
ODROID
Magazine

ODROID
Magazine

Android Gaming • Advanced Imaging Sensors • Android Wifi Stack

Create a synchronized video light display

Ultra-HD 4K ODROID
Ambilight

• Linux Gaming:
Get Serious with
the Serious-
Engine

• Android Nougat:
OpenJDK-based
Java and a new

graphics API

Year Three
Issue #35
Nov 2016

What we stand for.
We strive to symbolize the edge of technology,
future, youth, humanity, and engineering.

Our philosophy is based on Developers.
And our efforts to keep close relationships with
developers around the world.

For that, you can always count on having the quality
and sophistication that is the hallmark of our products.

Simple, modern and distinctive.
So you can have the best to accomplish
everything you can dream of.

We are now shipping the ODROID-C2
and XU4 devices to EU countries!
Come and visit our online store to shop!

Address: Max-Pollin-Straße 1
85104 Pförring Germany

Telephone & Fax
phone: +49 (0) 8403 / 920-920
email: service@pollin.de

Our ODROID products can be found at
http://bit.ly/1tXPXwe

mailto:service@pollin.de
http://bit.ly/1tXPXwe

EDITORIAL

ODROID Magazine, published monthly at http://magazine.odroid.com, is your source for all things ODROIDian.
Hard Kernel, Ltd. • 704 Anyang K-Center, Gwanyang, Dongan, Anyang, Gyeonggi, South Korea, 431-815
Hardkernel manufactures the ODROID family of quad-core development boards and the world’s first ARM big.LITTLE single board computer.
For information on submitting articles, contact odroidmagazine@gmail.com, or visit http://bit.ly/1ypImXs.
You can join the growing ODROID community with members from over 135 countries at http://forum.odroid.com.
Explore the new technologies offered by Hardkernel at http://www.hardkernel.com.

One of the most versatile peripherals for the ODROID is
the Arduino, which can be programmed as a standalone
controller for many projects, from robots to home auto-

mation. A simple project to get started with the Arduino is to
create an Ambilight system, which is a stunning background

light display that synchronizes it-
self with live video. The engineers
at Hardkernel demonstrated it at
ARM TechCon 2016, and wrote a

guide for you to easily create the same
stunning light show in your own home.

To further enhance your viewing experience,
we present a tutorial on setting up a MythTV

front end as well as an article on enabling accel-
erated video playback in an ODROID-C2 web browser. For more

experienced DIY enthusiasts, Miltiadis presents his lights controller
with SMS notifier project that can be adapted and expanded to any IoT application,
and Jörg shows us how to set up an alarm system with window sensors. Andy expands
upon our previous Docker series with up-to-date information, Tobias introduces us to
the Serious gaming engine, Nanik describes the Android WiFi stack, and Bruno has fun
with Ancestor, a visual stunning Android game with amazing gameplay.

http://magazine.odroid.com
mailto:odroidmagazine@gmail.com
http://bit.ly/1ypImXs
http://forum.odroid.com
http://www.hardkernel.com

Manuel Adamuz, Spanish Editor
I am 31 years old and live in Seville, Spain, and was born in Granada. I am married to a wonderful woman and have
a child. A few years ago I worked as a computer technician and programmer, but my current job is related to quality
management and information technology: ISO 9001, ISO 27001, and ISO 20000. I am passionate about computer
science, especially microcomputers such as the ODROID and Raspberry Pi. I love experimenting with these com-

puters. My wife says I’m crazy because I just think of ODROIDs! My other great hobby is mountain biking, and I
occasionally participate in semi-professional competitions.

Andrew Ruggeri, Assistant Editor
I am a Biomedical Systems engineer located in New England currently working in the Aerospace industry. An 8-bit
68HC11 microcontroller and assembly code are what got me interested in embedded systems. Nowadays, most proj-
ects I do are in C and C++, or high-level languages such as C# and Java. For many projects, I use ODROID boards,
but I still try to use 8bit controllers whenever I can (I’m an ATMEL fan). Apart from electronics, I’m an analog
analogue photography and film development geek who enjoys trying to speak foreign languages.

Venkat Bommakanti, Assistant Editor
I’m a computer enthusiast from the San Francisco Bay Area in California. I try to incorporate many of my interests
into single board computer projects, such as hardware tinkering, metal and woodworking, reusing salvaged materials,
software development, and creating audiophile music recordings. I enjoy learning something new all the time, and
try to share my joy and enthusiasm with the community.

