.sleep(1)

 	 #enable LED

 	 odroid.

digitalWrite(LEDpin, 1)

 time.sleep(1)

 #cleanup

 odroid.pinMode(LEDpin, 1)

>

Notice also how the LED blinks each
time an SMS alert message is sent, noti-
fying the user the proper functionality of

WINE CELLAR

ODROID MAGAZINE	 9

 account_sid = “xxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxx” # Your

Account SID from www.twilio.com/

console

 auth_token = “xxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx” # Your Auth

Token from www.twilio.com/console

 client =

TwilioRestClient(account_sid,

auth_token)

 message = client.messages.

create(body=”Alert!!! The condi-

tions on the wine cellar is out

of range!”,

 to=”+xxxxxxxxxx”, # Re-

place with your phone number

 from_=”+xxxxxxxxxx”) # Re-

place with your Twilio number

 print(message.sid)

And now the most critical part of this
project: we check the ideal conditions in
the wine cellar, and if those conditions
are not met, we trigger the SMS:

#{{{ Print data

def printData():

 global Humidity

 global Temperature

 print “H: “+Humidity

 print “T: “+Temperature

 #Checking here if the condi-

tions in the Wine Cellar is met

 if (int(Humidity)<50) or

((int(Temperature)<10) or

(int(Temperature)>14)):

	 print (“Alert!!! Tem-

perature and/or Humidity out of

range!”)

 sent_SMS()

 for i in range (0,10):

 #disable LED

 	 odroid.

digitalWrite(LEDpin, 0)

 	 # wait 1 second

 	 time.sleep(1)

 	 #enable LED

 	 odroid.

 “””

 Extract all HIGH bits’

blocks. Add each block as sepa-

rate item in data[]

 “””

 for i in range(0, 40):

 buffer = “”;

 while(seek < len(data)

and data[seek] == 0):

 seek+=1;

 while(seek < len(data)

and data[seek] == 1):

 seek+=1;

 buffer += “1”;

 “””

 Find the longest and the

shortest block of HIGHs. Aver-

age of those two will distinct

whether block represents ‘0’

(shorter than avg) or ‘1’ (longer

than avg)

 “””

 if (len(buffer) < bits_

min):

 bits_min =

len(buffer)

 if (len(buffer) > bits_

max):

 bits_max =

len(buffer)

 effectiveData.

append(buffer);

 #print “%s “ % buffer

#}}}

Now let’s set up the Twilio PaaS ser-
vice:

def sent_SMS():

 from twilio.rest import

TwilioRestClient

 for i in range(0,2900):

 data.append(odroid.

digitalRead(DHT11pin))

 “””

 for i in range(0,len(data)):

 print “%d” % data[i],

 print

 “””

#}}}

This section seeks and analyzes data
from the DHT11. This code is pulled
from Github (http://bit.ly/2gAaUfK) as
previously described:

def analyzeData():

#{{{ Analyze data

#{{{ Add HI (2x8)x3 bits to array

 seek=0;

 bits_min=9999;

 bits_max=0;

 global HumidityBit

 global TemperatureBit

 global crc

 global Humidity

 global Temperature

 HumidityBit = “”

 TemperatureBit = “”

 crc = “”

 “””

 Snip off the first bit - it

simply says “Hello, I got your

request, will send you tempera-

ture and humidity information

along with checksum shortly”

 “””

 while(seek < len(data) and

data[seek] == 0):

 seek+=1;

 while(seek < len(data) and

data[seek] == 1):

 seek+=1;

WINE CELLAR

ODROID MAGAZINE	 10

http://bit.ly/2gAaUfK

Figure 5 - A screenshot of the program running in a terminal

month, the fourth indicates the month,
and the fifth represents the day of the
week. Those four were intentionally left
blank without any “/numbers” besides
the stars. You can experiment with other
options as well. At the end of the sched-
uled task, there is the command itself we
want to be run automatically:

$ sudo python /home/odroid/wine.

cellar.py

This command runs our script and
points to the path where it is located,
which is, in this case, /home/odroid/.
Then, save and close the editor. Now,
wait and watch as the application does
its magic. You will have a new incoming
SMS message every time the tempera-
ture, the humidity, or the lighting is out
of range. That’s it, we did it!

Final thoughts
The code of the wine cellar preserver

and notifier can be improved or altered
in many ways. One method is to add to
it a feature that reports the values of hu-
midity, the temperature and the lighting
in every reading to the cloud. We have
described how this can be done using
Twython API in our article in ODROID
Magazine’s September issue (http://bit.
ly/2cIyp36). Please refer to this article
on how to utilize such a service. By us-
ing Twython, we can send tweets to our
Twitter account with the reading values
of the humidity, temperature and the
lighting.

program displays on the screen the tem-
perature and humidity, and reports the
presence or the absence of light in the
wine cellar. It also notifies the user by
sending an SMS to their phone if the
proper conditions are not met. Please
note that during the sending of mes-
sages, the operational LED is blinking,
as an indication of the “alert” process.
Next, let’s automate it and make it run
every 3 hours. For this task, we will use
the cron utility.

What is cron? It defines jobs that are
used to schedule tasks and scripts, such
as deftags, backups and alarms. We used
the “cron” utility previously when we
designed the Gmail notifier IoT project
back in the October issue of ODROID
Magazine (http://bit.ly/2dwqXJ7). If
you need further information about cron,
please refer to http://bit.ly/2bTmNaN.
In order to activate cron, we must ex-
ecute the command crontab which gives
us a list of scheduled tasks:

$ sudo crontab -e

It will probably be empty. Then,
choose any text editor, such as vim, and
add the following line of code at the end
of the scheduled tasks list:

* */3 * * * sudo python /home/

odroid/wine.celllar.py

The five “stars” (“* * * * *”) specify
how often you want the task to be run.
The first star controls the minutes. The
second star controls the hours, which is
why I put a “/3” symbol after it, since
I want this scheduled task to run every
12 hours. The third specifies the day of

digitalWrite(LEDpin, 1)

 time.sleep(1)

 #cleanup

 odroid.pinMode(LEDpin, 1)

 #Print data

 print RCtime(5) # Read RC

timing using pin #18

 #Check the lighting conditions

in your wine cellar

 if (RCtime(5)<2500):

 print (“Alert!!! Light in

the wine cellar!”)

 send_SMS()

 for i in range (0,10):

 #disable LED

 	 odroid.

digitalWrite(LEDpin, 0)

 	 # wait 1 second

 	 time.sleep(1)

 	 #enable LED

 	 odroid.

digitalWrite(LEDpin, 1)

 time.sleep(1)

 #cleanup

 odroid.pinMode(LEDpin, 1)

#}}}

Finally, let’s do some validation
checking:

#{{{ Main loop

while (not crc_OK):

 pullData();

 analyzeData();

 if (isDataValid()):

 crc_OK=True;

 print “\r”,

 printData();

 else:

 sys.stderr.write(“.”)

 time.sleep(2);

#}}}

Testing and running
the code

We run the whole code as a final test:

$ sudo python wine.cellar.py

It should work like a charm. The

WINE CELLAR

ODROID MAGAZINE	 11

http://bit.ly/2cIyp36
http://bit.ly/2cIyp36
http://bit.ly/2dwqXJ7
http://bit.ly/2bTmNaN

Deluge
Your new favorite BitTorrent client
by @synportack24

DELUGE

Figure 1 - The Deluge desktop client

Once installed, we can take a quick look at running and
using Deluge on a local machine. This means that the pro-
gram will be interacting with and running Deluge on the same
computer. Launching the program will start both the Deluge
daemon and the graphical front end.

