
Retro gaming with Exagear • Docker swarm mode • Game Controllers

Create a modern setup to get the absolute
maximum performance from your computer

• Using the
Hardware encoder
functions of the
ODROID-XU4

• How to Use
an ODROID

like a Bluetooth
Speaker

Magazine
ODROIDODROID

Magazine

ODROID

Water
Cooled
Water
Cooled

Year Three
Issue #36
Dec 2016

What we stand for.
We strive to symbolize the edge of technology,
future, youth, humanity, and engineering.

Our philosophy is based on Developers.
And our efforts to keep close relationships with
developers around the world.

For that, you can always count on having the quality
and sophistication that is the hallmark of our products.

Simple, modern and distinctive.
So you can have the best to accomplish
everything you can dream of.

We are now shipping the ODROID-C2
and ODROID-XU4 devices to
EU countries! Come and visit
our online store to shop!

Address: Max-Pollin-Straße 1
85104 Pförring Germany

Telephone & Fax
phone: +49 (0) 8403 / 920-920
email: service@pollin.de

Our ODROID products can be found at
http://bit.ly/1tXPXwe

mailto:service@pollin.de
http://bit.ly/1tXPXwe

EDITORIAL

ODROID Magazine, published monthly at http://magazine.odroid.com, is your source for all things ODROIDian.
Hard Kernel, Ltd. • 704 Anyang K-Center, Gwanyang, Dongan, Anyang, Gyeonggi, South Korea, 431-815
Hardkernel manufactures the ODROID family of quad-core development boards and the world’s first ARM big.LITTLE single board computer.
For information on submitting articles, contact odroidmagazine@gmail.com, or visit http://bit.ly/1ypImXs.
You can join the growing ODROID community with members from over 135 countries at http://forum.odroid.com.
Explore the new technologies offered by Hardkernel at http://www.hardkernel.com.

Hardkernel attended TechCon 2016 in late October, and
showed off some of the capabilities of the new ODROID-
C2. There were several demos of DIY projects set up, in-

cluding an Ambilight display, a CloudShell 2 server running the
latest mainline kernel, and a touchscreen media player using a

HiFi Shield. The liquid cooling set-
up featured on the cover this month
is another example of an amazing
DIY project that creates the ulti-

mate system for maximum overclocked
performance. It’s a work of functional

art that demonstrates the technical expertise
of the ODROID community.

Several other projects that community mem-
bers have created include using an ODROID as a Bluetooth

speaker, building a real-time kernel for use in a single-threaded operat-
ing system, and designing a combination seedbox and Networked Access Storage unit
from an ODROID-XU4 using the CloudShell. Andy concludes his Docker tutorial with an
overview of swarm mode, our resident mad scientist Bo details his latest discoveries,
Tobias helps us select the best gaming controller with an in-depth review, and Bruno
brings us the latest in Android fun with his favorite games of the month.

http://magazine.odroid.com
mailto:odroidmagazine@gmail.com
http://bit.ly/1ypImXs
http://forum.odroid.com
http://www.hardkernel.com

Manuel Adamuz, Spanish Editor
I am 31 years old and live in Seville, Spain, and was born in Granada. I am married to a wonderful woman and have
a child. A few years ago I worked as a computer technician and programmer, but my current job is related to quality
management and information technology: ISO 9001, ISO 27001, and ISO 20000. I am passionate about computer
science, especially microcomputers such as the ODROID and Raspberry Pi. I love experimenting with these com-

puters. My wife says I’m crazy because I just think of ODROIDs! My other great hobby is mountain biking, and I
occasionally participate in semi-professional competitions.

Andrew Ruggeri, Assistant Editor
I am a Biomedical Systems engineer located in New England currently working in the Aerospace industry. An 8-bit
68HC11 microcontroller and assembly code are what got me interested in embedded systems. Nowadays, most proj-
ects I do are in C and C++, or high-level languages such as C# and Java. For many projects, I use ODROID boards,
but I still try to use 8bit controllers whenever I can (I’m an ATMEL fan). Apart from electronics, I’m an analog
analogue photography and film development geek who enjoys trying to speak foreign languages.

Venkat Bommakanti, Assistant Editor
I’m a computer enthusiast from the San Francisco Bay Area in California. I try to incorporate many of my interests
into single board computer projects, such as hardware tinkering, metal and woodworking, reusing salvaged materials,
software development, and creating audiophile music recordings. I enjoy learning something new all the time, and
try to share my joy and enthusiasm with the community.

Josh Sherman, Assistant Editor
I’m from the New York area, and volunteer my time as a writer and editor for ODROID Magazine. I tinker with
computers of all shapes and sizes: tearing apart tablets, turning Raspberry Pis into PlayStations, and experimenting
with ODROIDs and other SoCs. I love getting into the nitty gritty in order to learn more, and enjoy teaching oth-
ers by writing stories and guides about Linux, ARM, and other fun experimental projects.

Nicole Scott, Art Editor
Nicole is a Digital Strategist and Transmedia Producer specializing in online optimization and inbound marketing
strategies, social media management, and media production for print, web, video, and film. Managing multiple ac-
counts with agencies and filmmakers, from web design and programming, Analytics and Adwords, to video editing
and DVD authoring, Nicole helps clients with the all aspects of online visibility. Nicole owns anODROID-U2,
and a number of ODROID-U3’s and looks forward to using the latest technologies for both personal and business

endeavors. Nicole’s web site can be found at http://www.nicolecscott.com.

James LeFevour, Art Editor
I’m a Digital Media Specialist who is also enjoying freelance work in social network marketing and website administra-
tion. The more I learn about ODROID capabilities, the more excited I am to try new things I’m learning about. Being
a transplant to San Diego from the Midwest, I am still quite enamored with many aspects that I think most West Coast
people take for granted. I live with my lovely wife and our adorable pet rabbit; the latter keeps my books and computer

equipment in constant peril, the former consoles me when said peril manifests.

Bruno Doiche, Senior Art Editor
Some wonder why Bruno talks to himself so much. He answered: “Of course I talk to myself. Sometimes I need expert

advice, man!” Yea, he has done a lot of crazy things on the magazine over the years. After all, acting normal has never been
one of his greatest strengths.

OUR AMAZING ODROIDIAN STAFF:

Rob Roy, Chief Editor
I’m a computer programmer in San Francisco, CA, designing and building web applications for local clients on my
network cluster of ODROIDs. My primary languages are jQuery, Angular JS and HTML5/CSS3. I also develop pre-
built operating systems, custom kernels and optimized applications for the ODROID platform based on Hardkernel’s
official releases, for which I have won several Monthly Forum Awards. I use my ODROIDs for a variety of purposes,

including media center, web server, application development, workstation, and gaming console. You can check out my
100GB collection of ODROID software, prebuilt kernels and OS images at http://bit.ly/1fsaXQs.

http://
http://

INDEX

Hardware Encoder Functions - 18

Game controllers - 10

android gaming: missiles! - 14

world dommination hi fi - 17

BOOT.ini persistence - 16

real time kernel - 24

odroid as a bluetooth speaker - 23

Exagear Gaming - 8

liquid cooled odroid - 26

Thermal Receipt Printer - 15

Hardkernel at armcon - 6

synergy - 25

seedbox - 34

meet an odroidian - 41

docker - 29

Hardkernel at
ARM TechCon 2016
Showcasing the ODROID-C2
by Rob Roy (@robroy)

IoT DEVICE ODROID-C2

This year at ARM TechCon in Santa Clara, California, the engineers
at Hardkernel displayed several demonstration projects using the
ODROID-C2, including a HiFi Shield setup with a portable Volumio

player, and a gorgeous 55-inch 4K Ambilight display. Many ODROIDians
stopped by to admire some of the next generation products, such as the new
ODROID-VU8 8-inch touchscreen with case, and the new CloudShell 2,
which was set up to run a RAID array using two SATA hard drives. Check out
the pictures to get a peek at the products Hardkernel is offering soon!

ARM TECHCON 2016

The Hardkernel booth was very eye-catching
with an Ambilight display

The Ambilight system ran on
an Arduino which analyzed the
4K video in realtime while the
ODROID-C2 used Kodi to dis-
play the video simultaneously
on the 55-inch 4K monitor

ODROID MAGAZINE	 6

ARM TECHCON 2016

The ODROID-C2 on the right is playing music
through the HiFi Shield, and the ODROID-C2
on the left is running oscilloscope software
on the new ODROID-VU8 8-inch touchscreen
with case

High quality music played through a HiFi
Shield during the conference

The rarest of all devices: An Ubuntu
16.04 touchscreen tablet

The new CloudShell 2, housing an
ODROID-XU4 running Linux kernel ver-
sion 4.7.8 and a SATA RAID array

ODROID MAGAZINE	 7

Installation is relatively easy and
should essentially complete itself.

Getting started
ExaGear Desktop essentially runs

a virtualized version of Ubuntu that
uses the x86 architecture, instead of the
ARM architecture that our ODROIDs
utilize. Let’s start the environment from
our AMTE Terminal and take a look
around:

$ exagear

You can confirm that you’re in an
x86 environment by running the “arch”
command:

$ arch

I686

We recommend that you update
your apt-get repositories during the first
launch of the guest system:

$ sudo apt-get update

Since we are going to launch Win-
dows games in this environment, we’ll
also need to install Wine. Wine exists
for Ubuntu natively on our ODROIDs,
but no ARM Windows games exist yet.
We need to install x86 Wine inside the
Exagear virtual environment. This can
be done easily using the apt-get com-

It’s no secret that retro gaming is now
back in style. After buying a new
gadget, any true gamer instantly

wants to download and play their favor-
ite titles on it. Luckily for ODROID
owners, there is a way to turn their de-
vice into a retro-gaming machine with
Exagear Desktop to play your favorite
Linux and Windows PC games on your
ODROID. In this article, I will de-
tail how to run some iconic PC games
on the ODROID platform: Arcanum,
Heroes of Might and Magic 3 and Sid
Meier’s Alpha Centauri.

Installation
Before starting, install Exagear Desk-

top from http://bit.ly/2cul90r. Put the
ExaGear Desktop archive, installation
packages, and ExaGear Desktop license
key in the same folder. Open your
MATE (command line) Terminal, move
to this folder, and unpack the archive:

$ tar -xvzpf exagear-desktop-

odrxu4.tar.gz

The next step is to install and activate
ExaGear on our ODROID. You can do
this with Exagear’s installation script in
the folder, which will automatically de-
tect the packages and license key:

$ sudo ./install-exagear.sh

mand:

$ sudo apt-get install wine

After installing Wine, we recom-
mend running winecfg and enabling the
“Emulate a virtual desktop” bar. Other-
wise, you can face issues when applica-
tions try to switch to full-screen mode:

$ winecfg

At this point, you’re prepared and
ready to try installing some PC games.
It’s possible to run all kinds of distribu-
tionss and installers, but the process is
quite tricky and can take some time to
figure out how to make each game work,
especially for older games with compat-
ibility issues. We recommend using a

Retro Gaming
with Exagear
by Gaukhar Kambarbaeva

EXAGEAR

Figure 1 - The Wine configuration screen

ODROID MAGAZINE	 8

http://bit.ly/2cul90r

from GOG at http://bit.ly/2gftTtl. This
turn-based strategy game also loads nor-
mally with the installer and Wine in a
MATE Terminal:

$ exagear

$ wine setup_homm3_com-

plete_2.0.0.16.exe

After loading, the game installer will
show up and you can proceed with instal-
lation. Once the installation is finished,
you can run HoMM3 directly from the
desktop. Wait until the game is loaded
and then you will see the Start menu,
from which you can select the map and
play Heroes of Might and Magic 3 on
your ODROID.

Sid Meier’s Alpha
Centauri

This awesome strategy game from the
maker of Civilization is also available on
GOG at http://bit.ly/2fyfVBf. Since it
uses the GOG installer, you can down-
load and install it on the guest x86 sys-
tem with Wine just like the other games:

$ exagear

$ wine setup_sid_meiers_alpha_

centauri_2.0.2.23.exe

DRM-free version of a game from a
service like Good Old Games (GOG),
which offers a consistent way to down-
load and install games that the ExaGear
Desktop environment usually supports.

Arcanum
This awesome early 2000s adventure

game can run on ExaGear Desktop.
First, purchase and download Arcanm
(http://bit.ly/2fjmVa0). Then, run the
installer with Wine in the MATE Ter-
minal, and the graphical interface of the
game installer will appear:

$ exagear

$ wine setup_arcanum_2.0.0.15.exe

After the installation is finished, you
can run Arcanum from your desktop. If
ExaGear installs any icons on your main
ODROID Ubuntu desktop, they should
automatically start the virtual environ-
ment and load the game. Select your
favorite hero and start playing Arcanum
on an ODROID!

Heroes of Might and
Magic 3

Like Arcanum, you can get HoMM3

EXAGEAR

After installation, is finished you can
run Alpha Centauri directly from the
desktop or from the Start menu. Select
a faction and start your space coloniza-
tion adventure.

Exagear Desktop (http://bit.
ly/2cul90r) allows you to run a lot of
great 1990s and early 2000s PC games
on your ODROID. You can run other
x86 applications too. For comments,
questions and suggestions, please visit the
original post at http://bit.ly/2fH6Fwf.

Figure 2 - Arcanum

Figure 3 - The Arcanum menu screen

Figure 4 - Heroes of Might and Magic 3 in action

Figure 5 - Alpha Centauri screenshot

ODROID MAGAZINE	 9

http://bit.ly/2gftTtl
http://bit.ly/2fyfVBf
http://bit.ly/2fjmVa0
http://bit.ly/2cul90r
http://bit.ly/2cul90r
http://bit.ly/2fH6Fwf

while I still lived with my parents. Up
to that point, I was only using joysticks,
and this was my first gamepad.

I got this controller (http://bit.
ly/2fo53Wy) for my PC back then,
knowing well that as a PC player, one
rarely uses any controllers. While most
games run with a mouse and keyboard,
some work with joysticks, especially
space simulations and fighter simula-
tions. However, responsiveness was of-
ten inadequate. Back then, I blamed it
on Windows, because every time I cali-
brated the joystick it was working fine
for a little while, but later it was always
off again. Today, I know that the left
analog stick did not work correctly and
always points to the upper left direction
which makes it nearly impossible to use
this gamepad.