Josh Sherman, Assistant Editor
I’m from the New York area, and volunteer my time as a writer and editor for ODROID Magazine. I tinker with
computers of all shapes and sizes: tearing apart tablets, turning Raspberry Pis into PlayStations, and experimenting
with ODROIDs and other SoCs. I love getting into the nitty gritty in order to learn more, and enjoy teaching oth-
ers by writing stories and guides about Linux, ARM, and other fun experimental projects.

Nicole Scott, Art Editor
Nicole is a Digital Strategist and Transmedia Producer specializing in online optimization and inbound marketing
strategies, social media management, and media production for print, web, video, and film. Managing multiple ac-
counts with agencies and filmmakers, from web design and programming, Analytics and Adwords, to video editing
and DVD authoring, Nicole helps clients with the all aspects of online visibility. Nicole owns anODROID-U2,
and a number of ODROID-U3’s and looks forward to using the latest technologies for both personal and business

endeavors. Nicole’s web site can be found at http://www.nicolecscott.com.

James LeFevour, Art Editor
I’m a Digital Media Specialist who is also enjoying freelance work in social network marketing and website administra-
tion. The more I learn about ODROID capabilities, the more excited I am to try new things I’m learning about. Being
a transplant to San Diego from the Midwest, I am still quite enamored with many aspects that I think most West Coast
people take for granted. I live with my lovely wife and our adorable pet rabbit; the latter keeps my books and computer

equipment in constant peril, the former consoles me when said peril manifests.

Bruno Doiche, Senior Art Editor
Bruno lately is fiddling with 2 of his ODROIDs, playing games and being amazed by the responsiveness of his machines

with this new and amazing system. He is making sure that he never runs out of gaming column ideas for the readers that
discover new games along with him!

OUR AMAZING ODROIDIAN STAFF:

Rob Roy, Chief Editor
I’m a computer programmer in San Francisco, CA, designing and building web applications for local clients on my
network cluster of ODROIDs. My primary languages are jQuery, Angular JS and HTML5/CSS3. I also develop pre-
built operating systems, custom kernels and optimized applications for the ODROID platform based on Hardkernel’s
official releases, for which I have won several Monthly Forum Awards. I use my ODROIDs for a variety of purposes,

including media center, web server, application development, workstation, and gaming console. You can check out my
100GB collection of ODROID software, prebuilt kernels and OS images at http://bit.ly/1fsaXQs.

http://
http://

INDEX

android development - 33

alarm central - 17

Ancenstor - 22

linux gaming - 31

docker - 26

android nOUGAt - 39

myth tv - 36

advanced imaging sensors - 15

meet an odroidian - 44

Ambilight - 23

IoT device - 6

video helper - 40

BUILDING AN IoT device
USING AN ODROID-C2
Street and home lights controller with SMS notifier
by Miltiadis Melissas

IoT DEVICE ODROID-C2

It is common knowledge that cities consume a lot of energy operating their
street-lighting infrastructure. Individual users face similar situations for con-
trolling the lighting in their homes efficiently and effectively. The IoT light-

ing solution presented in this article, which is based on Hardkernel’s ODROID-
C2, an excellent 64-bit quad-core single board computer (SBC) (http://bit.
ly/2bWxgrK), can help create a safe, energy-efficient environment with smart
capabilites. Smart street-lighting and home lighting sensors can easily be con-
nected to the network as Internet of Things (Iot).

The sensor, which is a photoresistor in this project, can
turn lights on and off upon successful reading in order to
ensure the lowest energy consumption and proper opera-
tion. Moreover, home users can be notified from an IoT
device by means of SMS messages sent to mobile phones.
The SMS messages can notify the users of the exact timing
the lighting is set to on/off back in their home and report-
ing possible malfunctions.

This is the third project in my series of tutorials regard-
ing Internet of Things (IoT) using an ODROID-C2. This is
also the first time we make use of a photoresistor/photocell
sensor. Our previous projects were built and operated using
only actuators, such as LEDs and servos. This article will
guide you on how to drive such an electronic component,
controlling it as an input, by using the WiringPi library
inside Python programming language, and thus setting the
basis for our next IoT project: Wine Preserver and Notifier.

The IoT device works under the normal light conditions during typi-
cal daily exposure, and the photoresistor keeps the LED off under these
circumstances. However, when it get dark, the photoresistor triggers the
ODROID-C2 and the LED turns on and blinks, simulating the operation
of the street/home lights at night. The interesting thing is that when this
happens, the ODROID-C2 notifies the user that this operation has started
successfully by sending an SMS message to his/her mobile phone or tablet.
This is a complete IoT device that makes use of a sensor (photoresistor), an
actuator (LED) and a cloud service (SMS messaging).