Deluge on a Server
Having Deluge running on a server is a noteworthy fea-

ture that deserves its very own section. Deluge is one of the
few torrent clients that has the ability to run as a daemon and
be interacted with via a web interface. There are actually two
daemons that need to be running for this to happen: deluged,
and deluge-web. Both daemons may not be typically installed
with the basic Deluge pack, but they can be installed with the
following commands:

$ sudo apt-get install deluge-webui

$ sudo apt-get install deluged

Once installed, we need to set up the sysmd scripts for
deluged and deluge-web. I would recommend create a more
limited user and group to be in charge of running the Deluge
services.

$ sudo adduser --system \

 --gecos “Deluge Service” \

 --disabled-password --group \

 --home /var/lib/deluge deluge

This will create a new group and a new user named “del-
uge”. It is possible to run this with the default “odroid” user, by
simply modifying the following service files to use the odroid
as a user. Once again, I am going to iterate that for security
reasons this is not the best idea. Next we need to create two
service files, one for each of the services. Create a file called /

There is a near endless list of BitTorrent clients available
for Linux, and everyone will say that the one they use is
the best. However, one name you will repeatedly hear

as a favorite is Deluge. Its strong popularity is no surprise,
since it is not only lightweight while offering a full feature
list, but it also is cross-platform and cross-architecture. Del-
uge shows off a nice-looking and simple-to-use front end that
wraps around a libtorrent base. One of the most useful features
for us ODROIDians is the ability to have the torrent daemon
running on a server and a connect remotely to it via a web
interface. This article showcases some of my favorite Deluge
features as well as how to use them.

Getting Started
To play around with Deluge when writing this article, I

used an ODROID-XU4, but this guide should work for any
other ODROID board. Installation is simple and easy, and can
be quickly done with using the Ubuntu Package Manager with
the following command:

$ sudo apt-get install deluge

ODROID MAGAZINE	 12

DELUGE

Conclusion
Deluge is a great open source torrent

client that has a plethora of useful fea-
tures. If you have an extra ODROID or
you’re looking for a good way to zest up
your current ODROID server, Deluge’s
web user interface is a great way to make
a quick and easy seedbox.

Figure 2 - Web User Interface login

Figure 3 - Plugin menu

[Install]

WantedBy=multi-user.target

Now the service can be setup to run
on boot and started.

$ systemctl enable /etc/systemd/

system/deluged.service

$ systemctl start deluged

$ systemctl status deluged

$ systemctl enable /etc/systemd/

system/deluge-web.service

$ systemctl start deluge-web

$ systemctl status deluge-web

With both services running, we can
now try to connect to it from a web
browser. The web interface is by default
waiting on port 8112. This means once
everything is up and running, we can
connect to it from from a web browser
by typing in http://<server-IP>:8112.

The first time logging in to the sys-
tem, you will be shown a popup for a
password. The default password is “del-
uge”, followed by the option to change
it. After updating the password, you
now have full control over your Deluge
client.

Plugins
Beyond the built-in features already

available, Deluge has a solid list of ad-
ditional plugins that can be installed as
well. Third party plugins such as batch
renamers, and more advanced schedul-
ers can be downloaded from http://bit.
ly/2igFfBC.

etc/systemd/system/deluged.service and
fill it with the following content:

[Unit]

Description=Deluge Bittorrent

Client Daemon

After=network-online.target

[Service]

Type=simple

User=deluge

Group=deluge

#007 full access to the user and

members of the group.

#022 full access to the user run-

ning, and read access to others.

#000 full access to all accounts.

UMask=007

ExecStart=/usr/bin/deluged -d

Restart=on-failure

Configures the time to wait

before service is stopped force-

fully.

TimeoutStopSec=300

[Install]

WantedBy=multi-user.target

Next, we need to create a file for web-
ui called /etc/systemd/system/deluge-
web.service. The content for the file is
shown below:

[Unit]

Description=Deluge Bittorrent

Client Web Interface

After=network-online.target

[Service]

Type=simple

User=deluge

Group=deluge

UMask=027

ExecStart=/usr/bin/deluge-web

Restart=on-failure

ODROID MAGAZINE	 13

http://%3Cserver-IP%3E:8112
http://bit.ly/2igFfBC
http://bit.ly/2igFfBC

Using an instant messaging chat
bot for the user-interface of a
home automation project, in

some cases, has its advantages over us-
ing a web server. For example, our au-
tomated house has access to the Internet
via a 3G modem. If we intend to use an
externally visible web server, we would
need a public IP address. This may not
always be possible, and we may incur ad-
ditional expense. One would not face
these issues when using a messaging ser-
vice like Telegram Chatbot.

Telegram is a messaging app that has
been gaining popularity, thanks to its
distinctive qualities such as speed, reli-
ability, privacy and flexibility. However,
what we are most interested in is another
feature: an open API for creating chat-
bots.

Apart from the fact that chatbots are
officially supported in Telegram, there
is another reason to use this messenger.
You can create a custom virtual keyboard
that provides unprecedented conve-
nience for the user interacting with the
bot. Rather than manually entering a
command, the user can tap on a button
in the Telegram client app.

In this tutorial, we will learn how to
setup and use Telegram chatbot in Linux
for a very simple example application of
mimicking a smart home. This app is
able to light up two LEDs: green and
red, according to the input from the user.

Telegram Chatbot
Advanced Home Automation
by Max Volkov

TELEGRAM

Initial setup
Assume you have Python 2.7 and pip

(Python Package Index) already installed
on your ODROID device. You also
need to install a Python package used in
this app - pyTelegramBotAPI, which is
a Python implementation for the Tele-
gram Bot API.

$ pip install pyTelegramBotAPI

Now you need to create a Telegram
account if you have not got one yet.
Install the Telegram client app on your
smartphone, or download it from tele-
gram.org, and install it on your PC. It
is straightforward to create an account in
the client application.