Apart from that, it is actually a very
nice controller. It has a nice touch to it,
using some kind of a rubbery finish. It
gives the controller a very good grip and
prevents it from slipping through your
fingers. It is slightly heavier than other
controllers that I have, but not unpleas-
ant. Besides that, it comes with 12 but-
tons, a D-Pad, two analog sticks and two
triggers on the back. It has “rumble”
support and actually has two connectors
one for PS2 and one USB connector
for PS3 and PC. It also has 4 shoulder
buttons which is quite nice and allows
for some nice mapping. The gamepad

I normally discuss a lot about different
games and emulators that work on
the ODROIDs, but in this article,

I want to talk about one of the most
important assets used by gamers: the
gamepad. There are plenty of gamepads
out there, and I want to talk about a few
that I own myself, indicating what I use
them with and which I prefer. I will try
to explain how to setup your own con-
troller based on my ODROID GameS-
tation Turbo image, which is also appli-
cable to my Debian Jessie images. I will
also point out some special cases.

Trustmaster Dual
Trigger 3 in 1 Rumble
Force

I have a few different controllers that
I’ve collected over the years, some of
which I wanted / needed to create com-
patible images. The first one I got from
a German shop, almost 15 years ago,

is programmable, but I never took the
time to program it.

Pros
•	 Very good touch and feeling,

rests very good in the hand
•	 Very good and sturdy buttons, if

you shake the gamepad nothing
makes a sound, the buttons feel
like they are high quality

•	 Four shoulder buttons + 2 trigger
buttons (extra buttons for special
functions)

•	 Playstation symbols and support
(good for PSP or PS1 emulation)

Cons
•	 Very old model, probably hard

to find
•	 Not all emulators detect or use

the rumble support
•	 Some issues with Retroarch
•	 No support for most emulators

Hama Black Force
The Hama gamepad “Black Force” is

a gamepad that I got much later. It is
an inexpensive model, but is still a rather
good gamepad. It is a rather cheap copy
of a PS3 controller, but works nonethe-
less. None of the buttons has a descrip-
tion other than numbers. There is an
“analog” button where the home button
would be on the PS3 controller. If you
press the button, a red LED shines below

Linux Gaming
Choosing the Right Game
Controller for your
playstyle
by Tobias Schaaf (@meveric)

LINUX GAMING

Figure 1 - Trustmaster Dual Trigger 3
in 1 Rumble Force Gamepad, which was
my first Gamepad

ODROID MAGAZINE	 10

http://bit.ly/2fo53Wy
http://bit.ly/2fo53Wy

Cons
•	 Not a “name-brand” that is in any

way recognized by any program.
Therefore other “no-name” con-
trollers will be found under the
same name, and they might have
different button layouts which
makes it nearly impossible to
have different configuration files
for these controllers

•	 The 1.9m cable length could be
too short for some players

XBox 360 Wireless
Controller

When I started my work on
ODROID GameStation Turbo, I knew
I needed to get my hands on one of the
“main-line” controllers out there. It
turned out the XBox 360 Controllers
were the most widely supported, so it
made sense to get one. I also wanted to
have a wireless controller to get rid of the
cable. Since the system that I was build-
ing was meant for kids, I did not want
them to trip over any cables.

The controller is probably the heavi-
est of all controllers that I have, but it
feels good in the hands, and so I do not
think that its weight is much of an is-
sue. It is the controller that my OGST
image is primary configured for, and all
games should work out of the box with
this one. There are some minor issues
with the drivers: your controller always
blinks, or it may not be recognized again
after it turned off and you turn it back

the button indicating that analog mode
is activated. This is actually needed to
send analog signal for the D-Pad, or else
most emulator and programs won’t rec-
ognize the D-Pad at all. The controller
has 4 shoulder buttons, but is missing
any triggers.

This gamepad is only registered as
a “Generic USB Joystick”, but it still
works out of the box with Retroarch and
other programs and emulators. The con-
troller is not that high of a build quality,
and if you shake it, you can hear the but-
tons rattling. Most of the noise appears
to come from the shoulder buttons, but
also some from the D-Pad. The analog
sticks have a rough surface which gives
extra grip, which is not bad, while not
as comfortable as the rubbery finish of
the real PS3 controller. They have made
a new model having the Playstation X,
O, Square, Triangle button markings as
well.

Pros
•	 Inexpensive - this gamepad is re-

ally intended for those with a low
budget, and clones of it are nor-
mally between 5-15 €uros

•	 It may not look or sound like a
good controller, but many re-
views of this controller are quite
positive. It is generally “good” in
all categories, but neither awe-
some nor great

•	 Works out of the box with many
games, programs and emulators

•	 Easy to set up and configure for
most emulators and games

LINUX GAMING

on while you are within a game or a pro-
gram such as Kodi. Besides that, it is
the gamepad that is probably best sup-
ported under Linux. It does not mean
that it gets a lot of patches and bugfixes,
but it means that most games/programs
are developed with XBox 360 controller
support.

Some games lack all but XBox 360
controller support. The wireless variant
needs a proprietary PC remote adapt-
er since it does not use a standard like
Bluetooth, but that is actually not a bad
thing, since the adapter supports up to 4
controllers simultaneously. This is quite
nice, because it means that with just one
USB port in use, you can use 4 separate
gamepads. It also comes with either
standard AA batteries, or you can buy
a rechargeable battery pack and use a
charging station to keep your controllers
ready for play. This is quite nice, since
you always have a working controller as
long as you have batteries in the house,
or have another charged battery pack.

What I do not like about this con-
troller is the so called “deadzone” and
the inability of the controller to go back
to “0” (zero) when you release the con-
trols. The analog sticks go from -32768
to +32768 either from left to right or
top to bottom. When you release them
they should return to 0. The range that
it is straying away from 0 is what one
refers to a “deadzone”. It signifies that
any value in this range should be ignored
and considered 0 in order to prevent un-
wanted movements. On good control-
lers these dead zones can be very small.
For example, a deadzone of say 4-5% of
the maximal possible value is very com-
mon, which would be 1300-1700. Even
if you go a bit further and say every value
smaller than 2000 should be ignored,
that should be fine for most controllers.

With the XBox 360 controllers,
when I released the analog stick for it to
go back to 0, I could see values as high as
+/- 7500 or higher . That is a deadzone
of over 20%. The two previous control-
lers have values between 0 and 255, so

Figure 2 - Hama Black Force Gamepad,
courtesy of game-debate.com

Figure 3 - The XBox 360 wireless con-
troller is probably the best supported
controller under Linux

ODROID MAGAZINE	 11

game-debate.com

the side for emulators like yabause to
play Sega Saturn games. They required 6
buttons instead of 4 like most controllers
have nowadays. It should also work fine
with some MAME games that require 6
buttons instead of 4.

This controller registers as the same
generic USB joypad as the Hama con-
troller does, which brings me back to
my point that having one configuration
for different controllers will not work
with these kind of controllers. It also
registers 12 buttons, which is the same
as the Hama gamepad, but they are just
ordered differently.

In the middle there are three buttons:
“Mode”, which is the same as the “Ana-
log” button on the Hama gamepad and
is required to get the D-pad to work, and
a “Turbo” and “Clear” button which do
not seem to be recognized as extra but-
tons, but must have some internal mean-
ing. This also means that it is missing
two buttons that would normally be
used as “Start” and “Select”. These but-
tons appear as buttons 5 and 6 on the
controller. The 4 shoulder buttons are
once again just buttons and do not have
triggers. I normally use L2 and R2 as
substitute for “Start” and “Select”. The
D-pad is slightly different as well. This
is actually the only controller that has
completely separated buttons for the D-
pad. On all other controllers, the D-pad
is in some way a cross and all direction
keys are somewhat connected, but not
on the Sabrent.

This controller is no doubt one of the
best controllers out there. It feels good
in the hand, is very sturdy, relatively easy
to use, has good supported, and is a lot
of fun to play with. If you happen to
connect the PS3 to a Linux or Windows
PC that can read all the inputs from the
gamepad, you can see how feature rich
this controller is. Everything on this is
actually an axis or ramp. Pressing a but-
ton is not just 0 and 1, but it actually
registers how strong you press the but-
ton.

The PS3 controller has a motion sen-
sor or gyroscope that registers how you
turn the controller. When it comes to
functions, the PS3 controller is probably
the best I have. It is also the most ex-
pensive one I have. A new one can cost
50-90 €uros.

Pros
•	 Very good controls, very sturdy,

good feeling in the hand
•	 Very precise control
•	 Lots of functions
•	 Wireless and wired options in

one controller

Cons
•	 Very expensive
•	 Has to be loaded over USB (no

exchangeable batteries)

Sabrent USB 2.0
Twelve Button Game
Controller for PC

This is the latest gamepad that I
bought. The reason for this is that I
wanted a gamepad with 6 buttons on

the center should be 128. They normal-
ly do not stray more than 124 or 132
which is about 3-4% and mostly they
settle even closer than that. The PS3
controller has values between -127 and
+127 and will always return to 0 when
released. Not even once did I see it not
return to 0.

Pros
•	 Best supported controller by

games, emulators and programs
•	 Up to 4 controllers simultane-

ously over one USB port
•	 Easy to switch batteries / battery

packs, so it is always ready to play
•	 Not too expensive and easy to

buy, with lots of different models
and designs to choose from

Cons
•	 Not very precise
•	 Rather heavy compared to other

controllers

Playstation 3
DualShock 3
Controller

The Playstation 3 controller, often
called the “Sixaxis”, uses standard Blue-
tooth communications. It makes a pre-
ferred controller for mobile devices such
as tablets and smartphones, although
they often need to be rooted. They
can be used both with a USB cable as
well as over a Bluetooth adapter on the
ODROID. This makes them very flex-
ible, though you can only connect one
PS3 controller per Bluetooth dongle.

Figure 4 - Playstation 3 DualShock 3
“Sixaxis” controller

Figure 5 - Leaning into the turn of your
favorite racing game

Figure 6 - Sabrent 12 Button gamepad
cheap and gets the job done

LINUX GAMING

ODROID MAGAZINE	 12

PPSSPP but there is a way that might
work, which I will detail sometime in
the future.

Since the last update, Reicast has
rumble support. In my testing, all but
the Trustmaster and PS3 controllers
were working with Reicast and rumble
support. The Trustmaster was said to
not have rumble support, but the PS3
is detected as a rumble. However, it was
either so weak that I could not feel it, or
it is simply not working at all.

With Yabause, you have either the
GTK or the Qt interface, both of which
are configured separately. Buttons can
be set up from within the emulator. In
my experience, once the D-pad and the
buttons are configured, they seem to
work with every controller. Since you
can reconfigure the buttons from within
the emulator, this is not much of an is-
sue.

As previously mentioned, having
a configuration for different “Generic
USB Joysticks” might not work, since
they are not all configured in the same
way. I also found that the PS3 controller
on the C2 only works via wireless Blue-
tooth connection, and the cabled con-
nection will not work.

Suitability
I normally have my entire image

configured for the use of XBox 360 con-
trollers. This makes it easier, since ev-
erything has the same configuration and
you do not have to switch. I recently
created my own unique setup so that I
can switch between controllers depend-
ing on the games I play.

I still play all Libretro cores on Ret-
roarch using an XBox 360 controller. It
is often the most convenient controller,
and I also can control Kodi with it just
fine. I can navigate the menus without
a mouse and keyboard, which is quite
nice, especially since the XBox 360 con-
troller is wireless. Since Retroarch uses
automatic configuration for its control-
ler setup, you can easily switch between
controllers if you want to. I also use

Sega Saturn emulator.
Retroarch is actually the best sup-

ported emulator when it comes to game-
pad and joystick support. The way it is
configured on my image is that it uses
udev to determine the controller and has
a large number of configuration files for
different controllers so that they work
out of the box without additional setup.
About 130 different controllers are sup-
ported, so there is a very high chance
that your controller is supported as well.

XBox 360 and PS3 work 100% out
of the box with Retroarch. So does the
Hama controller, and for most games,
probably the Sabrent as well. The Trust-
master is detected correctly, but due to
the broken left analog stick, it can cause
some issues. Not all controllers are
found correctly when it comes to rumble
support. The N64 emulator and a few
other cores can use rumble but, for some
reason, they don’t always work.

PPSSPP is actually not well support-
ed when it comes to controllers. It offi-
cially only has a mapping for XBox 360
controllers, but that was actually broken
on ODROIDs, so I created my own. I
also added a controller mapping for the
PS3 controller, which normally should
work out of the box with the emulator,
but I am not completely sure. I know
that you can configure the PS3 control-
ler manually, thanks to my changes, and
map all the buttons you need correctly.

None of the other controllers are of-
ficially supported, so their use may not
be guaranteed going forward. Gener-
ally, all controllers should work, since
PPSSPP uses SDL2 as a backend, which
should allow for some level of control-
ler support. As long as you map all the
keys you need, it should work fine for all
controllers.

Reicast is a little tricky. It officially
also only has support for the XBox 360
controller, but I also added configuration
files for PS3. Other controllers are not
officially supported, and are unlikely to
work out of the box. You cannot remap
the buttons within the emulator as with

I also tested the deadzone on this con-
troller, and while the right analog stick
is perfectly centering at 128 and stands
there (values are between 0 and 255), the
left analog stick does not return to the
center and actually permanently jumps
between 135 and 140 instead of 128,
which means it’s about 5-10% off. Since
this controller acts similar to the Hama
controller, it will also work fine in Retro-
arch without configuration.

Pros
•	 Cheap and light
•	 Very long cord 3m (about 9 feet)
•	 6 button layout is very good for

Sega Saturn and other emulators
•	 Works out of the box with ret-

roarch

Cons
•	 Feels cheap and not very durable
•	 For my taste, this controller is

slightly too small. It should be a
little bigger, with buttons a little
more separated. It also feels a
little uncomfortable in the hands
after a while

•	 Turbo and Clear buttons should
rather work as Start and Select

•	 One analog stick does not center,
but this is not the only controller
that has this issue. The deadzone
is not too bad

I’ve already talked about how these
controllers are often detected automati-
cally by Retroarch or another emulator.
However, do they all work out of the
box? The answer is sadly, no, but that
does not mean you cannot use them.

On my ODROID GameStation
Turbo image (OGST), I have a lot of
different emulators and games that
use controllers, so let’s find out what is
working. Currently, I have four major
emulators that I find important to run
with controllers: Retroarch – for most
of the emulators, PPSSPP – Playstation
Portable emulator, reicast – Sega Dream-
cast emulator, and Yabause – a fairly new

LINUX GAMING

ODROID MAGAZINE	 13

called evdev, which you might have to
install via pip. After that, it’s similar to
Retroarch in how you create the configu-
ration file. This file must be copied to
/usr/local/share/reicast/mappings using
root privileges. Afterwards, you need to
adjust the configuration file for Reicast
under /home/odroid/.reicast/emu.cfg
by following the guide in the forum at
http://bit.ly/2ggdO9Y. You also need to
create an entry for the mappings file sim-
ilar to the following in order to load the
new configuration for your controller:

evdev_mapping_1= mycontroller.cfg

I also have a tool installed called anti-
micro which allows you to create unique
configurations for your controllers. You
can map keyboard keys to your control-
ler in case a game or an emulator does
not want to work with your controller.
You can even map your mouse move-
ments and buttons to a controller and
use the controller as a substitute.