Building the circuit
We will use a breadboard in order to avoid any soldering and the hassle

of designing a PCB. We will connect various circuit components with the
ODROID-C2 GPIO pins using Dupont Jumper Wires, as shown in this page.

The assembled lighting solution using
an ODROID-C2 and C Tinkering Kit

ODROID MAGAZINE	 6

http://bit.ly/2bWxgrK
http://bit.ly/2bWxgrK

Hardware
ODROID-C2 running Ubuntu
USB power supply 5V/2A and cable, use the right one provided by Hardkernel’s
store (http://bit.ly/1X0bgdt)
Breadboard and Dupont Jumpers (male to female)
1 X Photocell/Photoresistor
1 X 1uF Capacitor
1 X LED
1 X 220 Ohm Resistor

Software
Ubuntu 16.04 v2.0 available from Hardkernel at (http://bit.ly/2cBibbk)
Python language for programming. Fortunately for us Ubuntu 16.04 v2.0 from
Hardkernel comes pre-installed with this programming tool
WiringPi Library for controlling ODROID-C2 GPIO pins. For instructions on how
to install this go to Hardkernel’s excellent setup guide available at
(http://bit.ly/2ba6h8o)
Python language for programming the IoT device

Building our IoT device
As mentioned previously, we will use a bread-

board to build our IoT device with the electron-
ic components and Dupont jumper wires. It’s a
good idea to disconnect the power supply from
the ODROID-C2 before connecting anything
on its pins, because you can destroy it with a
short circuit if you make a wrong connection
accidentally. Double check with the schematic
in this article, and make the correct connections
before you power it up.

For connections, we used the male to female
Dupont wires. The female side of this kind of
jumper connects to the male header of the ODROID-C2 and the other one
-male- connects to the holes of the Breadboard. Please refer to Hardkernel’s
pin layout schematic at next page as you create the connections, which is also
available at http://bit.ly/2aXAlmt:

Physical Pin1 provides the VCC (3.3V) to our circuit, and we connect it
on the second vertical line of our Breadboard.

Since we are going to use Pin6 as the common Ground, we connect that
to the second vertical line of our Breadboard, near the edge.

The photoresistor/photocell is connected to physical pin18 on one of its
side, the other one goes to VCC (3.3V). Please note that this red Dupont
wire/jumper connected to the vertical line of our Breadboard. Kindly refer
again to our schematic in Figure 2 for the correct connections. Extra care
must be given to the polarity of the capacitor (1uF), since we need to connect
its negative side marked by (-) symbol with the common Ground. The posi-
tive side of the capacitor is connected to the photoresistor through the yellow
Dupont wire and from there to physical pin18. We will explain the role of

IoT DEVICE ODROID-C2

Circuit diagram

ODROID MAGAZINE	 7

http://bit.ly/1X0bgdt
http://bit.ly/2cBibbk
http://bit.ly/2ba6h8o
http://bit.ly/2aXAlmt

capacitor (1uF) in the next paragraph.
Finally, the LED is connected to physical pin7 for its anode (+) while the cath-

ode (-) is connected of course to the common Ground.
That’s it! All of our physical wiring is now connected.

The role of the resistor
and capacitor

For this circuit, we need to use the
3.3v out from the ODROID-C2 Pin 1,
as well as Ground (GND) of course. We
connected these from the ODROID-C2
to the Breadboard. The operational LED
is connected to pin7 through a 220 Ohm
resistor in order to limit the amount of
current that flows through the LED. The
presence of the resistor ensures that the
LED components will be keeping safe un-
der an accidental very large current.

The role of capacitor is different, how-
ever. This is because we need the capacitor
to act like a bucket and the photoresistor
like a thin pipe. To fill a bucket up with
a very thin pipe takes enough time that
you can figure out how wide the pipe is by
timing how long it takes to fill the bucket up halfway. In this case, our
bucket is a 1uF capacitor. So, the photo resistor is connected through the
1μF capacitor to pin18 of the ODROID-C2 and the negative side of the
capacitor is connected to the common Ground. Since the hardware setup
is now done, let us see how we can send SMS message from our IoT device.

Using Twilio
Twilio is a Python package that sends text messaging (SMS). Twilio is

not part of the standard Python library, but it’s one of the thousands of
external Python packages that are available for us to download and use.