Next, you need to create your chat-
bot. It is done using BotFather, which is
a bot for creating bots. To do that in the
client app, search for BotFather. After
finding that contact, click the Start link
below it. You’ll receive a long message
describing all available commands to
manage bots. All commands start with a
slash (“/”). Use the /newbot command
to create a new bot. The BotFather will
ask you for a name and username, and
after providing that information, an au-
thorization token for your new bot is
created. The name of your bot is dis-
played in contact details and elsewhere.

The Username is a short name, to be
used in mentions. Usernames are 5-32

characters long and are case insensitive,
but may only include Latin characters,
numbers and underscores. Your bot’s
username must end in “bot”, e.g. “tet-
ris_bot” or “TetrisBot”.

The token is a string that is required
to authorize the bot and send requests
to the Bot API. Once you get the token
for your bot, save it somewhere to use in
your app. In the Telegram client app,
search for the Username you had speci-
fied earlier and add it to the contact list.
Details of managing Telegram bots are
described at http://bit.ly/2hlOyQK.

Run the Python
script

Now that you have installed the Tele-
gram client app and created a Telegram
user account and a bot, you are ready
to run the Python bot app on your
ODROID SBC and test it. Save the
code snippets listed below into a plain
text file and name it, for instance, “chat-
bot.py”. Run the script using the com-
mand:

$ python chatbot.py

Shown below is Python script includ-
ing some explanations. First, declare the
external Python modules used in the
script:

import telebot

ODROID MAGAZINE	 14

telegram.org
telegram.org
http://bit.ly/2hlOyQK

script could identify you.
This is done in the beginning of the second function send_

welcome, which is called when the chatbot receives /start com-
mand. If the user password specified after /start keyword is
identical to the one in the string value specified instead of “my_
password_here” in the script, then the function send_welcome
does two things:

1.	 saves chat id of the current message to global variable
our_chat_id that will be used later in the script;

2.	 creates a custom keyboard with 4 buttons and displays
it to the authorized user along with the message “Wait-
ing for your command” by calling the function send_
LED_ctrl_keyboard.

On the contrary, if the password does not match, the func-
tion sends a response message indicating that the user is not
known. Let us examine what chat id is, as well as making a
virtual keyboard in more detail.

Chat id is a numerical value that Telegram messaging ser-
vice assigned to the communication session with the chatbot.
Theoretically, anyone from Telegram can contact our bot.
Therefore, it makes sense to use it as the identifier of the ses-
sion, in which the user specified correct password. This chat id
is stored in the global variable our_chat_id, and will be used in
further communications. Moreover, this chat id can be stored
in a file or in a database, and used in the next sessions. In this
case, there is no need to enter a password every time the script
is run.

In the send_LED_ctrl_keyboard function, we make a cus-
tom virtual keyboard with 4 buttons for the purpose of conve-
nience. Tapping on a button has the same effect as typing text
on a keyboard and sending it to the bot.

A button is defined by calling the types.KeyboardButton
method. An argument is a text string that will be displayed on
the button and sent to the chatbot by tapping on that button.

TELEGRAM

from telebot import types

To create a Telegram bot object, you must submit your bot’s
token that was mentioned above in the initial setup section.

bot = telebot.TeleBot(“my_Telegram_bot_token_here”)

our_chat_id=0

The token our_chat_id is a global variable holding the chat
identifier. The meaning of that is explained below in the send_
welcome function description.

def extract_unique_code(text):

 # Extracts the unique_code from the sent /start

command.

 return text.split()[1] if len(text.split()) > 1

else None

@bot.message_handler(commands=[‘start’])

def send_welcome(message):

 global our_chat_id

 unique_code = extract_unique_code(message.text)

 if unique_code: # if the ‘/start’ command con-

tains a unique_code

 if unique_code==”my_password_here”:

 our_chat_id=message.chat.id

 send_LED_ctrl_keyboard(our_chat_id)

 else:

 reply = “Sorry, don’t know who are

you...”

def send_LED_ctrl_keyboard(chat_id):

 markup = types.ReplyKeyboardMarkup(row_width=2)

 itembtn1 = types.KeyboardButton(‘Red LED on’)

 itembtn2 = types.KeyboardButton(‘Green LED on’)

 itembtn3 = types.KeyboardButton(‘Red LED off’)

 itembtn4 = types.KeyboardButton(‘Green LED off’)

 markup.add(itembtn1, itembtn2, itembtn3, itemb-

tn4)

 bot.send_message(our_chat_id, “Waiting for your

command”, reply_markup=markup)

We have defined three functions above. The first one is
just to extract the user password from the /start command line.
According to the official Telegram bot guide, all bot developers
are required to support a few basic commands: /start, /help, /
settings.

The /start command begins an interaction with the user,
such as sending a greeting message. In our script, the /start
command carries the payload, which means that after the /
start keyword, you must specify your user password so that the

ODROID MAGAZINE	 15

start command, that is handled by send_
welcome function. First, the incoming
message’s chat id is checked. If it’s “our”
chat (with an authorized user) then it
continues, otherwise it displays an error
message and exits. If the check passes,
then we analyze the contents of message.
text property, whose name speaks for
itself. If it is recognized as one of the
valid commands, the appropriate action
is done. In the echo_all function above,
it is only limited by the response message
to the user. In the real smart home proj-
ect, any action can be carried out, such
as sending a command to the lower level,
or activating a GPIO output pin. A re-
ply of misunderstanding is sent in that
rare case when an authorized user tried
to type a command manually instead of
using a button, and there’s an error in
that “hand-written” command.

bot.polling()

Last, but not least, this line of code
is the call blocking method called bot.
polling that makes our chatbot waiting
forever for an incoming message.

Notes
In this article, we discussed a very

simple version of the Telegram chatbot
application. It can be enhanced further
by adding a variety of options. For ex-
ample, consider creating a multilevel
“keyboard system” with a different key-
board configuration for each branch of
each level. Also, it is possible to attach a
keyboard to a message, referred to as the
inline keyboard. This and other features
are described in detail in the relevant sec-
tion of the Telegram website at http://
telegram.org.

Another option to perform the same
action is just to type a message, e.g.,
“Green LED off” on your keyboard and
click “send”. But why bother typing if
there is a button?