Final thoughts
Whatever controller you like, there is

probably a way to get it to work on my
ODROID pre-built images. Some users
have even been able to attach authentic
arcade joysticks for use on full cabinets.
Whatever controller you prefer, there
should be a way to make your gaming
experience enjoyable on ODROIDs and
my OGST images.

the XBox 360 controller for Dreamcast,
since it works nicely with it.

For PPSSPP, I actually switched to
use the PS3 controller. It is much more
convenient to use a Playstation control-
ler for a Playstation console since the
buttons all match up and it is actually
very responsive.

I got the Sabrent to play Sega Saturn
games on the Yabause emulator, but I
don’t really use the Hama. I used it in
the past when I didn’t have my XBox
360 yet, but lately I only use it on a spare
ODROID if I need to test something
and do not want to switch my remote
adapter for an XBox 360 controller.

I do not use the Trustmaster at all,
because of its broken left analog stick,
often causes issues. I actually find that
kind of disappointing, because it is ac-
tually a very nice controller which feels
good in the hands.

How to configure
your controller for
OGST

If you have a controller that is not
supported by the emulators I mentioned
above here is a small guide on how to
setup your controller:

Retroarch: There should be a tool
installed called “retroarch-joyconfig”.
With that tool, you can create a con-
figuration file for your controller. It will
generate text output, which you need
to copy and create as a new file in /usr/
share/libretro/autoconfig/udev/ using
root privileges. After that, your control-
ler should be found automatically by
Retroarch.

PPSSPP: Go to the Settings -> Con-
trols menu to setup your controller and
map your buttons.

Yabause: Just like PPSSPP, you can
configure the controls from within the
emulator. For example, press CTRL + S
in yabause-qt.

Reicast: For Reicast, you use a tool
called reicast-joyconfig that is similar
to retroarch-joyconfig It is written in
Python and requires a python module

LINUX GAMINGANDROID GAMES

MISSIles!
There is no better
way of flying than
dodging relentless
attacks
by Bruno Doiche

The sky is
blue and
you are fly-

ing peacefully on
your beloved air-
plane... Then suddenly you are fend-
ing for your life. This is Missiles, which
is a great twist on a casual game. You
are being shock-trained to try to sur-
vive for more than 10 seconds and the
difficulty keeps going up. Although
it is punishingly hard, this game will
keep you glued to your screen!

https://play.google.com/store/
apps/details?id=pl.macaque.Mis-
siles

As soon as you get aquainted with the
game, go to fast mode. You will have
double the fun in half the time!

ODROID MAGAZINE	 14

http://bit.ly/2ggdO9Y
https://play.google.com/store/apps/details?id=pl.macaque.Missiles
https://play.google.com/store/apps/details?id=pl.macaque.Missiles
https://play.google.com/store/apps/details?id=pl.macaque.Missiles

“One day, everything will be paper-
less,” you mutter under your breath
as you look at your workspace clut-

tered with a mixture of electronics, ca-
bles, and papers. In the future, you will
only have to dig through just electronics
and cables to find that lost eMMC mod-
ule. But right now, looking for that lost
eMMC or microSD card on your work-
space feels like searching for a needle in
a haystack, where most of the haystack is
made of paper!

You notice that a lot of the papers are
handy printouts that contain well need-
ed information. “Most of these notes
are pretty small, but they take up an en-
tire sheet of paper!” You start thinking
about the problem of paper size. Then
you recall seeing a long-abandoned ther-
mal printer from a previous world-dom-
ination scheme sitting in a box in the
corner of your subterranean laboratory.
You grab it and see it is a STAR TSP100
thermal printer with a USB interface.

“That’s it!” You start planning how
you can make use of a thermal printer
to print out notes of any size. Many of
the notes will be small enough to tape to
the physical objects that you are making
the notes about. “I can add a thermal
printer to the console of my fleet of ve-
hicles in case the need for printing any-
thing may arise on the road!”

Your first attempt is to simply add it
via “cups”, accessible through the Linux
menu for “System/Administration/
Printers” or “System Tools/Printers”.
Assigning it to the “Generic Text Only”
printer driver didn’t work, and there

Installing a Thermal
Receipt Printer on Linux
Chronicles of a Mad ScientisT
by Bo Lechnowsky (@respectech)

THERMAL PRINTER

Thermal printer with a receipt printed
from an ODROID

isn’t a download for Linux/ARM on the
manufacturer’s website.

So how can we print to a ther-
mal printer from Linux running on
ODROID? You research and print out
the following steps (on a regular-sized
sheet of paper for now) for later refer-
ence:

In a terminal window, enter:

$ sudo apt update

$ sudo apt install libcups2-dev

$ sudo apt install libcupsimage2

$ sudo apt install libcupsimage2-

dev

Next, download a package con-
taining the Linux source code for the
STAR TSP100 printer from http://bit.
ly/2fPybtO. From the command line,
navigate to the directory containing the
download zip file and type:

$ unzip TSP100U_v5_2_0_CD.zip

Next, move into the source directory
and untar the files:

$ cd TSP100_V520/Linux/CUPS

$ tar -zxvf starcupsdrv-3.3.0_

linux_20110428.tar.gz

$ cd starcupsdrv-3.3.0_linux/

SourceCode

$ tar -zxvf starcupsdrv-src-

3.3.0.tar.gz

$ cd starcupsdrv

Use your favorite editor and add a #
mark on the beginning of the two lines

that start with @ and contain “grep lib-
cups” and “grep libcupsimage”, and save
the file. Then, type the following into
the command line:

$ sudo make

$ sudo make install

Now, when you open “cups” and
click “Add Printer”, selecting the STAR
printer, it will automatically install with
the proper drivers.

As you replace all the large printouts
on your workspace with space-efficient
thermal prints including this set of in-
structions, you think to yourself: “Today
I conquered my workspace organization
problems, tomorrow I’ll conquer the
world!”

ODROID MAGAZINE	 15

http://bit.ly/2fPybtO
http://bit.ly/2fPybtO

on updates is a terrible choice, because you are missing out on
bug fixes and new features, such as overclocking support. In
order to fix this, I made some changes to the bootini package
to restore user settings after a new boot.ini file is updated.

To use this mechanism, you will need to edit a file called
boot.ini.default which is located in /media/boot, which is the
vfat partition that is used in the boot process. This file contains
commented out versions of all the default values of the boot.ini
settings that you can adjust. This file will not be overwritten
on future updates, but it will be recreated if you delete it.

You will need to uncomment the lines that interest you and
set the values you want for those variables. For example, for the
ODROID-C2 model, you can set things like resolution (“m”),
video out mode (“vout”), maximum frequency (“max_freq”)
as well as modify the boot arguments, like the root partition
UUID. Figure 1 shows the default file, while Figure 2 shows a

Picture this scenario: you come home, late at night, ac-
companied by a beautiful lady and you want to impress
her by viewing a movie or listening to music on your

fancy ODROID setup. You turn on the ODROID and the TV
and notice that it keeps saying “No signal”. The blue led blinks
as it should, but you feel a cold sweat when your date asks
you what’s wrong. You politely excuse yourself and hide for a
second in the bathroom, to “freshen up”. You use your phone
to SSH into the ODROID to investigate the problem. You
quickly realize that boot.ini had been overwritten by an update
and that the resolution is not compatible with the TV. After
fiddling with VI on your phone and rebooting the ODROID,
you return to the living room. Now the room is filled with
Kodi’s blueish glow and you are relieved. However, your date
has felt something was amiss, and excuses herself for the eve-
ning. I wonder if that could have been avoided?

The problem is that when the bootini package updates, it
overwrites the file /media/boot/boot.ini, and removes any cus-
tomizations you had done on it, such as setting the resolution,
enabling DAC support or even choosing a different root file
system. Every new user stumbles over this problem and, so far,
had to either give up updates or learn to live with it. Giving up

Boot.ini Persistence
PRESERVING CHANGES DURING AN UPGRADE
by Adrian Popa (@mad_ady)

BOOT.INI

Figure 1 - All settings in the boot.ini file are commented out
by default

Figure 2 - The desired boot.ini options have been set

Figure 3 - Console output of the script bootini-persistence.pl

ODROID MAGAZINE	 16

customized version. Leave commented
the parameters that you don’t need, and
they will be ignored.

In order to apply new settings and
changes to boot.ini.default, you can re-
configure the bootini package with the
following command:

$ sudo dpkg-reconfigure bootini

Alternatively, you can just run the
bootini-persistence.pl script:

$ sudo /usr/share/bootini/booti-

ni-persistence.pl

The output shown will tell you which
parameters have been changed, as shown
in Figure 3.

To return to the original boot.ini
file, you can recopy it from the file /usr/
share/bootini/boot.ini with the follow-
ing command:

$ sudo cp /usr/share/bootini/

boot.ini /media/boot/boot.ini

I have submitted a GitHub pull re-
quest to the Hardkernel engineers for
these improvements to be included with
their official release, which should be
available soon. I hope that these changes
will make your life easier on Linux on all
of your present and future ODROIDs.

BOOT.INI

Persistence pays off!

ANDROID SOFTWARE EQUALIZER

SOFTWARE EQUALIZER
FOR ANDROID
CHRONICLES OF A MAD SCIENTIST
by Bo Lechnowsky (@respectech)

Your mind races as you sit in your dark lab. The latest hurdle you’ve encoun-
tered threatens to derail your world domination plans. “What changed?” you
wonder, as you evaluate each of the ideas that floods your mind. You think

back on the events that led up to this unwelcome detour of your plans.
You were driving one of your vehicles to pick up some supplies for my latest in-

vention. You started up your in-car touchscreen unit powered by the ODROID-C2
and began playing your “world domination” playlist. Then, it hit you like that time
your nemesis, Dr. Usual, tested out his nausea ray gun on you. You felt a little sick.
You had the equalizer settings on Android set to emphasize the heavy bass on your
favorite tracks but, whenever there was a bass hit, the vocals and other high range
notes would cut out, and the bass hits didn’t have any punch to them.

How can you proceed with your world domination plans without punchy bass
and strong high-range notes? It’s unthinkable! After spending the whole night try-
ing to forget about it and work on other aspects of your inventions, it finally comes
to you. “Eureka! I’m sure it has something to do with the master volume level in
Android, and the software equalizer settings hitting the volume ceiling when trying
to modify the audio stream!”

You rush to your lair’s garage, start up your in-vehicle system and check the mas-
ter volume settings in Android. They were set to 100%, just as you had suspected!
You quickly activate the sound system and subwoofers and turn up the volume level
on the sound system while reducing the master volume setting down to 50% on An-
droid. You nervously start your playlist. It hits you like Dr. Usual’s nausea ray gun,
except with a lot more force. “I did it!” you yell, with your voice drowned out by the
sounds of industrial space opera electronica thumping through the speakers. “This
deserves a celebration,” you think, as you slowly drive with pulsating speakers to the
ice cream shop, until you realize it’s 5:30am and they’re not open yet.

Your incredible Software Equalizer in Android.

ODROID MAGAZINE	 17

Hardware encoders use a designed
algorithm to encode video and
data into streamable content,

and is generally the most efficient way to
watch video. Hardware encoding on the
ODROID-XU4 can be achieved using
two options:

•	 a custom FFmpeg which sup-
ports the hardware encoder, or

•	 the GStreamer framework avail-
able for creating streaming media
applications

The steps to enable hardware encod-
ing presented below are grouped into
common steps and specific steps. Please
note that this tutorial is designed for me-
dium/advanced users, and if things go
wrong, you might have an unbootable
system. It might be wise to make a back-
up before starting by following the steps
listed at http://bit.ly/2gg5KGc.

Common steps
First, install a mainline kernel that

supports the MFC encoder. The in-
structions here use @elatllat’s branch
(http://bit.ly/2gg82Fj), but @mdrjr is
also working on a branch of his own
(http://bit.ly/2g2pVVc) and so am I
(http://bit.ly/2gf0dfh). You can use
my kernel configuration, which tries to
add all of HardKernel’s modules, or you
can modify my configuration to fit your
needs (http://bit.ly/2gAr75I). You can
alternatively use whatever default con-

Using The Hardware
Encoder Functions
of the ODROID-XU4
by Marian Mihailescu (@memeka)

HARDWARE ENCODER

figuration comes with the kernel you
choose.

The kernel does not support HMP
(big.LITTLE extensions) and it treats
all cores as equal. This is because HMP
patches are unstable and can lock up the
system. Consequently, overall system
performance will be lower than when
using Kernel 3.10.

I have added the kernel compilation
procedure here for convenience, but
you should read and discuss the official
kernel compilation thread at http://bit.
ly/2fo18cv, or review the guide at http://
bit.ly/1NVRprY.

First, make a copy of your existing
kernel, initrd, dtb and boot.ini:

$ cd /media/boot

$ sudo -i

cp zImage zImage-3

cp uInitrd uInitrd-3

cp exynos5422-odroidxu3.dtb

exynos5422-odroidxu3-3.dtb

cp boot.ini boot3.ini

Edit boot3.ini to point to the newly
copied files by appending -3 to the name
of the zImage, uInitrd and dtb. By re-
placing the stock boot.ini with this mod-
ified boot.ini you will be able to boot
your old kernel in case of problems.