Python developers usually use one of the two common utilities to au-
tomatically download and setup necessary folders and files: “easy-install”
and “pip”. “easy-install” comes with the setuptools Python library, which
is standard for Python and pip comes with the “pip” library. “easy_install”
and “pip” are executed in the terminal that can be used to install Python
packages. Since the ODROID-C2 Linux image (http://bit.ly/2cBibbk)
comes pre-installed with Python, it is very easy to install Twilio on our IoT
device. The only step we need to take is starting up the Terminal applica-
tion and type in:

$ sudo easy_install twilio

Enter the administrator password to give easy-install permission to write to our
system folders, which is “odroid” on the official Hardkernel Linux image. Alterna-
tively, if you want to install Twilio with pip, which is the installer for Python, you
have to first install pip on ODROID-C2:

ODROID-C2 Pin Layout

IoT DEVICE ODROID-C2

ODROID MAGAZINE	 8

http://bit.ly/2cBibbk

$ sudo easy_install pip

$ sudo pip install twilio

If you want to check whether Twilio was properly installed, enter the Python
command to enter the Python interpreter in the Command Prompt or Terminal
application and type in these 2 commands:

> import twilio

> print(twilio._version_)

If it prints a version number of Twilio, the setup has been completed properly.

Twilio registration
Go to the Twilio registration page at http://bit.ly/296QVCl,

and sign up for free, as show in Figure 4. Twilio needs your mobile
number, so provide it in the appropriate field. Twilio will then
send you a verification code on the phone that you have previously
registered in order to verify that you are not a software bot. Enter
the code in appropriate the box, and Twilio will give you a phone
number. Make a note of the phone number, and continue with
the registration process.

Finally, you will land on a page with lots of activities, including
make a call, send an SMS message, receive a call, and receive an
SMS message. From this page, we need Twilio’s API authorization
token. Look for the button titled “Go to your account” and click
it. On the dashboard page is the account SID and the authoriza-
tion token, as shown in Figure 5. Next, you have to copy and
paste it to our program. Note that your screen may look a bit dif-
ferent if it is your first time you are logging to Twilio. In my case,
my account SID authorization token were at the top of the page
(blanked out). Yours may be somewhere at the bottom.

Twilio signup web page

Twilio dashboard with API token

IoT DEVICE ODROID-C2

ODROID MAGAZINE	 9

http://bit.ly/296QVCl

Explaining Twilio code
You can find the sample code below from the Twilio Python Helper Library

available at http://bit.ly/2dyGB8n. All of the source code relevant to the Twilio
service is available from the GitHub repository at http://bit.ly/2dndZ0s.

from twilio.rest import TwilioRestClient

Your Account SID from www.twilio.com/console

account_sid = “xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx”

Your Auth Token from www.twilio.com/console

auth_token = “xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx”

client = TwilioRestClient(account_sid, auth_token)

message = client.messages.create(body=”Hello from ODROID-C2”,

 to=”+306972438526”, # Replace with your phone number

 from_=”+12052364839”) # Replace with your Twilio number

print(message.sid)

You will notice that inside Twilio, there is a folder called “rest”, and inside that
folder is a class called “twiliorestclient”. We make use of that class in the following
code snippet:

<from Twilio.rest import Twiliorestclient>

In the following line of code, this line of code, we assign a variable client to
twilioRestClient for verification:

<client=twilioRestClient (account_sid, auth_token)>

Finally, with the following line, we create the message and print it or actually
sending it to our mobile phone:

<message=client.sms.messages.create>

Sending the SMS message
First, copy and paste the account SID and auth-token to your program. Next,

change the body of the text message to something like: “Hello from ODROID-
C2” as I did in the below example. In the field called “to”, change it to your
phone’s mobile number. In the field called “from_”, you have to fill in your Twilio
number: this is the number Twilio gave you upon registration. If you have not
written it down, go back to your Twilio account (http://bit.ly/2dpPpM1) and on
the top of the page find the numbers tab and click it. You will get your phone
numbers from Twilio, as shown in Figure 6. Now save and run the program and
see if it works:

from twilio.rest import TwilioRestClient

Your Account SID from www.twilio.com/console

account_sid = “xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx”

Your Auth Token from www.twilio.com/console

IoT DEVICE ODROID-C2

ODROID MAGAZINE	 10

http://bit.ly/2dyGB8n
http://bit.ly/2dndZ0s
http://bit.ly/2dpPpM1

auth_token = “xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx”

client = TwilioRestClient(account_sid, auth_token)

message = client.messages.create(body=”Hello from ODROID-C2”,

 to=”+30XXXXXXXXXX”, # Replace with your phone number

 from_=”+120XXXXXXXXX”) # Replace with your Twilio number

print(message.sid)

Your phone should notify you that you have gotten an SMS message. The final
step is to connect this SMS code with our photoresistor and make our IoT device
a smart one.