@bot.message_handler(func=lambda

message: True)

def echo_all(message):

 global our_chat_id

 if message.chat.id==our_chat_

id:

 if message.text == ‘Red

LED on’:

 bot.reply_to(message,

‘OK, lighting red LED’)

 return

 if message.text == ‘Green

LED on’:

 bot.reply_to(message,

‘OK, lighting green LED’)

 return

 if message.text == ‘Red

LED off’:

 bot.reply_to(message,

‘OK, putting out red LED’)

 return

 if message.text == ‘Green

LED off’:

 bot.reply_to(message,

‘OK, putting out green LED’)

 return

 bot.reply_to(message,

‘Not understood’)

 else:

 bot.reply_to(message,

“Sorry, don’t know who are you…”)

The function echo_all is a message
handler, and is called every time our
chat bot receives a message except for /

TELEGRAMANDROID GAMES

Chrome
death
A cyberpunk-
themed action
game that will
keep your
adrenaline
pumping
by Bruno Doiche

Survive in
an endless
racer set on

a cyberpunk-esque
city, where you keep running for your
life. With agents blocking your way,
your reflexes are your tool to keep
going for the longest time possible.
Based on that cool feel from the 1980s
VHS movies and with a soundtrack
that is a show in itself, Chrome Death
is a thriller that will make your An-
droid gaming collection a little bright-
er. With easter eggs hidden here and
there, you will certainly lose a couple
of lives enjoying this fast paced game!

https://play.google.com/store/
apps/details?id=com.newmark.
chromedeathandroid&hl=en

A game with sublte challenges, this
one will test your reflexes for sure

ODROID MAGAZINE	 16

http://telegram.org
http://telegram.org
https://play.google.com/store/apps/details?id=com.newmark.chromedeathandroid&hl=en
https://play.google.com/store/apps/details?id=com.newmark.chromedeathandroid&hl=en
https://play.google.com/store/apps/details?id=com.newmark.chromedeathandroid&hl=en

in Figure 1, because it was the only file
where I could find some numbers for
use with my paper case.

After some hours with Photoshop,
I was able to say that I had a pretty de-
cent case, which is shown in Figures 2
and 3. I know that it’s not a Picasso,
but it’s a cool case, and you can put
some stickers on it!

I recommend printing the PDF file
on the thickest piece of cardboard that
your printer can handle. Alternatively,
you can print it on plain paper and glue
that to a piece of thick cardboard.

To make your own paper case,
download the file from http://bit.
ly/2ifvFyG for free. If you have com-
ments, questions and suggestions,
please visit the original article at http://
bit.ly/2ipdVhu.

Not a long ago, I bought a wonder-
ful board called the ODROID-
C2. Although it has a smaller

community of my already retired Rasp-
berry Pi, it is a product of the highest
quality and reliability. I decided to start
installing all of the things that I needed
to make it fully functional. When I had
all of the software perfectly configured,
there was only one thing missing: a case.
Since I do not yet have a 3D printer, I
decided to put my hands to work and
make my own paper case.

After some time searching the web
for the measurements of the ODROID-
C2, I downloaded random 3D model-
ing files from other ODROID-C2 cases
in order to use their measurements. I
thank the person that made the file show

ODROID-C1/C2
Paper Case
by @thekillercarrot

PAPER CASE

Figure 1 - The measurements for the
paper case

ANDROID GAMES

Pixel dodgers
fasten your
fingers and dodge
fireballs
by Bruno Doiche

Act fast to dodge as many pixel
blasts as you can before be-
ing blown to

smithereens! In Pixel
Dodgers, you need to
keep track of where
you are and where
you need to go in or-
der to escape the pes-
ky fireballs. Simple
and intuitive gameplay will keep you
dodging all day. The best part is using
it with a keyboard and feel like you
are playing some sort of old MSX-
style game!

https://play.google.com/store/
apps/details?id=com.bigbluebub-
ble.pixeldodgers

Dodging fireballs on a flying platform
on ancient Egypt with traps on the
floor? Count me in!

ODROID MAGAZINE	 17

http://bit.ly/2ifvFyG%20
http://bit.ly/2ifvFyG%20
http://bit.ly/2ipdVhu
http://bit.ly/2ipdVhu
https://play.google.com/store/apps/details?id=com.bigbluebubble.pixeldodgers
https://play.google.com/store/apps/details?id=com.bigbluebubble.pixeldodgers
https://play.google.com/store/apps/details?id=com.bigbluebubble.pixeldodgers

The official user manual for the
ODROID-C2 was recently released
on the ODROID Magazine web-

site, and is available for direct download at
http://bit.ly/2hM1FH6, via the forums at
http://bit.ly/2i5F7nM, and on the Google
Play Store at http://bit.ly/2iCuupA.

The ODROID-C2 is one of the most
powerful low-cost 64-bit Single Board
Computers available, as well as being an
extremely versatile device. Featuring a fast,
quad-core AmLogic processor, advanced
Mali GPU, and Gigabit Ethernet, it can
function as a home theater set-top box, a
general purpose computer for web brows-
ing, gaming and socializing, a compact tool
for college or office work, a prototyping de-
vice for hardware tinkering, a controller for
home automation, a workstation for soft-
ware development, and much more.

Some of the modern operating systems
that run on the ODROID-C2 are Ubuntu,
Android, and ARCH Linux, with thousands
of free open-source software packages avail-
able. The ODROID-C2 is an ARM device,
which is the most widely used architecture
for mobile devices and embedded comput-
ing. The ARM processor’s small size, re-
duced complexity and low power consump-
tion makes it very suitable for miniaturized
devices such as wearables and embedded
controllers.

ODROID-C2
Manual
A Guide for All Expertise Levels
by Rob Roy (@robroy)

C2 MANUAL

 ODROID-C2 User Manual cover

ODROID MAGAZINE	 18

http://bit.ly/2hM1FH6
http://bit.ly/2i5F7nM
http://bit.ly/2iCuupA

ODROID-C2 with case
Bluetooth module 2
WiFi Module 0
Dknight Magicbox 2 Bluetooth speaker and microphone
RAVpower 16750 power bank - 4.5A total - 5V/2.4A and 5V/2.1A ports
Waveshare 10.1 inch touchscreen 1280x800 (5V 2.5A)
16GB eMMC (Android)
16GB 48mb/sec Samsung microSDHC card
Xbox 360 wireless receiver
Anker multi angle stand
Poker chip set case

The arcade station setup

I created a portable arcade station with a 10” touchscreen us-
ing the electronics listed below. The unit plays Atari, Super
Nintendo, Nintendo 64 and Nintendo DS games perfectly.

Dreamcast and PS games very well with adjustments, and it can
run a few PSP games decently.

It runs for almost 7 hours on one charge, and takes 10-12
hours to recharge with a 2.5A charger. For comments, questions,
and suggestions, please visit the original thread at http://bit.
ly/2ia2eh7.