Next, download the new kernel:

$ sudo apt-get -y install bc curl

\

 gcc git libncurses5-dev lzop \

 make u-boot-tools dos2unix

$ git clone --depth 1 \

 -b odroidxu4-mihailescu2m-4.8 \

 https://github.com/Dmole/linux.

git linux

$ cd linux

$ make odroidxu4_defconfig

Optionally, you can get my config
which supports most of the USB periph-
erals (TV tuners, sound cards, wifi cards)
and a lot of networking modules (LXC
support, VLANs, iptables):

$ wget http://pastebin.com/

raw/7YnakKmP -O .config

$ dos2unix .config

Next, compile the kernel:

$ make menuconfig

$ make -j 8 zImage dtbs modules

$ kver=`make kernelrelease`

$ sudo cp arch/arm/boot/zImage

arch/arm/boot/dts/exynos5422-

odroidxu[34].dtb /media/boot

$ sudo cp .config /media/boot/

config

$ sudo make INSTALL_MOD_STRIP=1

modules_install

$ sudo make firmware_install

$ sudo cp .config /boot/config-

${kver}

ODROID MAGAZINE	 18

http://bit.ly/2gg5KGc
http://bit.ly/2gg82Fj
http://bit.ly/2g2pVVc
http://bit.ly/2gf0dfh
http://bit.ly/2gAr75I
http://bit.ly/2fo18cv
http://bit.ly/2fo18cv
http://bit.ly/1NVRprY
http://bit.ly/1NVRprY

HARDWARE ENCODER

the same directory as FFmpeg. You can
download these packages pre-compiled
from here: http://bit.ly/2g2m2iZ. Then,
install the needed packages:

$ cd ../

$ sudo dpkg -i *.deb

This should replace any system-
installed ffmpeg which supports the
hardware encoder. Let us now use the
hardware encoder when transcoding.
Depending on what you want to trans-
form with ffmpeg, you might get bet-
ter or worse framerate. For example,
changing the output fps of a video cuts
off about 20-30fps from encoding time.
The examples below do not change the
fps:

encode video only, about 50fps

(max)

$ ffmpeg -i big_buck_bunny_720p_

h264.mov -acodec aac -vcodec h264

-b:v 2M -pix_fmt nv21 bbb.mp4

encode video only, about 110fps

(max)

$ ffmpeg -i big_buck_bunny_720p_

h264.mov -codec:v copy -codec:a

none -bsf:v h264_mp4toannexb

-f rawvideo - | ffmpeg -r 24

-i - -an -vcodec h264 -b:v 2M

-profile:v 10 -pix_fmt nv21 bbb.

mp4

#encode video and audio, about

75fps (max)

$ ffmpeg -i big_buck_bunny_720p_

h264.mov -codec:v copy -codec:a

none -bsf:v h264_mp4toannexb -f

rawvideo - | ffmpeg -r 24 -i -

-i big_buck_bunny_720p_h264.mov

-map 0:v:0 -vcodec h264 -b:v 2M

-profile:v 10 -pix_fmt nv21 -map

1:a:0 -c:a:1 aac bbb.mp4

The encoder automatically selects
h264_v4l2m2m which does the hard-

$ cd /boot

$ sudo update-initramfs -c -k

${kver}

$ sudo mkimage -A arm -O linux -T

ramdisk -a 0x0 -e 0x0 -n initrd.

img-${kver} -d initrd.img-${kver}

uInitrd-${kver}

$ sudo cp uInitrd-${kver} /media/

boot/uInitrd

Modify /media/boot/boot.ini and
load exynos5422-odroidxu4.dtb instead
of exynos5422-odroidxu3.dtb and save
boot.ini. Shut the system down and
unplug the HDMI and power cables.
Without this step, when you boot with
the new kernel, you will not have USB3
bus and onboard networking. This is
needed only when switching between
3.x and 4.x kernels as far as I’ve seen.
Make sure to re-attach the cables prior
to power up.

Steps when using
FFMPEG

Now that the kernel is ready, com-
pile/install a custom ffmpeg which sup-
ports the hardware encoder. Compile
your own ffmpeg using the commands:

debian build tools

$ sudo apt-get install build-es-

sential fakeroot devscripts \

 libchromaprint-dev librubber-

band-dev libjs-bootstrap

get the patched ffmpeg version

$ git clone -b v4l2_m2m-3.0.2

--depth=1 \

 https://github.com/mihailescu2m/

FFmpeg.git

install ffmpeg’s build depen-

dencies (~190 packages)

$ sudo apt-get build-dep ffmpeg

build ffmpeg as deb packages

with no checks (some checks fail)

$ cd FFmpeg

$ DEB_BUILD_OPTIONS=”nocheck” de-

build -b -uc -us

When building is done, you should
have 23 deb packages one level up, in

ware encoding:

Stream #0:0 -> #0:0 (h264 (na-

tive) -> h264 (h264_v4l2m2m))

Stream #0:1 -> #0:1 (ac3 (native)

-> aac (native))

You may see the following errors:

[h264_v4l2m2m @ 0xf3fa0] H264

codec detected, init annexb con-

verter

[h264_v4l2m2m @ 0xf3fa0] Device

path not set, probing /dev/video*

[h264_v4l2m2m @ 0xf3fa0] exynos-

gsc.1:m2m is not the one we want

[h264_v4l2m2m @ 0xf3fa0] exynos-

gsc.0:m2m is not the one we want

[h264_v4l2m2m @ 0xf3fa0] s5p-mfc-

dec is not the one we want

[h264_v4l2m2m @ 0xf3fa0] Could

not find a valid device

If so, make sure the user you are run-
ning ffmpeg with, is part of the video
group:

odroid@odroid:~$ id

uid=1000(odroid) gid=1000(odroid)

groups=1000(odroid),4(adm),20(dia

lout),24(cdrom),27(sudo),30(dip),

44(video),46(plugdev),115(lpadmin

),116(lightdm)

Sample output is as follows:

adrianp@odroid:~> ffmpeg -i

Sintel.2010.720p.mkv -acodec aac

-vcodec h264 -b:v 2M -pix_fmt

nv21 sintel-encoded.mp4

ffmpeg version 3.0.2-1ubuntu4

Copyright (c) 2000-2016 the FFm-

peg developers

 built with gcc 5.4.0 (Ubuntu/

Linaro 5.4.0-6ubuntu1~16.04.2)

20160609

 configuration: --prefix=/

usr --extra-version=1ubuntu4

--toolchain=hardened --libdir=/

usr/lib/arm-linux-gnueabihf

--incdir=/usr/include/arm-linux-

ODROID MAGAZINE	 19

http://bit.ly/2g2m2iZ

 Metadata:

 encoder : libebml

v1.0.0 + libmatroska v1.0.0

 creation_time : 2011-04-24

17:20:33

 Duration: 00:14:48.03, start:

0.000000, bitrate: 6071 kb/s

 Chapter #0:0: start 0.000000,

end 103.125000

 Metadata:

 title : Chapter

01

 Chapter #0:1: start

103.125000, end 148.667000

 Metadata:

 title : Chapter

02

 Chapter #0:2: start

148.667000, end 349.792000

 Metadata:

 title : Chapter

03

 Chapter #0:3: start

349.792000, end 437.208000

 Metadata:

 title : Chapter

04

 Chapter #0:4: start

437.208000, end 472.075000

 Metadata:

 title : Chapter

05

 Chapter #0:5: start

472.075000, end 678.833000

 Metadata:

 title : Chapter

06

 Chapter #0:6: start

678.833000, end 744.083000

 Metadata:

 title : Chapter

07

 Chapter #0:7: start

744.083000, end 888.032000

 Metadata:

 title : Chapter

08

 Stream #0:0(eng): Video:

h264 (High), yuv420p(tv, bt709/

unknown/unknown), 1280x544, SAR

1:1 DAR 40:17, 24 fps, 24 tbr, 1k

--enable-libflite --enable-lib-

fontconfig --enable-libfreetype

--enable-libfribidi --enable-

libgme --enable-libgsm --enable-

libmodplug --enable-libmp3lame

--enable-libopenjpeg --enable-

libopus --enable-libpulse --en-

able-librubberband --enable-

librtmp --enable-libschroedinger

--enable-libshine --enable-lib-

snappy --enable-libsoxr --en-

able-libspeex --enable-libssh

--enable-libtheora --enable-

libtwolame --enable-libvorbis

--enable-libvpx --enable-lib-

wavpack --enable-libwebp --en-

able-libx265 --enable-libxvid

--enable-libzvbi --enable-openal

--enable-opengl --enable-x11grab

--enable-libdc1394 --enable-li-

biec61883 --enable-libzmq --en-

able-frei0r --enable-chromaprint

--enable-libx264 --enable-ver-

sion3 --disable-doc --disable-

programs --disable-avdevice

--disable-avfilter --disable-

avformat --disable-avresample

--disable-postproc --disable-

swscale --enable-libopencore_am-

rnb --enable-libopencore_amrwb

--enable-libvo_amrwbenc

 libavutil 55. 17.103 / 55.

17.103

 libavcodec 57. 24.102 / 57.

24.102

 libavformat 57. 25.100 / 57.

25.100

 libavdevice 57. 0.101 / 57.

0.101

 libavfilter 6. 31.100 / 6.

31.100

 libavresample 3. 0. 0 / 3.

0. 0

 libswscale 4. 0.100 / 4.

0.100

 libswresample 2. 0.101 / 2.

0.101

 libpostproc 54. 0.100 / 54.

0.100

Input #0, matroska,webm, from

‘Sintel.2010.720p.mkv’:

gnueabihf --cc=cc --cxx=g++

--enable-gpl --enable-shared

--disable-stripping --disable-

decoder=libopenjpeg --disable-

decoder=libschroedinger --enable-

avresample --enable-avisynth

--enable-gnutls --enable-ladspa

--enable-libass --enable-lib-

bluray --enable-libbs2b --en-

able-libcaca --enable-libcdio

--enable-libflite --enable-lib-

fontconfig --enable-libfreetype

--enable-libfribidi --enable-

libgme --enable-libgsm --enable-

libmodplug --enable-libmp3lame

--enable-libopenjpeg --enable-

libopus --enable-libpulse --en-

able-librubberband --enable-

librtmp --enable-libschroedinger

--enable-libshine --enable-lib-

snappy --enable-libsoxr --en-

able-libspeex --enable-libssh

--enable-libtheora --enable-libt-

wolame --enable-libvorbis --en-

able-libvpx --enable-libwavpack

--enable-libwebp --enable-libx265

--enable-libxvid --enable-libz-

vbi --enable-openal --enable-

opengl --enable-x11grab --enable-

libdc1394 --enable-libiec61883

--enable-libzmq --enable-frei0r

--enable-chromaprint --enable-

libx264

 WARNING: library configuration

mismatch

 avcodec configura-

tion: --prefix=/usr --ex-

tra-version=1ubuntu4

--toolchain=hardened --libdir=/

usr/lib/arm-linux-gnueabihf

--incdir=/usr/include/arm-linux-

gnueabihf --cc=cc --cxx=g++

--enable-gpl --enable-shared

--disable-stripping --disable-

decoder=libopenjpeg --disable-

decoder=libschroedinger --enable-

avresample --enable-avisynth

--enable-gnutls --enable-ladspa

--enable-libass --enable-lib-

bluray --enable-libbs2b --en-

able-libcaca --enable-libcdio

HARDWARE ENCODER

ODROID MAGAZINE	 20

06

 Chapter #0:6: start

678.833000, end 744.083000

 Metadata:

 title : Chapter

07

 Chapter #0:7: start

744.083000, end 888.032000

 Metadata:

 title : Chapter

08

 Stream #0:0(eng): Video:

h264 (h264_v4l2m2m) ([33][0][0]

[0] / 0x0021), yuv420p, 1280x544

[SAR 1:1 DAR 40:17], q=2-31, 2000

kb/s, 24 fps, 12288 tbn, 24 tbc

 Metadata:

 encoder :

Lavc57.24.102 h264_v4l2m2m

 Stream #0:1(eng): Audio: aac

(LC) ([64][0][0][0] / 0x0040),

48000 Hz, 5.1(side), fltp, 341

kb/s

 Metadata:

 title : AC3 5.1 @

640 Kbps

 encoder :

Lavc57.24.102 aac

Stream mapping:

 Stream #0:0 -> #0:0 (h264 (na-

tive) -> h264 (h264_v4l2m2m))

 Stream #0:1 -> #0:1 (ac3 (na-

tive) -> aac (native))

ed.mp4’:

 Metadata:

 encoder :

Lavf57.25.100

 Chapter #0:0: start 0.000000,

end 103.125000

 Metadata:

 title : Chapter

01

 Chapter #0:1: start

103.125000, end 148.667000

 Metadata:

 title : Chapter

02

 Chapter #0:2: start

148.667000, end 349.792000

 Metadata:

 title : Chapter

03

 Chapter #0:3: start

349.792000, end 437.208000

 Metadata:

 title : Chapter

04

 Chapter #0:4: start

437.208000, end 472.075000

 Metadata:

 title : Chapter

05

 Chapter #0:5: start

472.075000, end 678.833000

 Metadata:

 title : Chapter

tbn, 48 tbc

 Stream #0:1(eng): Audio: ac3,

48000 Hz, 5.1(side), fltp, 640

kb/s

 Metadata:

 title : AC3 5.1 @

640 Kbps

 Stream #0:2(ger): Subtitle:

subrip

 Stream #0:3(eng): Subtitle:

subrip

 Stream #0:4(spa): Subtitle:

subrip

 Stream #0:5(fre): Subtitle:

subrip

 Stream #0:6(ita): Subtitle:

subrip

 Stream #0:7(dut): Subtitle:

subrip

 Stream #0:8(pol): Subtitle:

subrip

 Stream #0:9(por): Subtitle:

subrip

 Stream #0:10(rus): Subtitle:

subrip

 Stream #0:11(vie): Subtitle:

subrip

Codec AVOption preset (Configura-

tion preset) specified for output

file #0 (sintel-encoded.mp4) has

not been used for any stream.

The most likely reason is either

wrong type (e.g. a video option

with no video

 streams) or that it is a private

option of some encoder which was

not actually used for any stream.

File ‘sintel-encoded.mp4’ already

exists. Overwrite ? [y/N] y

[h264_v4l2m2m @ 0xf3fe0] H264

codec detected, init annexb con-

verter

[h264_v4l2m2m @ 0xf3fe0] Device

path not set, probing /dev/video*

[h264_v4l2m2m @ 0xf3fe0] exynos-

gsc.1:m2m is not the one we want

[h264_v4l2m2m @ 0xf3fe0] exynos-

gsc.0:m2m is not the one we want

[h264_v4l2m2m @ 0xf3fe0] Using

device /dev/video1

Output #0, mp4, to ‘sintel-encod-

Figure 1 - Big Buck Bunny demo

HARDWARE ENCODER

ODROID MAGAZINE	 21

$ dpkg-buildpackage -us -uc -b

-j4

$ cd ../

$ sudo dpkg -i gstreamer*.deb

Alternatively, you can get the pre-
built deb packages from http://bit.
ly/2gj7Iqm. To transcode something,
you should first identify the encoding
and the decoding interfaces, since they
change on every boot:

$ decoder=`gst-inspect-1.0 | grep

v4l2 | grep videodec | cut -d “:”

-f 2`

$ encoder=`gst-inspect-1.0 | grep

v4l2 | grep h264enc | cut -d “:”

-f 2`

$ gst-launch-1.0 filesrc

location=big_buck_bunny_720p_

h264.mov ! qtdemux ! h264parse

! $decoder ! $encoder ex-

tra-controls=”encode,h264_

level=10,h264_profile=4,frame_lev-

el_rate_control_enable=1,video_

bitrate=2097152” ! h264parse

! matroskamux ! filesink

location=bbb.mkv

For comments, questions and sug-
gestions, please visit the original post at
http://bit.ly/2g0vnsn.