Connecting Twilio to the photoresistor
Now that we know how Twilio is working, let’s see how to connect it with our

photoresistor code. The tricky part is how to calibrate the photoresistor accord-
ing to our light conditions in the room. There is always a threshold that we need
to find out by some trial and error in order to trigger the IoT device, such as the
blinking of the LED and the sending of the SMS message to the user at the same
time. Remember that the blinking of the LED simulates the normal operation
of lights during the night, in the street or at home, and that the SMS sent to user
confirms normal operation. Please study the code below and then follow along as
I explain line by line what is happening.

#!/usr/bin/env python

Example for RC timing reading for ODROID-C2

Must be used with wiringpi2

import wiringpi2 as odroid, time

from twilio.rest import TwilioRestClient

IoT DEVICE ODROID-C2

Twilio setup screen showing the phone number used in the code snippet

ODROID MAGAZINE	 11

DEBUG = 1

odroid.wiringPiSetup()

LEDpin = 7

odroid.pinMode(LEDpin,1)

def RCtime(RCpin):

 reading = 0

 odroid.pinMode(RCpin,1)

 odroid.digitalWrite(RCpin,0)

 time.sleep(0.1)

 odroid.pinMode(RCpin,0)

 # This takes about 1 millisecond per loop cycle

 while (odroid.digitalRead(RCpin) == 0):

 reading += 1

 return reading

def Send_SMS():

	 account_sid = “XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX” # Your Account

SID from www.twilio.com/console

	 auth_token = “XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX” # Your Auth Token

from www.twilio.com/console

	 client = TwilioRestClient(account_sid, auth_token)

	 message = client.messages.create(body=”Hello from Python”,

 		 to=”+30XXXXXXXXXX”, # Replace with your phone number

 		 from_=”+120XXXXXXXXX”) # Replace with your Twilio number

	 print(message.sid)

while True:

 print RCtime(5) # Read RC timing using physical pin #18

 time.sleep(300)

 if (RCtime(5)>2500):

 Send_SMS()

 for i in range (0,300):

 if (RCtime(5)>5500):

 odroid.digitalWrite(LEDpin,1)

 time.sleep(0.02)

 odroid.digitalWrite(LEDpin,0)

 time.sleep(0.02)

First, we import the wiringpi2 module and we create the object “odroid” be-
cause we want to control the GPIO pins of our ODROID-C2:

<import wiringpi2 as odroid>

There is a detailed tutorial from Hardkernel’s excellent support page on how to

IoT DEVICE ODROID-C2

ODROID MAGAZINE	 12

IoT DEVICE ODROID-C2

download and install WiringPi to your ODROID-C2 running Ubuntu at http://
bit.ly/2ba6h8o. Next, we import TwilioRestClient from twilio.rest, something
that we have explained in detail in the previous paragraph:

<from twilio.rest import TwilioRestClient>

Then, with the following line of code, we reference the GPIO wiring accord-
ing to the table provided by Hardkernel for ODROID-C2, as shown in Figure 2:

<odroid.wiringPiSetup()>

We assign the pin7 for the LED:

<LEDpin=7>

Immediately after that, we set it as an output

<odroid.pinMode(LEDpin,1)>

In the next section of code, we define the function called RCtime. This is a
very important function for measuring up the levels of light in the room. We keep
track of these levels with a counter:

<reading = 0>

Next, we setup the relevant pin i.e pin5 (physical pin18) as an output:

<odroid.pinMode(RCpin,1)>

We then write to that pin:

<odroid.digitalWrite(RCpin,0)>

We alternate state almost immediately after that using time.sleep(0.1):

<odroid.pinMode(RCpin,0)>

Pin5 is set now to low, and on the next line of code we read its state, adding
+1 to our counter:

<while (odroid.digitalRead(RCpin) == 0):>

 <reading += 1>

Finally, we check if the level of darkness is under its threshold:

 <RCtime(5)>2500>

The number 2500 is calculated with some trial and error endeavours looking
for the right threshold according to our light conditions in the room. If the light
conditions are above this limit, we call the function Send_SMS and we sent the
SMS message via Twilio at the same time that we make the LED blink. Please

ODROID MAGAZINE	 13

http://bit.ly/2ba6h8o
http://bit.ly/2ba6h8o

IoT DEVICE ODROID-C2

note that the LED blinks for an interval equal to the time that we set for our IoT
device to check for the right light conditions in the room. In this example, that
interval is 300 seconds, or every 5 minutes. Of course you can set your own in-
tervals for checking.