Portable Arcade
Station
by @LtBenjamin

PORTABLE ARCADE STATION

The case is portable and looks very James Bond

 Everything is very neatly arranged inside the poker chip case

 The touchscreen fits on top of the rest of the components

 The Xbox 360 controllers work well with all of the emulators

 Turok runs very well on the portable arcade station

ODROID MAGAZINE	 19

http://bit.ly/2ia2eh7
http://bit.ly/2ia2eh7

Sensors
 myAHRS+
 Weather Board 2

Legacy products
 ODROID
 ODROID-7
 ODROID-A4
 ODROID-PC
 ODROID-S
 ODROID-T
 ODROID-A
 ODROID-U3
 ODROID-U2
 ODROID-X2
 ODROID-E7
 ODROID-Q2
 ODROID-XU3 (+Lite)
 ODROID-XU (+Lite)
 ODROID-X
 ODROID-C1
 ODROID-Q
 ODROID-XU+E
 Smart Power
 HiFi Shield for C2/C1+
 ODROID-UPS
 ODUINO One
 UPS2 for U3
 Weather Board
 ODROID-VU
 ODROID-Show
 ODROID-W

Hardkernel introduced its first ODROID computer in
2009 (http://bit.ly/1Gx5Lr1), and has since become a
leader in single board computers with the recent in-

troduction of the ODROID-C2 and ODROID-XU4. They
continually release cutting-edge development boards, and their
catalog is extensive:

Current products
 ODROID-C2
 ODROID-XU4
 ODROID-C1+
 ODROID-C0

Displays
 ODROID-VU8C
 ODROID-VU5
 ODROID-VU7 Plus
 ODROID-VU7
 3.5inch Touchscreen Sh
 C1 3.2inch TFT+Touchsc
 16x2 LCD + IO Shield
 LED Matrix Shield
 ODROID-SHOW2

Development Kits
 C Tinkering Kit
 USB-UART Module Kit
 Xprotolab Plain

Add-on Boards
 CloudShell for XU4
 Expansion Board
 USB IO Board
 XU4 Shifter Shield
 Universal Motion Joypad
 USB3.0 to SATA Bridge
 U3 IO Shield
 U3 Shield Tinkering Ki

ODROIDS AROUND
THE WORLD
The International REACH
of hardkernel’s popular
SINGLE board computers
by Rob Roy (@robroy)

HARDKERNEL

News of the usefulness and affordability
of ODROID boards has spread around
the world. Hardkernel has received or-
ders from nearly 150 countries:

Albania
Algeria
Andorra
Angola
Argentina
Armenia
Aruba
Australia
Austria
Azerbaijan
Bahrain
Bangladesh
Barbados
Belarus
Belgium
Bermuda
Bolivia
Bosnia-Herzegovina
Brazil
British Virgin Islands
Bulgaria
Burkina Faso
Cambodia
Canada
Cape Verde
Chile
China
Colombia

ODROID MAGAZINE	 20

Hardkernel has sold its single board computers in almost 150 countries, and has visitors to its website in 200 countries!

HARDKERNEL

Costa Rica
Croatia
Curacao
Cyprus
Czech Republic
Denmark
Dominican Republic
Ecuador
Egypt
El Salvador
Estonia
Faroe Islands
Finland
France
French Guiana
French Polynesia
Gambia
Georgia
Germany
Ghana
Gibraltar
Greece
Greenland
Guadeloupe
Guatemala
Honduras

Hong Kong
Hungary
Iceland
India
Indonesia
Iran
Ireland
Isle of Man
Israel
Italy
Ivory Coast
Jamaica
Japan
Jordan
Kazakhstan
Kenya
Kosovo
Kuwait
Kyrgyzstan
Laos
Latvia
Lebanon
Libya
Liechtenstein
Lithuania
Luxembourg

Macau
Macedonia
Madagascar
Malaysia
Maldives
Mali
Malta
Marshall Islands
Martinique
Mauritius
Mexico
Moldova
Mongolia
Montenegro
Morocco
Namibia
Nepal
Netherlands
Netherlands Antilles
New Caledonia
New Zealand
Nicaragua
Nigeria
Norway
Oman
Pakistan

Palau
Panama
Paraguay
Peru
Philippines
Poland
Portugal
Puerto Rico
Qatar
Reunion
Romania
Russia
Saudi Arabia
Senegal
Serbia
Singapore
Slovakia
Slovenia
South Africa
South Korea
Spain
Sri Lanka
Sweden
Switzerland
Syria
Taiwan

Tajikistan
Tanzania
Thailand
Tunisia
Turkey
U.S. Virgin Islands
U.S.A
Uganda
Ukraine
UAE
United Kingdom
Uruguay
Uzbekistan
Venezuela
Vietnam
Zimbabwe

ODROID MAGAZINE	 21

Supported sites
YouTube
Vimeo
Dailymotion
metacafe.com
youku.com
myspass.de
myvideo.de
clipfish.de
collegehumor.com
Other sites should be working as well.

Installation
You can download the program from my repository, which

is detailed in one of my previous ODROID Magazine articles
at http://bit.ly/2icmAUQ. The armhf version can be down-
loaded from the all/main package list and the arm64 version
from the jessie/main package list with the following command:

$ apt-get install clipgrab

For comments, questions and suggestions, please visit the
original thread at http://bit.ly/2hv9Awo.

ClibGrab is a program that allows to download and con-
vert Videos from sites as YouTube, DailyMotion and
other sites. You can choose in which format it should

be converted, such as MPEG4, MP3 or OGG. It uses ffmpeg
to convert the files.

ClipGrab
download your favorite
videos for offline viewing
by Tobias Schaaf (@meveric)

Browsing the available files

Selecting a file to download

Configuring the download options

CLIPGRAB

ODROID MAGAZINE	 22

http://www.youtube.com
http://www.vimeo.com
http://www.dailymotion.com
metacafe.com
youku.com
myspass.de
myvideo.de
clipfish.de
collegehumor.com
http://bit.ly/2icmAUQ
http://bit.ly/2hv9Awo

In this article, I will show you how to turn off your TV
when the Kodi screensaver activates, and turn the TV on
when the Kodi screensaver is deactivated. Before you be-

gin, make sure that your TV has functional CEC capabilities.

Installation
First, navigate to Kodi Settings -> Add-ons -> Install from

repository -> Kodi Add-on repository -> Services, and install
the “Kodi Callbacks” add-on.

Next, mount the / and /system partitions as read/write us-
ing a Terminal window:

$ su

$ mount -o remount,rw /

$ mount -o remount,rw /system

Add the following line to the file /init.odroidc2.rc:

chmod 666 /sys/class/amhdmitx/amhdmitx0/cec

Then, download the files “cecon” and “cecoff” from https://
db.tt/ai1DNnFh, copy them to /bin and make them execut-
able:

chmod +x /bin/cecoff

chmod +x /bin/cecon

Open Kodi and navigate to Kodi Settings -> Add-ons ->
My add-ons -> Services -> Kodi Callbacks. Add the following
two tasks under the “Tasks” tab:

Task 1
Task = script
Script executable file = /bin/cecoff

Task 2
Task = script
Script executable file = /bin/cecon

Under the “Events” tab, add the following two events:

Event 1 -> Choose event type -> on Screensaver Activated
Task = Task 1

Event 2 -> Choose event type -> on Screensaver Deactivated
Task = Task 2

Finally, reboot the system. Your TV will now turn off when
the screensaver is activated. You can adjust the timeout by
adjusting the screensaver time. If you are using an IR Remote
such as the Hardkernel remote, you can press a button on the
remote to wake up the TV or simply turn the TV back us-
ing the TV remote. For comments, questions and suggestions,
please visit the original thread at http://bit.ly/2i5OWSz.:

Kodi Screensaver
CONTROL YOUR CEC-COMPATIBLE TV MONITOR
WITH THIS SMOOTH FEATURE
by @rooted

KODI SCREENSAVER

ODROID MAGAZINE	 23

https://db.tt/ai1DNnFh
https://db.tt/ai1DNnFh
http://bit.ly/2i5OWSz

might hit me from behind. It makes me very uneasy that I
don’t have a view of what is behind me. So, I decided to make
a rear view camera system myself using an ODROID-C0.