Press [q] to stop, [?] for help

[h264_v4l2m2m @ 0xf3fe0] Perform-

ing useless memcpy() on output

pool because buffers do not match

[h264_v4l2m2m @ 0xf3fe0] This

could be avoided by using av_

v4l_buffer_pool_get_buffer*() or

av_v4l_buffer_pool_make_pipe()

[mp4 @ 0xb9c70] Timestamps are

unset in a packet for stream 0.

This is deprecated and will stop

working in the future. Fix your

code to set the timestamps prop-

erly

[mp4 @ 0xb9c70] Encoder did not

produce proper pts, making some

up.

[h264_v4l2m2m @ 0xf3fe0] No

event occurred while wait-

ing.01 bitrate=36881.3kbits/s

speed=1.84x

frame= 2027 fps= 44 q=-0.0

Lsize= 383559kB time=00:01:25.20

bitrate=36877.0kbits/s

speed=1.84x

video:379964kB audio:3551kB

subtitle:0kB other streams:0kB

global headers:0kB muxing over-

head: 0.011593%

Steps when using
gstreamer

Compile gstreamer from memeka’s
branch using the commands:

$ apt-get install gstreamer1.0-

plugins-bad

$ git clone https://github.com/\

 mihailescu2m/gst-plugins-good

$ cd gst-plugins-good/

$ sudo apt-get install

libgstreamer1.0-dev libgudev-1.0-

dev \

 libgstreamer-plugins-base1.0-dev

dh-autoreconf automake autoconf \

 libtool autopoint cdbs gtk-doc-

tools libshout3-dev libaa1-dev \

 libflac-dev libdv4-dev libdv-dev

libgtk-3-dev libtag1-dev \

 libsoup2.4-dev gstreamer1.0-doc

gstreamer1.0-plugins-base-doc

HARDWARE ENCODER

ODROID Talk
Subreddit

 http://www.reddit.com/r/odroid

ODROID
Magazine

is on
Reddit!

Your dog will be pleased with your
ODROID-U4’s hardware encoding!

ODROID MAGAZINE	 22

http://bit.ly/2gj7Iqm
http://bit.ly/2gj7Iqm
http://bit.ly/2g0vnsn.t
http://www.reddit.com/r/odroid

After the file has loaded, add the following two lines to the
end, save the file, and reboot the system:
#Bluetooth Audio A2dp Sink

persist.service.bt.a2dp.sink=true

After the ODROID has rebooted, enable the “Media Au-
dio” option dialog box, as below:

Finally, connect the smartphone or tablet to the ODROID
by pairing it via bluetooth, and play your music. For com-
ments, questions and suggestions, please visit the original post
at http://bit.ly/2f2dO8H.

If you have an ODROID installed as a Car PC, you may
want to keep your music collection on a portable device
such as a phone or tablet, and have it automatically con-

nect to the vehicle’s speakers when you drive. Or, you may
have a HiFi Shield attached to your ODROID-C2 along with a
high-end stereo system, and want to play music from a friend’s
smartphone through it. By following the steps in this article,
you can use your ODROID as a bluetooth speaker.

To begin, make sure that you have a bluetooth dongle at-
tached to the ODROID, as shown below.

How to Use
an ODROID As a
Bluetooth Speaker
Music for the masses
by @codewalker

THERMAL PRINTER

ODROID with Bluetooth dongle on USB port

Next, open the Terminal Emulator app on your ODROID,
as shown.

Remount the root filesystem with read/write privileges so
that you can make changes:
mount -o rw,remount /

Launching the Terminal emulator

Running the mount command

Editing the build.prop file using vi

Enabling the Media
Audio option

Use a text editor such as vi to edit the file called “build.
prop”:

vi /build.prop

Then, switch to the root user and confirm the dialog box
that appears:
$ su

ODROID MAGAZINE	 23

http://bit.ly/2f2dO8H

spinlocks, and rw_semaphores
•	 Converting interrupt handlers

into preemptible kernel threads
•	 Converting the old Linux timer

API into separate infrastructures
for high resolution kernel timers
plus one for timeouts

•	 Timer improvements leading to
userspace POSIX timers with
high resolution.

Building the kernel
To build a real-time (RT) Linux

kernel, we need to update the kernel
with Real Time kernel patches. The
RT patches file can be found at http://
bit.ly/2g3MiJ2, and the latest patch-
es for the 3.14.x kernel can be found
at http://bit.ly/2goVUSQ. You can
checkout the Linux kernel source tree
for the ODROID-C2 from http://bit.
ly/2fNFOi4. RT patches need to match
the Linux kernel version, so you must
choose the relevant patch series.

$ git clone --depth 1 \

 -b odroidc2-3.14.y \

 https://github.com/hardkernel/

linux.git\

 odroidc2-3.14.y-rt

$ cd odroidc2-3.14.y-rt

$ wget \

 https://www.kernel.org/pub/

linux/kernel/\

 projects/rt/3.14/older/\

A real-time operating system
(RTOS) is an operating system
intended to serve real-time ap-

plication process data as it comes in,
typically without buffering delays. The
standard Linux kernel only meets some
real-time requirements by providing ba-
sic POSIX operations for userspace time
handling, but it does not guarantee hard
timing deadlines. If we apply Ingo Mol-
nar’s real-time Preemption patch (RT-
Preempt), and Thomas Gleixner’s gener-
ic clock event layer with high resolution
support, the kernel gains full real-time
capabilities.

The RT-Preempt patch has raised a
lot of interest throughout the industry.
Its clean design and consequent aim
towards mainline integration makes it
an interesting option for hard and firm
real-time applications. It’s no surprise
to see applications ranging from profes-
sional audio to industrial control using
RT Linux.

Use cases
•	 Making in-kernel locking-

primitives (using spinlocks) pre-
emptible though reimplementa-
tion with rtmutexes.

•	 Critical sections protected by
spinlock_t and rwlock_t are now
preemptible

•	 Implementing priority inheri-
tance for in-kernel mutexes,

ODROID-C2
Real-Time Kernel
Getting started with An RTOS
by Anand Moon (@moon.linux)

REAL-TIME KERNEL

 patch-3.14.65-rt68.patch.gz

$ gunzip patch-3.14.65-rt68.

patch.gz

$ patch -p1 < \

 patch-3.14.65-rt68.patch

The ARM64 RT kernel has some
missing patches, so we have to look at
the 3.18.y kernel and apply those patch-
es as well. Once the additional patches
are applied, we can build the kernel.
The necessary patches can be found in
3.18.y-rt patch series:

arm64: Mark PMU interrupt IRQF_
NO_THREAD.patch

arm64: Allow forced irq threading.
patch

arch/arm64: Add lazy preempt sup-
port.patch

arm64: replace read_lock to rcu lock
in call_step_hook

A few files have conflicts, so you need
to update them manually before build-
ing the kernel. You can find the links for
all the updated patches in the following
repository at http://bit.ly/2g6R3Di.

Building the kernel
Compilation is done with make.

Adding -j to the make command will
speed up compilation:

$ make -j4 Image dtbs modules

ODROID MAGAZINE	 24

http://bit.ly/2g3MiJ2
http://bit.ly/2g3MiJ2
http://bit.ly/2goVUSQ
http://bit.ly/2fNFOi4
http://bit.ly/2fNFOi4
http://bit.ly/2g6R3Di

REAL-TIME KERNEL

After this has completed, you have
will have a compiled Linux kernel (im-
age), the device tree file (.dtb) and kernel
modules (.ko). The following steps as-
sume that your USB memory card read-
er is assigned to /dev/sdc. Be careful and
double check how your card is assigned!

First, insert the boot-medium, either
the eMMC module or SD card, into the
USB memory card reader and connect
the USB memory card reader to your
Linux host PC. Then, copy the image
and DT (meson64_odroidc2.dtb) to the
1st partition (FAT) of the boot-medium:

$ mkdir -p mount

$ sudo mount /dev/sdc1 ./mount

$ sudo cp arch/arm64/boot/Im-

age\ arch/arm64/boot/dts/meson64_

odroidc2.dtb\

 ./mount && sync && sudo umount

./mount

Finally, copy the driver modules to
the 2nd partition(EXT4) of the boot-
medium:

$ sudo mount /dev/sdc2 ./mount

$ sudo make modules_install \

ARCH=arm64 \

INSTALL_MOD_PATH=./mount && sync

\

&& sudo umount ./mount

$ rm -rf mount

For comments, questions or sugges-
tions, please visit the original post at
http://bit.ly/2f2b0s8.

ANDROID SOFTWARE EQUALIZER

Ruling the World
with Synergy
Chronicles of a Mad Scientist
by Bo Lechnowsky (@respectech)

If you had a minion, not the animated kind but the “Pull the Switch” kind, he
would watch in amazement as you effortlessly launched windows on multiple
monitors run by multiple computers, copying and pasting madly between them.

You know that as a scientist with world-domination plans, you cannot be slowed
down by latency when launching applications and sharing data between them. That
is why you installed Synergy in the first place, as outlined in the June 2016 issue of
ODROID Magazine (http://bit.ly/1XxSbRw).

Recently, you decided to dust off a venerable ODROID-U2 in order to add to
Synergy. However, you did not want to recompile Synergy from scratch. You up-
dated the system with the following commands:

$ sudo apt update

$ sudo apt dist-upgrade

Then, you downloaded the version compiled for the ODROID-XU4 from
http://bit.ly/22lNiL1, but after decompressing and moving the files to the /usr/bin
folder, you were greeted with:

synergyc: /usr/lib/arm-linux-gnueabihf/libstdc++.so.6: version `GLIB-

CXX_3.4.20’ not found (required by synergyc)

After some searching around on the internet, you found an easy fix for this prob-
lem:

$ sudo add-apt-repository ppa:ubuntu-toolchain-r/test

$ sudo apt update

$ sudo apt install g++-4.9

After setting up the U2 using the “Configure Server...” button on Synergy Server
running on your main machine and running the synergyc command on the U2, all
that was needed was to “Stop” and “Start” the Synergy Server and your U2 is up and
running. Life is good, and world domination is one step closer!

Run even heterogeneous environment X86 Windows x ARM Linux

ODROID MAGAZINE	 25

http://bit.ly/2f2b0s8
http://bit.ly/1XxSbRw
http://bit.ly/22lNiL1

heat away, a radiator and fan to cool the
water, and a pump that lets water flow
through the system. On my particular
build, I opted for a Corsair Hydro Series
H45 for many reasons, one being that
the pump is built into the radiator itself.
Many AIO (All in One) liquid cooling
system have the pump on top of a CPU
cooler, and this is useless to us, since
we’re not installing this on a standard
PC. Having the pump on the radiator
also allows us to keep the system as com-
pact as possible, while making it easier to
cut the CPU block off and connect our
own liquid cooling block shaped to fit
our ODROID.

No matter what, most CPU wa-
ter cooling systems probably won’t
have a water block that supports your
ODROID given their size, so you’ll
need to find one that will fit on a North

It’s well known throughout the
ODROID community that the tem-
perature of the XU4 and XU3 starts

to rise sharply under heavy loads. This
can quickly lead to something called
thermal throttling, where the board au-
tomatically slows down after reaching a
certain temperature to prevent damage
to the board. The XU3 and XU4 tend
to underclock from 2 GHz to 900 MHz
in order to cool off for a little while.
However, if we improve the ability for
the ODROID to cool itself, then it can
maintain its peak performance for a
greater amount of time. This is where
liquid cooling comes in. There are many
ways to improve cooling, including a
larger heatsink with a standard 40mm
fan, but liquid cooling has two key ad-
vantages: it has a far greater thermal ca-
pacity, and is quieter, since most liquid
cooling kits on the market use larger fans
that are less noisy than the stock fan on
an XU3 or XU4.

When considering how to liquid cool
the ODROID, you need to consider
how you are going to cool it and what
hardware you are going to use. There are
many different types of custom cooling
components on the market, and if you’re
not careful, your cooling setup can cost
a lot more than the board itself. Every
water cooler will need three main com-
ponents: a water block that fits your
ODROID’s chip in order to transfer

Bridge chipset, which is similar in size
to our ODROID SoC. For this build,
I didn’t want to spend any money, since
I had an older EKWB Chipset water-
cooling block lying around doing noth-
ing. This wasn’t the perfect solution, as
it needed to be trimmed to be able to
fit on the XU4 chipset. I chamfered
the copper so that, when it was fitted, it
didn’t touch the HDMI or Sound Ports.
The last thing we want is our XU4 short-
ing out! I also had to cut out a section of
the block to get around the sound out-
put port. There are some blocks on the
market that will fit perfectly, however,
they can cost in the region of £35.00
(USD$43) plus post and packing, and
that probably won’t include the rest of
the cooling system.

To help keep things compact, I also
mounted my ODROID to the radia-
tor using some screws and custom laser
cut plastic parts. You can get these ma-

Why Add Liquid
Cooling To AN
ODROID-XU3
or XU4?
by Michael Lee Wood (@ mlwood37)

LIQUID COOLING

Figure 1 - The final result of the liquid
cooling project

Figure 2 - The acrylic parts needed for
mounting your ODROID-XU4

ODROID MAGAZINE	 26

•	 Mayhems XT1 Coolant + DI
water

•	 Self-tapping screw and rubber
washer

Build process
First, you’ll need to check the fit of

the water block that you have selected
for your ODROID. When test fitting,
check to make sure you are not any-
where near the HDMI port or the sound
ports. You may have to remove the top
and cut and chamfer the copper block so
it fits perfectly. Once this is done, put
the water block and your ODROID to
the side.

Next, take the John Guest Straight
Adaptor 3/8” NPTF Thread 1/4” Tube
Connection and cut down the threaded
ends with your hacksaw so they screw
flushly into your water block. If needed,
use some PFTE tape around the fittings
so they create a good seal. You want to
make absolutely sure that your fittings
are tight and have a strong seal to pre-
vent leakage.

Next, take your 10mm tube Linear
Low Density Polyethylene and cut it
down to size, pushing it into the end
of your John Guest fittings. Make sure
they are tight and flush just like the fit-
tings. This is where you will be pushing
your AIO into the block.