<time.sleep(300)=for i in range (0,300)>

Those time intervals must be the same to ensure the right timing. In order to
make the LED blink, the pin is set to high and then low with a short time interval
of 0.02 milliseconds:

for i in range (0,300):

…..

<odroid.digitalWrite(LEDpin,1>

<time.sleep(0.02>

<odroid.digitalWrite(LEDpin,0>

<time.sleep(0.02>

Bringing it all together

Now it’s time to run and test our code. Copy and paste the entire code to your
Python IDLE document (Integrated Development and Learning Environment)
under the name OdroidSMS.py. Remember that all Python scripts have the ex-
tension *.py. You can start IDLE from your Ubuntu desktop by simply clicking
the Applications Menu (Applications -> Programming -> IDLE). After the file has
been saved, run it with sudo privileges from a command prompt after navigating
to the directory where the file resides:

$ sudo python OdroidSMS.py

This is the basic idea of a smart device, and if I can do it, you can do it too.
What will be your next step? Take this guide, study it carefully and then ex-
pand upon it by creating another, even a more sophisticated IoT device with your
ODROID-C2.

ODROID MAGAZINE	 14

ADVANCED IMAGING SENSORS

It is well known that the color of a pixel can be represented
by a mixture of three primary colors: red, green, and blue.
For this, many people might think that a single pixel in

a camera’s sensor also has three colors: red, green, and blue.
For example, in a 1024 x 1024 image, it is generally assumed
that there is the same amount of pixels, 1024 x 1024, of red,
green and blue colors. However from a manufacturing point
of view, it is very complicated and expensive to put three dif-
ferent types of color sensors in one location. Therefore, a
beam splitter is usually used to light up the sensors on differ-
ent sensor panels. As a result, this approach is prohibitively
complex, bulky and expensive.

A more practical and feasible alternative is to have mono-
chrome sensors with an accompanying color filter. Here,
the filter has the same number of cells as the image pixels.
For example, in a 1024 x 1024 image, we use 1024 x 1024
monochrome sensors with a color filter of 1024 x 1024 cells
with three colors: red, green and blue. Figure 1 shows two
diagrams the the leftmost is of multi-sensors with beam-split-
ting. The rightmost diagram is of monochrome sensors with
color filter array, or CFA.

Although various patterns can be used for a CFA, the
Bayer pattern is the most common. In the next column we
show the basic 2 x 2 form of the Bayer pattern which has
two greens, one red, and one blue filter. We use more green

How to Get Fancy
Color Images from A
Simple Sensor Image
Using the Bayer Pattern
to Create an RGB Color Image
By withrobot@withrobot.com

subpixels to mimic the sensitivity of human eyes which are
more tuned to detect intensities of the color green. The Bayer
pattern can be thought of the combination of red, green and

blue patterns as shown below.

For example, the first row of a 1024 x 1024 image is made
up of 512 red pixels and 512 green pixels. Similarly, the sec-
ond row is made up of 512 green pixels and 512 blue pixels.
Therefore, if we use one byte of data for each pixel, the total
data size of 1MB of a 1024 x 1024 image is composed of
0.25MB red data, 0.25MB of blue, and 0.5MB of green data.
This is a great size reduction for image data. The data size of
an image from a setup with three different color sensor panels
would be 3MB or three times the size compared the 1MB
image from the Bayer pattern.

However, we inevitably lose detailed color information by
using the Bayer pattern color sensor. For example, if we look
at the top left pixel in figure 3, we only get the intensity of
green. Therefore, we have to “guess” the other color values for
this pixel. Generally, the interpolation is used to estimate the
missing values. One of the simplest methods is the Pixel Dou-
bling Interpolation. Using the nomenclature used in Figure 4,
we get the full RGB color intensities for each pixel using the
following formula:

Two different structures of color sensor: multi-color sensors(left)
and single monochrome sensors(right)

Basic form of the Bayer pattern: The Bayer
pattern is the combination of red, green
and blue patterns.

ODROID MAGAZINE	 15

Top left pixel: (R, G, B) = (R1, G2, B4)
Top right pixel: (R, G, B) = (R1, G2, B4)
Bottom left pixel: (R, G, B) = (R1, G3, B4)
Bottom right pixel: (R, G, B) = (R1, G3, B4)

Although we

get the full color data with the least amount of calculation us-
ing this technique, we also get the worst quality image. To
enhance the image quality, more pixels in the neighborhood of
the pixel being filled in are used, in addition to using a more
complicated formula. One example of this is the Bilinear In-
terpolation method.