The DIY rear view camera needs high bandwidth to trans-
mit the real time video. I decided it is a good approach to use
wifi as the interface for this project, as a wireless connection
gives us better spatial flexibility. To avoid making an addi-
tional display device, I decided to use my smartphone as the
rear view display. The rear view camera would be a Wifi AP
(Access Point) that will allow the smartphone to connect to it.
For this project the Wifi AP uses a ODROID Wifi module 0
and an ODROID-C0. The overview of the concept is shown
in Figure 1. A 720p camera captures the rear view and then
the ODROID-C0 encodes the video frame and transmits the
encoded video data via Wifi. We can then watch our rear view
on our smartphone after connecting to the streaming video
server hosted on the ODROID-C0.

These are the required hardware components in order to
make a DIY rear view camera:

ODROID USB-CAM 720p
ODROID-C0
16GB eMMC Module C1+/C0 Linux (Black)
Wifi Module 0
ODROID-C2/C1+ Case

When I moved to my new apartment, one of my
friends let me borrow his road bike. A road bike
is a type of lightweight bicycle that is designed

to go fast speeds on smooth paved roads. One day, I got
injured from falling off the bike, since I was new and inexpe-
rienced at riding road bicycles. Nevertheless, I can ride faster
on a road cycle than any other type of bicycle, and the thrill
of speed keeps me riding. Unsurprisingly, one of my favorite
hobbies became riding road cycles.

It depends on the laws of each country, but in South Korea,
it is legal to ride a bicycle on the roads. However, since I share
the roads alongside cars, I need to ride fast in order to not
disturb the flow of traffic. It’s when I am riding at full speed
on the road that riding really becomes exciting for me. Since
I riding next to cars and trucks, I am always worried that a car

Rear View Camera
Staying Safe On Your Bicycle
by Brian Kim

REAR VIEW CAMERA

Rear View Camera Concept Overview

ODROID MAGAZINE	 24

3000mAh Battery
USB-A Female Dual Port

I soldered a USB-A Female Dual Port to the ODROID-
C0 as seen in Figure 2 because the ODROID-C0 does not
come with the USB ports solder in. There is also an ODROID
USB-CAM 720P Camera, 3000mAh Battery, WiFi module 0,
ODROID-C0, and ODROID-C2/C1+ case. First, the DIY
rear view camera needs to have the software configured before
being installed to the bicycle. The software configurations
can be divided into two parts: Wifi AP settings and the video
streaming server settings.

WiFi Access Point configuration
Hostapd is a user space daemon for access points and authen-

tication servers. It can be used to create a wireless hotspot using
a Linux computer. Some additional packages are needed for ho-
stapd. An explaination about the hostapd setting can be found
on the Hardkernel wiki page for hostapd at http://bit.ly/2fJTr4h.
Hostapd can be installed with the following commands:

$ sudo apt-get update

$ sudo apt-get install libnl-3-dev \

 libnl-genl-3-dev libssl-dev hostapd

The smartphone connects to the rear view camera, which
corresponds to the “ssid” in the configuration file after setting
to AP mode. “wpa_passphrase” is the password need for con-
necting to the AP. The hostapd configuration files for Wifi
module 0 are as follows:

/etc/hostapd/hostapd.conf

interface=wlan0

driver=nl80211

ssid=ODROID_REARCAM

hw_mode=g

channel=6

macaddr_acl=0

auth_algs=1

ignore_broadcast_ssid=0

wpa=2

wpa_passphrase=saferiding

wpa_key_mgmt=WPA-PSK

wpa_pairwise=TKIP

rsn_pairwise=CCMP

/etc/default/hostapd

DAEMON_CONF=”/etc/hostapd/hostapd.conf”

DAEMON_OPTS=”-B”

The ODROID-C0 must assign the IP address to the con-
nected devices. I used dnsmasq in order to allocate dynamic IP
addresses to the connected nodes. Dnsmasq provides network
infrastructure for small networks such as: DNS, DHCP, router
advertisement, and network boot.

$ sudo apt-get install --reinstall dnsmasq

$ mv /etc/dnsmasq.conf /etc/dnsmasq.conf.orig

The conf file for dnsmasq can be configured as shown.

/etc/dnsmasq.conf

domain-needed

bogus-priv

no-resolv

no-poll

server=/example.com/192.168.1.5

server=8.8.8.8

server=4.4.4.4

local=/example.com/

address=/doubleclick.net/127.0.0.1

no-hosts

addn-hosts=/etc/dnsmasq.d/hosts.conf

expand-hosts

domain=example.com

dhcp-range=192.168.1.20,192.168.1.50,72h

dhcp-range=tftp,192.168.1.250,192.168.1.254

dhcp-option=option:router,192.168.1.1

dhcp-option=option:ntp-server,192.168.1.5

dhcp-option=19,0 # ip-forwarding off

dhcp-option=44,192.168.1.5 # set netbios-over-TCP/IP

aka WINS

dhcp-option=45,192.168.1.5 # netbios datagram distri-

bution server

dhcp-option=46,8 # netbios node type

The ODROID-C0 must be set to the server, or gateway, IP

REAR VIEW CAMERA

Hardware components for the DIY Rear View Camera

ODROID MAGAZINE	 25

http://bit.ly/2fJTr4h

address of “192.168.1.1”. The rear view displayer will connect
to this IP address.

/etc/network/interfaces

interfaces(5) file used by ifup(8) and ifdown(8)

Include files from /etc/network/interfaces.d:

source-directory /etc/network/interfaces.d

auto lo

iface lo inet loopback

auto eth0

iface eth0 inet dhcp

auto wlan0

iface wlan0 inet static

 address 192.168.1.1

 netmask 255.255.255.0

Real-time Camera Streaming
Server Configuration

The ffmpeg Linux package is for encoding and streaming
video data, so we can use it for our 720p camera stream. Ffserv-
er is able to stream many kinds of video formats but, we need
real time video playback to watch what is happening behind us.
The ODROID 720p camera supports not only raw video data,
but can also encode each video frame as jpeg. Therefore, mjpeg
(Multipart JPEG) format is good choice to reduce the video
encoding overhead and network bandwidth usage.