After this has been completed, we’re
ready to attach our Corsair Hydro H45
to the water block. Cut off the tubes
nearest to the water cooling block that
comes attached to your AIO system. You
should leave some extra tubing in case
you want to use it again in the future.
Take a container and collect or dump
the coolant inside your Corsair cooler.
It’s up to you if you want to reuse this
coolant, but it isn’t a very high quality
coolant and will likely be contaminated
with flecks of aluminum too.

Next, we’ll prepare our radiator to
receive coolant, since it was designed
as a closed loop system. Take your drill
and slowly drill in the top (the top right
hand side is the best place for this) of

chined, as shown in Figure 2, by anyone
with access to a decent laser cutter using
plans I’ve made available at http://bit.
ly/2fy3llS. My build also requires a cus-
tomization with a drill and self-tapping
screw to access the coolant and reduce
the tubing size to fit my more compact
size.

Tools and parts
Now, let me go into the nitty gritty of

achieving this water cooled system, in-
cluding the steps I took to cut down the
water block to size. First, here’s a list of
the tools you’ll need:

•	 Screw drivers.
•	 Dremel rotary tool with disk cut-

ting tools.
•	 Access to a laser cutter or 3D

printer
•	 Hack Saw
•	 Sand paper, a grinder, or any-

thing you can use to grind down
the copper block

•	 Drill with a bit that can cut and
is the same size as your self-tap-
ping screw.

•	 Stanley knife or Tube cutters
•	 Syringe for filling the AIO with

fresh coolant

And here are the parts we’ll be using:

•	 Hardkernel ODROID XU4 or
XU3

•	 Corsair Hydro H45 (part Num-
ber CW-9060028-WW)

•	 Chipset water cooling block
•	 John Guest Straight Adaptor

3/8” NPTF Thread 1/4” Tube
Connection

•	 0.25 meters of 10mm Hard tube
Linear Low Density Polyethylene

•	 3mm acrylic clear or coloured
(for machining your parts)

•	 12v Power supply specifically for
the pump and 120mm Fan.

•	 Screws / bolts to fit everything.
•	 Thermal paste (MX4 is recom-

mended)

LIQUID COOLING

the Corsair Hydro H45 radiator and,
if possible, do this upside down so no
metal flakes go into the radiator. Once
you have done this, take a small self-tap-
ping screw and add a rubber washer to
it. Now screw your self-tapping screw
in carefully, making sure that you don’t
overtighten it.

Using the plans that I mentioned
above, laser cut the acrylic 3mm fins and
mounting plate for the XU4 / XU3 for
the mod. You can do them in any color
you wish. Some of you may wish to do
a 3D print or make them out of wood.
Use this article as inspiration to mod it
in whatever way you’d like.

Next, we’ll fit the water block to the
AIO. Look at how it will all fit and cut
the AIO tubes down as much as possible.
Once you have done this, remove the
self-tapping screw and use a syringe to
fill the radiator up with your Mayhems
XT1 (a non-toxic coolant that won’t cor-
rode copper or aluminum). Take your
time filling this, as you need to get as
much air out of the system possible. Tilt

Figure 3 - The self-tapping screw and hole
for filling your cooling block with coolant

Figure 4 - A closer look at the water
block assembly

ODROID MAGAZINE	 27

http://bit.ly/2fy3llS
http://bit.ly/2fy3llS

the circuit to drop the voltage to 5 volts
and 4 amps, which we can use to power
the ODROID-XU4. This gives us a way
to power our system from a single outlet.

Last, but not least: Test it out! Use a
CPU stress testing tool to see how things
go. You can slowly adjust the screw heads
on the water block to get optimum cool-
ing. Again, do not overtighten them and
potentially bend the PCB. If you wish,
you can also add a brace to the back of
the board to help stop any PCB bend-
ing issues. Good luck and enjoy your
ODROID at maximum performance!

and move the AIO around while filling
to aid in air removal. You can power up
the pump after each fill to get trapped air
to move to your fill port. However, do
not turn on the pump if there is no cool-
ant in it, as this will damage the pump.

Once the coolant is filled, screw back
in the self-tapping screw with the rubber
washer. Test the pump without fitting
anything to it in case of any leaks. Do
this for at least 1 to 2 hours before pro-
ceeding any further to ensure that every-
thing is properly fitted.

You are now ready to fit the plastic
fins and water block to the front of the
AIO. Add thermal Paste onto your SoC.
A pea-sized ball is more than enough.
Take your time and remember when fit-
ting the water block to not over tighten
the bracing screws to the XU4 / XU3 as
you may start to bend the PCB, which
can ruin the ODROID. Then, simply
layer the fins on the Corsair AIO and
screw it all down. Don’t forget to mount
the XU4 on the larger base plate and you
may wish to use the raiser washers that I
have added into the plans (DXF format).

The ODROID doesn’t have enough
power for the water cooler, so I used a
power brick that is rated at 12 volts and
5 amps, which is connected to a con-
stant current/voltage 5-30v 5A buck
regulator with 2 displays (http://ebay.
eu/2gfpnuZ). We connected the pump
and fan directly to the 12V power sup-
ply, which draws 12 volts and 0.45 amps,
and then added the buck regulator into

Figure 5 - Another angle of the final design

LIQUID COOLINGLINUX GAMES

Mini Metro
a perfect game
to wonder about
waiting for your
metro.
by Bruno Doiche

Taking the
metro to
go around

to places isn’t the
thing that would
keep your mind occupied, but there
is a certain sense of wonder when
you play this game while you wait for
your metro ride to come and take you
home at the end of a working day. If
you have fond memories of playing
Sim-City, this game will be your next
best time-waster in the greatest style
possible!

https://play.google.com/store/
apps/details?id=nz.co.codepoint.
minimetro

For a game that had every reason to be
absolutely banal, you will be hooked.

ODROID MAGAZINE	 28

http://ebay.eu/2gfpnuZ
http://ebay.eu/2gfpnuZ
https://play.google.com/store/apps/details?id=nz.co.codepoint.minimetro
https://play.google.com/store/apps/details?id=nz.co.codepoint.minimetro
https://play.google.com/store/apps/details?id=nz.co.codepoint.minimetro

The Swarm Architecture

In Part 1 of this tutorial, we discussed the classic “docker
run” and other commands. In Part 2, we are going to learn
the swarm mode commands which are new to Docker ver-

sion 1.12.X. So, what is swarm mode, and why do we need it?
All of the Docker commands that we discussed in Part 1

run Docker containers on the local machine. There is a limit to
the number of containers that can be run on a single machine
due to CPU and memory limitations. And when that machine
fails, all your applications running on the machine will be un-
available. To provide high availability, scalability, orchestration
and manageability, a cluster environment is needed. Swarm
mode is the built-in cluster environment (the swarm) for
Docker engines, although there are other orchestration engines
for Docker (For instance, Kubernetes).

A swarm consists of multiple instances of Docker engines,
called nodes. There are two types of nodes:

Docker 101
Part 2 - Swarm Mode
by Andy Yuen (@ MrDreamBot)

DOCKER SWARM MODE

Manager Node, which dispatches units of work called tasks
to worker nodes and performs orchestration, management
functions, and maintenance of desired states of a swarm. There
can be multiple manager nodes, but it is always an odd number
of manager nodes due to the use of the Raft Consensus proto-
col (https://raft.github.io/). A Manager node can also be a
worker nodes at the same time. The state store stores informa-
tion such as state of cluster and the user defined configuration.
Information is organized into objects such as clusters, nodes,
services, tasks, and networks.

Worker Node, which executes tasks received from a man-
ager node

User interaction with the swarm is through services. A ser-
vice is the definition of tasks to be run on worker nodes. Scal-
ing is achieved using a replica services model in which a specific
number of tasks is run on worker nodes to satisfy the desired
state of the target number of replicas to be run. The swarm is
administered using a command line interface via the manager
node. In subsequent sections, we shall discuss how to create a
swarm, services, and set the desired state. If you want to carry
out the exercises in this tutorial, you will have to fulfill the
prerequisites below.

Prerequisites
In order to follow this tutorial, you must have the following:
Two or more ODROID-C2 devices connected to the same
Ethernet switch that your PC is connected to. Figure 2a
shows my setup, which consists of 5 ODROID-C2s and my
notebook all connected into a single network environment.
My ODROID-C2 nodes and their roles are summarized in
Figure 2b.

ODROID MAGAZINE	 29

https://raft.github.io

Your PC must be able to SSH into the c2-swarm-00 man-
ager node where the swarm is administered.
Your nodes must be running Docker version 1.12.X. For
those of you using an OS whose software repository does
not provide the docker.io 1.12.x package or equivalent, you
may install it following the instructions and binaries I put on
Github at http://bit.ly/2ejY1FE.

Creating and Managing a Swarm
To create a swarm, issue the following command from the

manager node:

$ docker swarm init \

 --advertise-addr 192.168.1.100

Which should return:

$ Swam initialized: current node (8jw6y313hmt3vfa1f-

me1dinro) is now a manager.

This should follow with a string including a token and open
port on your manager node that can be used to invite other
docker instances to the swarm. There are a number of options
that you can use for your swarm. For help, you can type the
following command:

$ docker swarm --help

This should show a host of information about your swarm,
as shown next.

To add workers to this swarm, run the following command
on each of the remaining nodes:

$ docker swarm join \

--token tokengoeshere \

192.168.1.100:2377

Your unique will be returned from the docker swarm init
command we ran earlier. This is a security mechanism ensur-
ing that only legitimate nodes can join the swarm. Note that
you only have to do this once since the configuration is saved
in the state store, which survives reboots.

We only need 1 manager node to make the swarm work.
For this tutorial, we are not going to add additional manager
nodes. To see the result, issue the following command from
the manager:

$ docker node ls

Then we take a look at what that command will show in a
typical list.

DOCKER SWARM MODE

My setup of five ODROID-C2 devices
Swarm mode at a glance

A list of available docker nodes

Chart of nodes and roles in the example swarm cluster

ODROID MAGAZINE	 30

http://bit.ly/2ejY1FE

If you lost the token earlier on from the init process, don’t
worry, you can retrieve it by issuing the following command
from the Manager Node. To get the token for a manager, re-
place “worker” in the command by “manager”:

$ docker swarm join-token worker

When you want a node to unjoin the swarm, issue the fol-
lowing command from that node:

$ docker swarm leave

By default, the manager node is also a worker node, if you
do not want the manager to run any service tasks, you can
“drain” the manager as follows:

$ docker node update --availability drain c2-swarm-00

In fact, you can use the drain command on any worker
node. If the worker node is running service tasks when you
issue the drain command, it will shut down those tasks and let
the swarm start them on the other worker nodes to satisfy the
desired state. When you want the node to run service tasks
again, just issue the command below on the Manager Node:

$ docker node update --availability active c2-

swarm-00

Creating a service
Now that our swarm is up and running, we’re going to cre-

ate our first service to ping the Manager Node. We can see
what this looks like in the next image. Type the following com-
mands from the manager node:

$ docker service create --replicas 1 --name ping-

service mrdreambot/arm64-busybox-httpd /bin /ping

192.168.1.100

$ docker service ls

$ docker service inspect --pretty pingservice

We can see that there is only 1 instance of the service run-
ning. Type the following command:

$ docker service ps pingservice

It tells us the service is running on c2-swarm-02. Start a
terminal to c2-swarm-02 and type these commands:

$ docker ps

$ docker logs pingservice.1.eic3ca0o4h0gxrb675ncveptv

For reference, pingservice.1.eic3ca0o4h0gxrb675ncveptv is
the docker container ID identified in the output of the docker
ps command. The logs, as shown in below, show that ping-
service, indeed, is pinging my swarm manager 192.168.1.100.

To scale it to run 5 instances, issue the command from the
swarm manager:

$ docker service scale pingservice=5

Since I used the service scale command to set the desired
state to run 5 instances of the service pingservice, it spins up
new containers to make up the 5 service instances. Note that
the swarm performs load balancing by spreading the load
across the nodes in the swarm. When I shut down nodes c2-
swarm-03 and c2-swarm-04, I expect the swarm to spin up ser-
vices on the remaining nodes to maintain the 5 replica count.
In fact that is the case as can be seen in Figure 7. The swarm is
running 2 containers on c2-swarm-00 and c2-swarm-01, and
1 on c2-swarm-02.

DOCKER SWARM MODE

The service creation process

The ping log at a glance

ODROID MAGAZINE	 31

When you are done with the service, remove it by issuing
the following command:

$ docker service rm pingservice

Testing the Routing Mesh
In Part 1, I deployed both MySQL and Fish on C2-swarm-00

using Docker run, which was in lieu of Swarm Mode. In this sec-
tion, I am going to deploy them as services in Swarm Mode instead

Please note that only 1 instance of MySQL mapped to the
database directory on disk can be running at a time. Did you
remember from part 1 that only c2-swarm-00 has a hard disk?
I am going to run MySQL as a service with only 1 instance and
set up a constraint that the service can only be run on the host
c2-swarm-00 using the following command:

$ docker service create \
--name mysql \
-p 3306:3306 \
-e MYSQL_USER=fishuser \
-e MYSQL_PASSWORD=fish456 \
-e MYSQL_DATABASE=fish \
--constraint ‘node.hostname == c2-swarm-00’ \
--mount type=bind,src=/media/sata/fish-mysql,dst=/u01/
my3306/data \
mrdreambot/arm64-mysql

This is very similar to running MySQL using the classic
docker run command. The main difference is that if the con-
tainer running the MySQL service should fall over, the swarm
will automatically start another instance to replace it.

Also note the use of “--constraint ‘node.hostname == c2-
swarm-00’”, which constrains MySQL to run on the node
named c2-swarm-00 only. There are other pre-defined con-
straints as can be found in the docker documentation. To run
fish as a service, issue the command:

$ docker service create \

-p 8080:8080 \
--name fish \
-e MYSQL_SERVER=192.168.1.100 \
-e MYSQL_PORT=3306 \
mrdreambot/arm64-fish

You can see that the services are running using the follow-
ing command:

$ docker service ls

Above there is a look at how this appears when you’re suc-
cessful. Note that the first time I issue the “docker service ls”
command, MySQL was still starting. It was started when I
issued the second ‘docker service ls’ command. Fish is running
on c2-swarm-04.

All nodes in a swarm are on an ingress routing mesh, mean-
ing that all nodes in the swarm can accept connections on pub-
lished ports for any service (in our case, port 8080 for Fish and
port 3306 for MySQL) even if the task is not running on that
node. This implies that we can point our browser to any of
the nodes in the swarm to access the fish application. How-
ever, this was not the behavior that I witnessed on my swarm
cluster. I could only access the service on the nodes running it
(c2-swarm-04) and not on any other nodes. After I scaled up
and down the number of replicas of the service several times,
occasionally I could not even invoke the service on the node
running the service! I searched the Internet and many peo-
ple reported the same issue. The problem was thought to be
swarm mode not updating the IPVS (IP Virtual Server) tables
correctly. IPVS is the kernel module responsible for load bal-
ancing. Automatic load balancing is a great feature once it is
working.