Pixel R33: (R, G, B) =
(R33, (G23+G34+G32+G43)/4, (B22+B24+B42+B44)/4)

Pixel G34: (R, G, B) =
((R33+R35)/2, G34, (B24+B44)/2)

Pixel G43: (R, G, B) =
((R33+R53)/2, G43, (B42+B44)/2)

Pixel B44: (R, G, B) =
((R33+R35+R53+R55)/4, (G34+G43+G45+G54)/4, B44)

For more information about the various interpolation tech-
niques, you can refer to “Image Demosaicing: A Systematic
Survey by Xin Li, Bahadir Gunturk, and Lei Zhang (http://bit.
ly/2eHnGGm).

The problem with Bilinear Interpolation is the poor color
quality. To overcome this limitation, many CMOS sensor
manufacturers use a special processor known as an Image Signal
Processor, or ISP. This further enhances the image obtained by
interpolating the Bayer pattern image.

Although the usefulness of a global shutter camera is well
known, as discussed in the August 2016 ODROID Magazine

article titled “Understanding oCam’s Global Shutter” (http://
bit.ly/2ee4sJ9, many ODROID users requested a global shut-
ter camera after the release of the oCam-1MGN-U, the mono-
chrome global shutter camera. However, no global shutter
color camera has been provided to be used with ODROIDs
because there is no color sensor with both a global shutter and
ISP functionality.

A lot of effort has been given to solve this problem through
the use of software, instead of waiting for appropriate sen-
sor hardware to become available. Fortunately, a new type of
global shutter color camera has been developed for ODROIDs
using a proprietary algorithm. This new camera, the oCam-
1CGN-U, will be available around December 2016. Figure 6
shows the striking improvement in the color quality.

The new camera will have the following specifications:
Sensor: OnSemi AR0134 Bayer Color CMOS image sensor
Lens: Standard M12 lens (changeable)
Image sensor size: 1/3 inch
Image resolution: 1280 x 960
Shutter: Electric global shutter
Interface: USB 3.0 super-speed

In next month’s article, an interesting example will be de-
veloped using this new global color shutter camera with the
ODROID platform.

ADVANCED IMAGING SENSORS

2 x 2 Bayer pattern block for the Pixel Dou-
ble Interpolation.

6 x 6 Bayer pattern block for the Bilin-
ear Interpolation.

Original color image obtained by using Bilinear Interpolation of Bay-
er image (left) and the color image enhanced through a proprietary
enhancement algorithm (right) applied to the original image.

ODROID MAGAZINE	 16

http://bit.ly/2eHnGGm
http://bit.ly/2eHnGGm
http://bit.ly/2ee4sJ9
http://bit.ly/2ee4sJ9

ALARM CENTRAL

This is the first part of my series about my Alarm Cen-
tral project that uses an ODROID-C1 running An-
droid. The project consists of the Alarm Central An-

droid app, ultra low power window sensors, and ultra low
power motion sensors, which are not yet ready. The sensors
communicate with the ODROID-C1 using Nordic Semicon-
ductor nRF24L01 2.4Ghz modules. This article details the
ultra low power window sensors and the communication li-
brary, mirf, which I ported to Android.

During my first tests, I decided to use the ODROID-C1
instead the ODROID-C2, because the latter does not have
a native SPI interface and the bitbang SPI driver for the
ODROID-C2 is too slow to use with the nRF24L01 mod-
ules. The development of other parts the system, such as the
door lock and fingerprint sensor, is ongoing. The Alarm Cen-
tral project is not yet installed in my house but, as soon as I
finish the case for the ODROID-VU7+ and the ODROID-
C1, I will install it. In case of an alarm, the app will send a
short message through the internet to a smartphone.

Window sensor
The window sensors are based on an ATTiny84 proces-

sor. I designed a small 24mm x 60mm board which con-
tains a reed contact, a connector for the nRF24L01, an ISP
connector for flashing the processor, a holder for a CR2450,
and some additional parts. The PCB was ordered from Itead

Studio, and the components were hand soldered, which took
about 20 to 30 minutes per board.