$ sudo apt-get install ffmpeg

/etc/ffserver.conf

HTTPPort 8090

HTTPBindAddress 0.0.0.0

MaxHTTPConnections 2000

MaxClients 1000	

MaxBandwidth 5000

<Feed cam1.ffm>

File /tmp/cam1.ffm

FileMaxSize 100M

</Feed>

<Stream cam1.mjpg>

Feed cam1.ffm

Format mpjpeg

VideoCodec mjpeg

VideoFrameRate 20

VideoBitRate 4096

VideoSize 640x480

NoAudio

</Stream>

<Stream stat.html>

Format status

ACL allow localhost

ACL allow 192.168.0.0 192.168.255.255

</Stream>

To start the streaming server automatically on every boot,
ffserver and ffmpeg commands are added to the /etc/rc.local
boot script file. Ffmpeg encodes the video data from the 720p
camera with the V4L2 (Video for Linux 2) interface, and then
send the video frames to the streaming server. Ffserver, which
is the video streaming server, receives the encoded video frame
and transmits the video frame in mjpeg format to the con-
nected client, which is a smartphone web browser.

/etc/rc.local

ffserver -d -f /etc/ffserver.conf&

ffmpeg -f v4l2 -s 640x480 -r 20 -vcodec mjpeg -i /

dev/video0 http://localhost:8090/cam1.ffm

exit 0

Rear View Camera Installation
The software configurations for the DIY rear view camera

are done after finishing the Wifi AP configuration and the vid-
eo streaming server setting. The next step is to install the DIY
rear view camera to the bike. Attach the 3000mAh battery to
the ODROID-C0 and pack them into the ODROID-C2/C1
case. Then, mount the 720p Camera and the ODROID case
to your bicycle. I used a cable tie and smartphone holder to
hold the rear view camera to my road bicycle as shown in Fig-
ure 3. Plug in the 720p camera and Wifi module 0 to the USB

ports of ODROID-C0 before turning on the ODROID-C0.
The smartphone, which is a rear view displayer, must con-

nect to the “ODROID_REARCAM” access point via Wifi

REAR VIEW CAMERA

DIY rear view camera installation to the road cycle

ODROID MAGAZINE	 26

REAR VIEW CAMERA

using the password “saferiding”. By opening the webpage
http://192.168.1.1:8080/cam1.mjpg on your smartphone, you
can have a digital real time rear view of our surrondings. Ride
safe and be happy with your DIY rear view camera system.

Charging the camera at home

ODROID Talk
Subreddit

 http://www.reddit.com/r/odroid

ODROID
Magazine

is on
Reddit!

ODROID MAGAZINE	 27

32-bit Executable on
64-bit Ubuntu
Chronicles of a Mad Scientist
by Bo Lechnowsky (@respectech)

32-BIT EXECUTABLE

After some trial-and-error, you come up
with the following fix:

$ sudo dpkg --add-architecture

armhf

$ sudo apt install libc6:armhf \

 libncurses5:armhf

 libstdc++6:armhf

After installing those libraries, you
attempt to run your executable again.
This time, it works! “Victory is mine!
Technology must kneel before my great-
ness!” The evening wears on as you
build your digital framework for world
domination. It is not long before you try
to run a graphical 32-bit executable and
you encounter:

error while loading shared li-

braries: libX11.so.6: cannot open

shared object file: No such file or

directory

“Confound it!” you yell! So you
counter the message with the following
command:

$ sudo apt install libx11-6:armhf

The system then returns with this
output:

error while loading shared

libraries: libXt.so.6

“Blast it!” you say, as you are con-
fronted by an error message on
your ODROID-C2 running 64-bit

Ubuntu:

$ sudo ./r3

sudo: unable to execute ./r3: No

such file or directory

You check, and in fact the file does
exist in the directory, and it is set as ex-
ecutable! You remember running into
this problem a couple of years ago, but
you don’t remember where you put your
note on how you fixed it. You mutter
to yourself, “This time, I’ll make sure
to post it on one of my favorite online
forums after I figure out how to fix it
again!”

The “file r3” Linux command gives
the following output:

$ file r3

r3: ELF 32-bit LSB executable,

ARM, EABI5 version 1 (SYSV),

dynamically linked, interpreter /

lib/ld-linux-armhf.so.3, for GNU/

Linux 2.6.27, BuildID[sha1]=96b9

4abdd300ad350ceb0b48b4b0461abd48

1c18, stripped

That excites some synaptic responses
in a long-dormant neural region in your
brain. “Aha, it has something to do with
a 32-bit binary running on a 64-bit OS!”

You and the operating system engage
in a power struggle:

$ sudo apt install libxt6:armhf

error while loading shared li-

braries: libXaw.so.7

$ sudo apt install libxaw7:armhf

error while loading shared li-

braries: libfreetype.so.6

$ sudo apt install

libfreetype6:armhf

“We can do this all night!” you say
to your digital archrival. For most other
applications, this would be sufficient.
But for your secret weapon, Rebol 2, you
need to run a couple more commands:

$ sudo apt install xfonts-100dpi

xfonts-75dpi

$ sudo reboot

“Declare your fealty to me, technol-
ogy!” You put your arms behind your
head and feet up on the desk as you bask
in the warmth of finally getting to de-
clare lordship over your digital vassals.

ODROID MAGAZINE	 28

years old, and studies medicine in a French University, and
Martin, who is 16 years old, and has become a champion of
3D design and printing. He is the one who made the Redtop
frame that you may have seen in a previous issue of ODROID
magazine. He attends the high school where I am teaching,
and took engineering sciences as an additional discipline, and
works on his project using an ODROID-C1. My wife is a spe-
cialized educator for handicapped. At home, she does plenty
of beautiful decorations with forgotten old stuff that she recov-
ers from everywhere.

How did you get started with computers?
I started in the computer world, not with Commodore 64,

ZX81, or any such system, but with a Nixdorf mini computer
in the early 1980s. Mini computers at this time meant small
mainframe systems. Nixdorf was a German company and is
now part of Siemens Group.

My parents sold and repaired agricultural machines, and for
handling their parts warehouse, they decided to buy a computer.
The Nixdorf minicomputer was designed specifically for profes-
sional shops, and was the first computer that I worked on. The
computer was bundled with software designed for the agricul-
tural machines business, and I did a lot of code modification in
Business BASIC, which was the primary programming language
for those machines, because it was the early 1980s. The software
company working for the Nixdorf local reseller found out that
the modifications that I did were quite interesting, and decided
to hire me during summer vacations.