User-defined networks
User-defined networks can be used to isolate containers.

For example, if you created a user-defined network and assign
containers or services to it, other containers or services not in
that network will not be able to access them, and vice-versa. In

DOCKER SWARM MODE

The desired states performing load balancing

Load balancing in effect with a Docker Swarm

ODROID MAGAZINE	 32

addition, the containers or services in a user defined network
can reference each other by name, such as the name assigned to
a container upon creation. There are two types of user-defined
networks: bridge networks and overlay networks.

Bridge Networks
This is mainly used by the classic docker run commands. A

bridge network can only function on the local machine. For
example, we can create a bridge network and add the MySQL
and Fish containers to it:

$ docker network create --driver bridge my-net
$ docker run -d --network my-net \
--name mysql \
-e MYSQL_USER=fishuser \
-e MYSQL_PASSWORD=fish456 \
-e MYSQL_DATABASE=fish \
-v /media/sata/fish-mysql:/u01/my3306/data \
mrdreambot/arm64-mysql
$ docker run -d --network my-net \
-p 8080:8080 \
--name fish \
-e MYSQL_SERVER=mysql \
-e MYSQL_PORT=3306 \
mrdreambot/arm64-fish

After creating the network, one can see a bridge network
(my-net) has been set up, as shown in Figure 9.

Note that the docker run command for Fish references the
MYSQL_SERVER by its name “mysql” instead of using localhost
or an IP address, and we don’t even need to publish the MySQL
port (i.e., there is no “-p 3306:3306” in the MySQL docker run
command). Although we cannot access MySQL from the docker
host without publishing port 3306, Fish can access MySQL port
3306 because it is on the same user defined network called my-net.
The bridge network is working as intended.

Overlay Network
To create a user-defined network spanning multiple nodes

in swarm mode, we have to create an overlay network. The
swarm mode equivalent of deploying the MySQL and Fish
above in an overlay network is:

$ docker network create --driver overlay --sub-
net=172.20.0.0/16 fish-net
$ docker service create --network fish-net \
--name mysql \

-e MYSQL_USER=fishuser \
-e MYSQL_PASSWORD=fish456 \
-e MYSQL_DATABASE=fish \
--constraint ‘node.hostname == c2-swarm-00’ \
--mount type=bind,src=/media/sata/fish-mysql,\
dst=/u01/my3306/data \
mrdreambot/arm64-mysql
$ docker service create --network fish-net \
-p 8080:8080 \
--name fish \
-e MYSQL_SERVER=mysql \
-e MYSQL_PORT=3306 \
mrdreambot/arm64-fish

After creating the network, one can see an overlay network
(fish-net) has been set up for the swarm, as shown in Figure 10.

Unfortunately, Fish did not work. It showed the login screen,
but was not able to authenticate after I entered the username
and password repeatedly, and was unable to communicate to
MySQL via its name. There is an overlay networking problem
in the version of Docker that I use, where the implementation is
not able to resolve the container or service by name.

Conclusion
Although there are some issues with the swarm mode in the

version of docker engine I used in this tutorial, it should still give
you some insight on how it might have worked and how awesome
these features will be when working. Swarm mode is the native
cluster management and service orchestration features embedded
in the Docker engine since version 1.12.0. Before swarm mode
comes along, creating a swarm involved using third-party tools
such as consul or etcd to provide a distributed state store for service
discovery. With swarm mode, everything is built-in and works
out-of-the-box, except for the issues mentioned above: routing
mesh network and user defined overlay network. Although this
tutorial is designed to run on the ODROID-C2 swarm, all the
commands that you learned are exactly the same on INTEL-based
machines running the Docker engine. You can easily apply your
Docker command line knowledge to different environments in-
cluding Linux, MacOS, Windows and on a cloud host.

DOCKER SWARM MODE

The overlay network configuration

A look at the bridged network

ODROID MAGAZINE	 33

Seedboxes are far from new, but I’ve yet to find one that
will do everything that I want with my ODROID-
XU4, especially when integrated with the CloudShell

case and LCD interface. This guide will show you how to build
a seedbox that is:

Powered by the ODROID-XU4
Uses an SSD with SATA connectivity for high speed trans-
fers and read/write speeds
Runs the operating system and cache on the hard drive to
reduce fatigue on the SD card
Supports web-access to Transmission for remote down-
loading
Automatically connects to a VPN upon boot for maximum
security

So while nothing here is original, here’s a sure-fire way to
begin with a ODROID-XU4 and a CloudShell kit, and end up
with a working seedbox with all of these great features.

Background
To make things easier for my dad, I built him a seedbox

network attached storage (NAS) device last year for all of his
downloading and storage needs. It used an old Raspberry Pi 2
I had lying around before I found out about the far more pow-
erful (and USB 3.0 capable) ODROID-XU4. I used that RPi
2 to build him a seedbox that was a good start, but it used an
attached USB hard drive that just wasn’t very fast.

I also realized how convenient and well packaged the
ODROID CloudShell is, so I decided to put two great things
together and write a guide around turning a Cloudshell into
a seedbox with VPN capabilities. There are other guides out
there, often geared toward the RPi or Virtual Private Server

ODROID SEEDBOX

(VPS), but I really prefer turn-key guides that don’t require
sifting through three different sets of instructions that don’t
address the nuances of the ODROID, ARM architecture, or
the specific tools I want to use to achieve my ideal build. I
intended it to be a newer, faster, and sleeker upgrade to his Pi2.

Some credit is due to PiMylife and MakeUseOf, who have
some very useful Raspberry Pi guides that I’ve adapted for the
XU4 and CloudShell. I also took some snippets and instruc-
tions from several ODROID community members on how to
properly configure this guide for the XU4 and CloudShell. All
in all, this should run for less than $200, and offer anything
you’d want from a home seedbox or single drive NAS.

Parts list
ODROID XU4
CloudShell XU4 kit (featuring a USB 3.0 to SATA adapter
and 2.2-inch TFT LCD Display)
RTC Battery
256GB SSD (or other 2.5-inch storage device of your
choice)
32GB micro-SD card (Or other OS drive of your choice)
VPN subscription with OpenVPN support

The parts and tools we’ll need to get the job done

Designing your own
ODROID Seedbox
HARNESS THE POWER OF THE CLOUDSHELL
by Joshua Sherman

ODROID MAGAZINE	 34

ODROID SEEDBOX

VPN
This guide does include a step for setting up traffic encryption

through a Virtual Private Network (VPN). I highly recommend
you use a VPN with a seedbox or NAS you’re using for download-
ing content for security and peace-of-mind. You sacrifice your
peak speed capabilities if you have a fiber optic or other high speed
Internet connection, but many VPN providers can offer fairly
good speeds despite routing all traffic through a third party server.
Plus, you can still locally access those files, maximizing connectiv-
ity and the value of the USB 3.0 to SATA connectivity.

Local or online?
This guide is for a local seedbox setup. Can you do it online?

Sure, but you open yourself up to a number of security risks. This
guide involves plain text passwords (for the sake of simplicity and a
local-only implementation) to make it easier to configure the VPN
connection on each launch. You may not need this depending on if
you want a VPN, if your VPN service provider doesn’t need a user-
name and password. There also may be a more secure way to imple-
ment this, so feel free to make suggestions in the thread for anyone
else considering such a build. I chose this method, since it’s based
on a previous method that I knew worked, and meets my personal
needs in having a local NAS with 100 percent encrypted traffic.

Getting Started
First, we will update our ODROID, since this guide starts

with running an out-of-the-box 16.04 Ubuntu MATE image:

$ sudo apt-get update

$ sudo apt-get upgrade

$ sudo apt-get dist-upgrade

The update will take a while to complete. We could use a
more minimal image, but this guide is geared toward simplic-
ity. Go get some coffee and come back when it’s done! Figure
2 has a closer look at the hardware to look at in the meantime.

Next, we want to configure our seedbox’s CloudShell dis-
play to make sure it works. We start with smartmontools:

$ sudo apt install smartmontools

Next, we need to follow ODROID’s instructions to con-
figure the frame buffer for our TFT display in the CloudShell:

$ sudo -s

$ echo “options fbtft_device name=hktft9340 busnum=1

rotate=270” > /etc/modprobe.d/odroid-cloudshell.conf

$ echo “spi_s3c64xx” >> /etc/modules

$ echo “fbtft_device” >> /etc/modules

Then, we’ll remove the blacklist on the Serial Peripheral Inter-
face (SPI) through which our ODROID-XU4 and CloudShell
are connected. We do this by opening blacklist-odroid.conf:

$ sudo nano /etc/modprobe.d/blacklist-odroid.conf

When you’re finished, it should look like this. Note the two
SPI rows and LCD row are now commented:

Comment the required lines

IO Board
blacklist ioboard_bh1780
blacklist ioboard_bmp180
blacklist ioboard_keyled

SPI
blacklist spidev
blacklist spi_s3c64xx

3.2” LCD Touchscreen driver
blacklist ads7846

Reboot the XU4, but make sure you don’t have any HDMI
cables connected to it to ensure it connects to the LCD display.

At this point, we have a working device, but the display is
blank. We want it to show all sorts of useful info about our

Closeup of seedbox hardware

We have power! But the display still isn’t working yet

ODROID MAGAZINE	 35

blacklist-odroid.conf

CloudShell, so let’s use a useful script to do this for us. Eventu-
ally we’ll be using /dev/sda2 as our storage drive, so let’s modify
@mdrjr’s application and install it:

$ sudo apt-get install curl sysstat

$ wget https://github.com/jsherm101/cloudshell_lcd/\

raw/master/cloudshell-lcd_20160913-3-fixed.deb

$ sudo dpkg -i cloudshell-lcd_20160913-3-fixed.deb

If we reboot again, it should now show some useful infor-
mation about the device:

CPU usage and temperature
RAM availability
The local IP address of the device
Transfer rates
Disk usage, which is empty right now because we haven’t
configured our /dev/sda2 drive

Operating system configuration
Next comes the main task of this project, which is to set up

a BitTorrent protocol application to work well with the SSD.
This is nothing more than an apt-get command if we wanted to
use our SD card where the OS is installed for storage, but this
poses two issues:

There are large SD cards (>256GB), but they’re more expen-
sive or slower than their SSD and HDD counterparts
An SD card has a much shorter read/write lifecycle than an
SSD or HDD, and will fail sooner

To solve this, we’re going to actually move our ODROID
installation to the SSD and boot from the SSD for both our
operating system and our additional NAS storage folder. All

credit goes to James @ MakeUseOf for this great idea. This
might not be a concern for most practical uses, but is done as
a precaution in this build given the high number of reads and
writes anticipated in regular use.

Once we complete this, we’ll be installing Transmission as
our BitTorrent software of choice. It’s just as popular as Del-
uge and other clients, and comes down to a matter of prefer-
ence in this case. Both Transmission and Deluge support web-
based GUIs and server-client configurations for remote access.

Next, let’s configure our storage drive. We’ve already
plugged it into our assembled CloudShell and the necessary
SATA-to-USB drivers are configured with smartmontools, so
it should appear in fdisk as the first drive:

$ sudo fdisk /dev/sda1

My drive is currently an NTFS drive from an old Windows
installation. We’ll want to press “d” in fdisk to delete the parti-
tion, then “n” to create a new one, then “p” for primary parti-
tion. We’re ultimately creating two partitions: One for the OS
we’re moving to the SSD, and one for the storage area we’ll
share over the local network.

Create the first partition at the first sector available (prob-
ably 2048) and then type “+16G” to create a 16GB partition
in size. Then start again typing “n” and “p” to create a second
partition with the remaining storage on the drive. My 256GB
SSD left about 208 GB after accounting for capacity format-
ting and the installation partition. Once we’re finished, type
“w” to write the new partitions to the SSD.

Next, convert both partitions into the ext4 format and
mount them to the two folders we’ve set aside for this project:

$ sudo mkfs.ext /dev/sda1

$ sudo mkfs.ext /dev/sda2

$ sudo mkdir /media/systemdrive

$ sudo mkdir /media/NAS1

$ sudo mount /dev/sda1 /media/systemdrive

$ sudo mount /dev/sda2 /media/NAS1

$df -h (to see a list of drives and confirm everything

is in order)

Once you’ve finished this, your drive configuration should
look similar the picture next.

Now we can use rsync to move over our data on the SD
card to the SSD. Before we do this, we should make a backup
of the boot.ini file we’ll end up editing, which is in the FAT
boot partition of the SD card:

$ sudo cp /media/boot/boot.ini /media/boot/boot.ini.bak

Now we need to find the UUID of the unique partition we

ODROID SEEDBOX

Things are looking much better

ODROID MAGAZINE	 36

made earlier.

$ lsblk -f

My disk UUID is 7d62ae29-a3cf-41d0-9127-065cf-
c08fbe6, which is used as an example. Next, open boot.ini and
search for “Basic Ubuntu Setup”. You can search in Nano with
CTRL+W:

$ sudo nano /media/boot/boot.ini

Comment out the line that’s currently below that line. This
is our original configuration for booting to the SD card. We
can always revert it if anything goes wrong by plugging the SD
card into any device (PC or *nix) and re-editing the boot.ini
file. Next, we’ll add our own new instructions:

Boot from USB device

setenv bootrootfs “console=tty1 consoleblank=0

root=UUID=7d62ae29-a3cf-41d0-9127-065cfc08fbe6 root-

wait rootdelay=10 ro fsck.repair=yes”

Just make sure the UUID is whatever UUID comes up for
your 16GB system partition under /dev/sda1. Before we use
rsync to transfer over to the new partition, we need to edit fstab
to mount our new drives on startup:

$ sudo nano /etc/fstab

Comment out the first line and now add these two lines be-
low, assuming you’ve used the same partition names and folders
as me:

$ /dev/sda1 / ext4 defaults,noatime 0 1

$ /dev/sda2 /media/NAS1 ext4 defaults 0 2

Finally, we can move over our OS from the SD card to the

new partition we’ve set aside for it. Keep in mind that once
you’ve done this, any changes to the OS won’t appear after you
restart the computer, as you’ll be working from the new parti-
tion. It’s best to reboot once you finish the following rsync
command:

$ sudo apt-get install rsync

$ sudo rsync -axv / /media/systemdrive

You’ll probably have some time to grab some coffee while
this transfers. To elaborate on what’s happening, we’re copying
over our entire OS to /media/systemdrive, where we’ve mount-
ed our /dev/sda1 partition. Keep in mind that after we restart,
our fstab + boot.ini will remount and redirect the /dev/sda1
partition to “/” and serve as our operating system. We’ll still
be using the boot partition of your SD card, so don’t remove it.
Once it finishes, it’s time to reboot and hold our breath:

$ sudo reboot

If we successfully reboot, then we’re definitely working
from one of our two partitions, either on the SD card or SSD.
You can confirm we’re using the SSD by checking our parti-
tions again:

$ lsblk -f

You should see /sda1 mounted at “/” to confirm our suc-
cess. You can see this yourself in Figure 6.

Transmission configuration
Okay, so we have our operating system transferred, and our

display is showing our fancy 256GB SSD in working condition.
Now we need to install Transmission and setup our trans-

mission-daemon. We’ll be using our “odroid” default user, as
well as be configuring our drive to have an incomplete and
complete folder as well. Let’s start by installing Transmission
and adding our new incomplete and complete folders:

$ sudo apt-get install transmission-daemon
$ sudo mkdir -p /media/NAS1/incomplete
$ sudo mkdir -p /media/NAS1/complete

ODROID SEEDBOX

Our partitions properly configured and mounted

The SSD is mounted as the root file system

ODROID MAGAZINE	 37

Now we need to configure Transmission by turning off its
services and opening the settings file:

$ sudo service transmission-daemon stop

$ sudo nano /etc/transmission-daemon/settings.json

You’ll want to configure several settings:

Set your incomplete to “true” and “media/NAS1/incomplete”
Set your complete to “media/NAS1/complete”
Set rpc-authentication-required to “false”
Set the whitelist to 192.168.*.* to ensure you can access it
remotely from another device on your network

Each of the rows we edited should look like this, scattered
around the settings file:

“download-dir”: “/media/NAS1/complete”,

“incomplete-dir”: “/media/NAS1/incomplete”,

“incomplete-dir-enabled”: “true”,

“rpc-authentication-required”: “false”,

“rpc-whitelist”: “127.0.0.1,192.168.*.*,10.0.*.*”,

There are also some other settings you can adjust, and I rec-
ommend checking out the Transmission website for instruc-
tions on how to configure your tool.

Before we start our transmission-daemon, we need to
change ownership to our user “odroid” in order to make every-
thing work properly. There are more ideal ways of doing this,
but I prefer to stick to a single user since this server will have
no other purpose other than as a seedbox and I don’t see a need
in this situation to stick to the transmission-daemon user that
Transmission normally intends to use.

$ sudo chown -R odroid:odroid /etc/transmission-dae-

mon

$ sudo chown -R odroid:odroid /etc/init.d/transmis-

sion-daemon

$ sudo chown -R odroid:odroid /var/lib/transmission-

daemon

$ sudo chown -R odroid:odroid /media/NAS1/

We also need to open the Transmission daemon service and
set user=”odroid” from “transmission-daemon”:

$ sudo nano /etc/systemd/system/multi-user.target.

wants/transmission-daemon.service

We also want to do this in the init.d file, switching in
“odroid” for “USER”:

$ sudo nano /etc/init.d/transmission-daemon

Finally, reset that related Transmission daemon and turn
back on Transmission:

$ sudo systemctl daemon-reload

$ sudo service transmission-daemon start

Samba configuration
Now we have everything we need to download a file, but

we need a way to access the files that we download over our lo-
cal network. If you’re using a Windows device, then Samba is
the way to go. Let’s get started by installing it and configuring
our network share. We will need to configure it in a way that
allows us to login with our odroid user and easily download
files, as well as remove files we no longer want on our seedbox:

$ sudo apt-get install samba samba-common-bin

$ sudo nano /etc/samba/smb.conf

Let’s add the following as a new config for sharing our rel-
evant folders:

security = user

[odroid]

comment = odroid

path = /media/NAS1

valid users = @odroid

force group = odroid

create mask = 0775

force create mode = 0775

security mask = 0775

force security mode = 0775

Our Seedbox is starting to look pretty sharp!

ODROID SEEDBOX

ODROID MAGAZINE	 38

directory mask = 2775

force directory mode = 2775

directory security mask = 2775

force directory security mode = 2775

browseable = yes

writeable = yes

guest ok = no

read only = no

Before we move on, we’ll need to set a Samba password for
our “odroid” user. You can also create separate accounts if you
so choose, as long as those users are in the “odroid” group:

$ sudo smbpasswd -a odroid

Now we can restart, and we should be able to remotely ac-
cess our seedbox folders.

$ sudo service smbd restart

Keep in mind that you can always add new compatible us-
ers, as long as you set a proper Samba password and add those
users to the “odroid” group or whichever group you assign ac-
cess to for these files.

VPN configuration
Finally, we’ll want to configure our VPN for an automat-

ic secure connection upon boot. Once again, thanks to the
James @ MakeUseOf who figured out this fast and easy way
to get your VPN working without needing to manually start
the VPN or enter credentials each time you restart your device.
This is essential if you want to guarantee the encryption of your
connection while using the seedbox. In this guide, we’re using
an OpenVPN connection, which depends on:

An OpenVPN configuration file
A certificate from your VPN provider
Your username and password for your VPN provider stored
in a text file
Three special shell scripts to start our VPN automatically
upon boot and route traffic

Storing a password in text is not ideal. However, it’s the
fastest and leanest way to get things going, and since we’re only
using this locally, having your VPN credentials stored on this
device will not risk the files to those outside your home net-
work. If you want to host your seedbox with port forwarding
and essentially open to the Internet, I highly recommend either
searching for an alternative method or considering these risks
before proceeding.

Next, let’s install the OpenVPN software:

$ sudo apt-get install openvpn resolvconf

We’re going to leave everything in our home folder while
doing this, which is /home/odroid in this case. It really can be
anywhere, but these are not files you want in the same place
where people on your home network will connect and down-
load files from your seedbox.

First, get your OpenVPN configuration file (referred to
as vpn-server.opvn in this guide) and place it in your home
folder along with your certificate file (referred to as ca.crt in
this guide). Now create a new text file (.txt) with two lines.
The first line should be the username of your VPN connection
service, and the second line should be your VPN connection
service’s password:

$ sudo nano /home/odroid/pass.txt

$ username

$ password

Next, we’re going to open our configuration file, which in
my case is “vpn-server.opvn”:

$ sudo nano /home/odroid/vpn-server.opvn

We’re going to add the following line at the bottom, which
will let us connect to the VPN provider without entering the
credentials manually:

$ auth-user-pass /mnt/torrents/openvpn/pass.txt

Then, we’re going to add these three lines which refer to the
shell scripts we’re about to create:

$ route-up /home/odroid/route-up.sh

$ down-pre

$ down /home/odroid/down.sh

This will allow OpenVPN to connect to our VPN provider
automatically. Once it connects, it will automatically route
all traffic through these VPN connection, whether incoming
(down.sh) or outgoing (route-up.sh). Next, we’re going to cre-
ate these two shell scripts:

$ sudo nano /home/odroid/route-up.sh

Enter the following for route-up.sh:

#!/bin/sh

iptables -t nat -I POSTROUTING -o tun0 -j MASQUERADE

ODROID SEEDBOX

ODROID MAGAZINE	 39

Then, edit down.sh:

$ sudo nano /home/odroid/down.sh

Enter the following for down.sh:

$ #!/bin/sh

$ iptables -t nat -D POSTROUTING -o tun0 -j MASQUER-

ADE

Lastly, we need a shell script that we can launch when our
OS boots and use to initiate the VPN connection automati-
cally:

$ sudo nano /home/odroid/vpn.sh

Enter the following for vpn.sh:

$ sudo openvpn --client --config /home/odroid/vpn-

server.ovpn --ca /home/odroid/ca.crt --script-securi-

ty 2

Now, let’s make all of these files executable:

$ sudo chmod +x /home/odroid/route-up.sh

$ sudo chmod +x /home/odroid/down.sh

$ sudo chmod +x /home/odroid/vpn.sh

Now we’re going to open up our rc.local file, which runs
scripts upon system startup:

$ sudo nano /etc/rc.local

[code]

Add this line right above the “exit 0” line:

[code]

$ /home/odroid/vpn.sh

Your VPN is now configured, and your seedbox will down-
load exclusively through an encrypted connection with your
VPN provider. You can easily test this by using the TorGuard
test file which checks your IP address when downloading the
file.

Connect to your Transmission web GUI at odroid:9091, or
whatever your local IP address is.

Upload the TorGuard test file and check the IP address re-
ported as “Success! Your torrent client IP is XX.XX.XX.XX”
Check this IP address against what Google reports as your IP
address by visiting www.whatismyip.com.

If the IP addresses are different, then your connection is se-
cure. You can still use your local IP address to access and down-
load files via Samba. My VPN provider allows me download at
speeds around 75 Mbps, with the ODROID- XU4 peaking at
around 22 percent CPU usage, which shows just how power-
ful the octa-core processor is for tasks such as these. However,
the real glory is the transfer speeds from your ODROID to
your personal computer. I saw 800 Mbps transfer speeds when
moving some files back and forth, making this seedbox an ex-
tremely viable Network Attached Storage Device too.

Feel free to offer any comments or suggestions in the forum
topic at http://bit.ly/2fPeek7. The setup is hardly perfect, but
it’s a surefire way for anyone to get started with their very own
seedbox.

The Transmission environment: look at those speeds!

ODROID SEEDBOX

ODROID MAGAZINE	 40

www.whatismyip.com
http://bit.ly/2fPeek7

system with Music Player Daemon and the YMPD interface.
I also run an XU4 in a Cloudshell enclosure, which is mainly
used for displaying statistics with DietPi-Cloudshell, network
attached storage (NAS), backup mirroring with DietPi-Sync,
which is based on rsync, and running PiHole to block adver-
tisements on our local network.

Which ODROID is your favorite and why?
Without a doubt, it’s the ODROID-C2. For me, it is the

best all-around single-board computer (SBC) on the market
today. Coupled with 1GB Ethernet and an EMMC capable of
140Mb/s transfer rates, it’s a performance beast capable of any-
thing from a NextCloud server to a HiFi system. ODROIDs
have come a long way since the original C1. All those small is-
sues with unstable power supplies and SD card incompatibility
have been ironed out. The C2 in my eyes is SBC perfection.

Your DietPi image is very popular. What was your motivation
for developing it, and what improvements do you plan to make in
the future?

Please tell us a little about yourself.
I live in Burton Latimer in England. It’s one of those “ye-

olde” village towns, and is a lovely place to live and bring up a
family. I am currently a “stay-at-home Dad”, since I am dealing
with a long term gastrointestinal illness that affects and limits
my daily life. Prior to that, I was an IT assistant for a drainage
company near Cambridge. I have a 2 and a half year old son
named Jack, who loves the television show “PAW Patrol”, plays
with dust bins (no idea why yet), and building things with
Legos. Gemma, my fiance, is a full time mother and my rock.
My educational background is in Information and Commu-
nications Technology. School wasn’t really for me, since I am
more of a “hands-on” person who enjoys taking things apart to
see what makes them tick.

How did you get started with computers?
My first computer experience was with the Commodore 64

when I was around 5 or 6 years old. However, for some reason,
the only memories I have are of the tape drive with a 2+ hour
loading time. Even then, you were lucky if the game actually
loaded. Those were the days! I was also fortunate enough to
have an Amiga 500+ in my early years. For me, this was the start
of my love for computers. I used MOD tracker to play the song
Axel F, and remember Workbench, Elite Frontier and not having
the 1MB RAM upgrade to play “Rise of the Robots”.

What attracted you to the ODROID platform?

I read reviews of the C1 and benchmark comparisons with
the Raspberry Pi 2. I snapped one up right away, and was sim-
ply blown away by how much faster it was in every area of per-
formance. Ever since then, I’ve been hooked on ODROIDs.
It’s great to see Hardkernel continually innovate and push their
products to new levels. I’d even go as far to say that ODROIDs
are years ahead of anything that the Raspberry Pi Foundation
currently offers.

How do you use your ODROIDs?

I have one ODROID-C2 which is used for daily testing
with my DietPi image. This is mostly due to the C2’s excel-
lent I/O performance with the eMMC, allowing for an ex-
tremely fast testing environment, especially when it comes to
automated software installation tests. I also have another C2
with the HiFi Shield 2 addon, which I use as a dedicated music

Meet an ODROIDian
Daniel Haze (@Fourdee)
edited by Rob Roy (@robroy)

MEET AN ODROIDIAN

Daniel and his wife Gemma

ODROID MAGAZINE	 41

What innovations would you like to see in future Hardkernel
products?

Personally, I would love to see a USB 3.0 port and bus on
the next C-series board. DDR4 memory would be sublime,
and boost overall performance, especially with the shared GPU
memory. An energy-efficient onboard WiFi and bluetooth
would also be a welcome addition to future boards.

What hobbies and interests do you have apart from computers?

Music has always been close to my heart. I’m a true au-
diophile with a love for all genres, but especially trance. I like
spending time with family and friends. My son is now into
Legos, and it’s a real joy to build things together. Although,
even when he’s asleep, it’s easy to get carried away and attempt
to build the Millennium Falcon!

What advice do you have for someone wanting to learn more
about programming?

If you are new to programming, do not be put off by a lot
of strange code on the screen. Programming isn’t as hard as you
think. Follow an online guide for “my first program” and stick
with it. With practice and patience, all that strange code will
gradually make sense and it’s a great feeling.

For beginners, I’d highly recommend Python. Its simple to
learn, with a vast community and many online guides to get
started. It’s also the leading programming language for GPIO
projects on SBCs.

Finally, but most importantly, regardless of your skill level
or chosen language, always make sure you code something that
excites you, and enjoy every moment of it.

DietPi originally started as a minimal image. It was aimed
at reducing the resource load of the bulky default images pro-
vided by the first Raspberry Pi model. We had these 700mhz
devices using far more resources than was actually required by
the user. Now DietPi has evolved to much more than a mini-
mal image, offering automated installations of popular soft-
ware, all of which are optimized and configure for you. With
DietPi, you get the maximum performance from your device
because only the software you need is installed.

As for the future, DietPi has always been shaped by our end
user feedback, suggestions and support. We do have plans for
a web interface in DietPi, ideally to replace the whiptail menu
system, and to provide a modern GUI experience for users.

MEET AN ODROIDIAN

Daniel’s hometown of Burton Latimer in England

MEET AN ODROIDIAN

Daniel’s photogenic son and master Lego builder, Jack

ODROID MAGAZINE	 42