Please tell us a little about yourself.
I am 51, and live with my wife Nadine and my 2 sons in

Orleans, France, which is 100km south of Paris. For the past
10 years, I have taught network and digital design and mainte-
nance in a French high school. I received an Electrical system
degree from the French state for having the right to teach in
high school, and I also earned an Engineering degree in com-
puter sciences. Before being a teacher, and after finishing my
studies in 1988, I started working with an international com-
pany that made Smartcards and chip card readers for banking,
health and telecom applications. I developed operating sys-
tem for these highly secured systems based on Motorola 6805
chips. I also worked on the card readers, designing the PCBs
and all the surrounding wiring During the last 3 years with
these Smartcard company, I was their Java “evangelist”, since
SmartCards became more and more “smart”, and included a
Java Virtual Machine as part of the OS. We placed our JVM
in both cards and readers, in order to have very flexible secured
solutions. These systems were forward-thinking, because An-
droid from Google has a similar architecture with the powerful
Dalvik JVM on top of Linux. That was a very pleasant time,
since I travelled around the world a lot, teaching Java for em-
bedded systems, and spent time in the United States, China
and South Africa.

After this rich experience, I decided with two other guys
from the SmartCard company to make a big jump, and found-
ed our own company in 1999 by developing SMS and MMS
solutions for telecom operators. This was when SMS/MMS
usage was growing very rapidly, and telecom operators were not
really ready to handle hundreds of millions of messages per day.

With my team, we developed powerful and scalable solu-
tions for dealing with SMS/MMS, based on Java and Linux
servers, which was mainly on Redhat in those days. This was
different from what I did before, since we were handling farms
of servers and network clusters, and setting up load balanc-
ing machines. The kind of servers we used at this time were
Dell PowerEdge 8450 (8 CPUs and 512MB RAM), weighing
around 60kg, which were actually less powerful than a single
ODROID-C1! In 2005, I decided to sell my shares from the
company that I co-founded in order to have more time with
my family. Teaching at a local high school close to my home
was the appropriate way to accomplish my goal.

With my wife Nadine, we have 2 sons: Antoine, who is 20

Meet an ODROIDian
Fabien Thiriet (@fab)
edited by Rob Roy (@robroy)

MEET AN ODROIDIAN

Fabien with his ODROID dashcam mounted on his car

ODROID MAGAZINE	 29

building my own systems. As you can see on the different pic-
tures included in this article, I have made many projects with
ODROID boards such as:

- A guitar mixer based on Guitarix, handled by an
ODROID-XU and Jackd. The XU is wired with a Korg Kon-
trol2 MIDI device and a Behringer Audio USB adapter.

- An accurate and portable system for marking the geo-
graphical boundary of land, based on an ODROID-C1, a 3.2
TFT color touchscreen, and the Hardkernel USB GPS dongle.
I developed the software in Python with the ncurses library in
order to have a nice semi graphical interface, but no desktop
for a lightweight solution.

- A dashcam for my car, in order to record everything in
front of my car for insurance purposes, in case of a car accident.
The dashcam uses an ODROID-W with a Pi camera.

- A surveillance radar which sends pictures through MMS

I was really enjoying that new kind of job, and learned a lot,
since this minicomputer was able to handle around 10 terminals
inside a very primitive network. Terminal addresses on the net-
work were actually set up with DIP microswitches. The Nixdorf
minicomputer was able to connect with other remote minicom-
puters through a 1200 baud modem. Despite this very low rate,
it is was not slow, as there were no graphical interfaces at all.

What attracted you to the ODROID platform?

In my classroom until 2012, I used an Asus laptop running
Ubuntu. In the spring of 2012, the Raspberry Pi foundation
released a very unusual tiny computer. I know that ODROID
had released a single board computer model before then, but this
information had not reached the old European countries yet.

I decided to do a trial with the Raspberry Pi, and replaced all
of my Asus laptops with this new toy, mainly for space reasons,
since the Pi is very space efficient compared to a traditional lap-
top. Students loved them at the beginning, but found out that
the Pi was very very slow, especially when browsing the Internet.

In 2014, Odroid SBCs finally reach Europe, so I migrated all
of my classrooms to the ODROID-C1 platform. This year, I did
a second upgrade to the ODROID-C2, which is perfect for what
I am doing at school, as it is really fast.

How do you use your ODROIDs?

At school, the ODROID is used for everything: web brows-
ing, document writing, Python programming, GNS3 network
labs, FreeCad design, video surveillance systems, and robotics.
At home, my main computer is the Redtop as I mentioned
before, based on an ODROID-C2. I do everything with it,
such as preparing my school courses, testing my labs, and

MEET AN ODROIDIAN

An old gem, the Nixdorf mini computer

MEET AN ODROIDIAN

Fabien’s amazing master project, the RedTop laptop

Fabien and his talented and tech-savvy family showing off their projects

ODROID MAGAZINE	 30

as soon as something moves in front of dual PIR/microwave
sensors. It is made with an ODROID-C1, a Huawei E220 3G
USB dongle, and a night vision USB camera along with the
dual motion sensors. This system is a ready-to-use solution,
and you just need to power the box from a 230V socket.

Which ODROID is your favorite and why?
My favorite ODROID is the C2, since the GPIO pin head-

er remains more or less compatible with Raspberry Pi, which
is really a big locomotive in the SBC world for add-on boards.
The ODROID-XU family is very nice, but unfortunately is
missing the Raspberry Pi GPIOs.

What was your motivation for developing your “RedTop” ODROID
laptop?

My RedTop is really my preferred device. First of all, it was
developed with my son, who did a really good job for the CAD
part, and second, the RedTop is based on a C2 which is the
general purpose computer I am using at school. So, all the stuff
that I am doing can be tested and very well prepared with the
RedTop in convenient way. The RedTop has a 13-inch color
LCD display, so it is very comfortable to work with.

What innovations would you like to see in future Hardkernel prod-
ucts?

Like most people, I would like to have something faster.
A better ARM core with a true 2GHz clock speed would be
nice. What is very important, in my opinion, is to remain
GPIO-compatible with the Raspberry Pi. Also, SPI and RTC
are missing on the C2, and it would nice to have them again, in
order to avoid using any add-on boards for that purpose.

What hobbies and interests do you have apart from computers?

From April to October, when the Atlantic Ocean tempera-

Fabien is an accomplished musician on electric and acoustic guitar A futuristic guitar mixer using an ODROID-XU

Fabien has practicied Scuba diving all over the world

ture becomes pleasant, I practice Scuba diving with my son
Martin around the Brittany coast. I am a CMAS 3-star diving
instructor. I have dived all around the world in very nice spots
like Maldives Islands, Hurghada in Egypt, Cuba, and French
Caribbean islands. I also play both acoustic and electric gui-
tar. The last song I played was “Hello” from Adele in a finger-
picking style.

What advice do you have for someone wanting to learn more
about programming?

After more than 30 years, working with digital systems, I
can say that learning something, and especially programming,
is something you cannot do only at school. Do not just rely on
your teachers. Try things by yourself, make errors and find out
some solutions alone. The best programmers that I hired during
the time that I worked with my own company were people who
were curious, with a sense of autonomy while working.

MEET AN ODROIDIAN

ODROID MAGAZINE	 31