Partlist
Printed board Attiny 84A-SSU SO-14 NRF24L01 module
Battery Holder HU2450 Renata
Reed Contact NO 13x2.0
Resistor 5M1 SMD1206
Capacitor 22u/16V 4.3x4.3
Capacitor 10n/50V 3.2x1.6
Pin Strip 2x3 2.54
Female strip 2x4 2.54
Neodym Magnet 10x1

(Dimensions are in mm)

Alarm Central Home

Figure 2 Nrf24 Window Sensor

Window Sensor pcb

Alarm Central
Part 1 - RF24 Window Sensor
and Mirf Library
by Jörg Wolff

ODROID MAGAZINE	 17

It would be possible to design the board to be smaller, but
the larger size accommodates a 650mAh CR2450 battery that
provides a long battery life. The ATtiny is designed to sleep
for 4 seconds, then wake up and send a 20 bytes message
to the Alarm Center. If the reed contact changes state, the
ATtiny wakes up and sends a message to the ODROID-C1.
During sleep mode, the total current consumption of all com-
ponents is about 6µA. When the ATtiny is awake, the cur-
rent jumps for a short period to around a couple of mA. The
overall average total current is about 17µA. With a battery
capacity of 650mAh this give us a battery life of 3 to 4 years.
Without message encryption, the average current would be
even less and the battery life would be about 5 years. To
reach this low current in sleep mode, the Brown Out Detec-
tion is disabled, this makes it impossible to store data in the
EEPROM. Occasionally, due to power cycling, there is some
data loss such as node number or the AES key. This made me
implement data storage in the flash. With data being stored
in flash, there is no longer any data loss when power cycling.

On the sensor board’s first boot, it sends its data unen-
crypted with the node number, 255. The Alarm Central re-
ceives this message and does auto node numbering and re-
turns the AES key. This only happens when Alarm Central
is offline and the user has made authentication. For a short
time, communication is open. The code for the sensor can be
found on Github at http://bit.ly/2dHQkrS.

I could not find a small plastic case that fit my sensor. So,
I used a plastic U-profile 15 mm x 15 mm (9/16” x 9/16”)
strip, and cut two 68mm (2 5/8”) pieces and glued them to-
gether.

The most complicated part seemed to be soldering all the
small SMD parts, but with the right technique and a little
practice, it goes smoothly. It’s best to begin with the AT-
tiny and only solder one pin so you can adjust the position a
bit, then the other pins. It works great if you solder a few of
the pins together, since a solder bridge can be removed with
desoldering braid and a little soldering flux. You should not

forget to clean any excess soldering flux off the components
with acetone or a universal cleaner.

To reduce the height of the PCB and components, the
quartz can be desoldered from top and soldered to the bot-
tom of the nRF24L01 board. Also, the female 2x4 strip can
be wetted down 1 or 2 mm (1/16”) and the pins of the 2x4
strip can be cut about 2 mm (1/16”). The total height should
be about 13 mm (½”) to make them fit into the case. The
KiCad project can be found at http://bit.ly/2eviBAu.

Mirf Library
The mirf library is responsible for wireless communication,

and was ported to Android. Basically, it is the same code that
is used on the ATtiny and the ODROID-C1. The two key
differences in the code are with the SPI interface code and a
C++ wrapper on the ODROID code. To build the library of
ODROID, first install the Android NDK. Next, build the
library from jni folder by running the following command:

$../../ndk-build -B

ALARM CENTRAL

Circuit diagram

Sensor and Case

Sensor and nRF24L01

ODROID MAGAZINE	 18

http://bit.ly/2dHQkrS
http://bit.ly/2eviBAu

You can find the source code on Github at http://bit.
ly/2eiANjl. To use this library in an Android app, it needs a
wrapper library such as this:

/*

 Model of Mirf wrapping library ported to ODROID-

C1 / Android

 Copyright (C) <2016> <Jörg Wolff>

 This program is free software: you can redistrib-

ute it and/or modify

 it under the terms of the GNU General Public Li-

cense as published by

 the Free Software Foundation, either version 3 of

the License, or

 (at your option) any later version.

 This program is distributed in the hope that it

will be useful,

 but WITHOUT ANY WARRANTY; without even the im-

plied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-

POSE. See the

 GNU General Public License for more details.

 You should have received a copy of the GNU Gen-

eral Public License

 along with this program. If not, see <http://

www.gnu.org/licenses/>.

*/

#include <jni.h>

#include <stdio.h>

#include <stdlib.h>

#include <android/log.h>

#include <mirf.h>

#ifdef __cplusplus

extern “C” {

#endif

#define LOG_TAG “com.jw.mirf”

#define LOG_D(...) __android_log_print(ANDROID_LOG_DE-

BUG, LOG_TAG, __VA_ARGS__)

#define LOG_F(fn_name) __android_log_write(ANDROID_

LOG_DEBUG, LOG_TAG, “Called : “ fn_name)

static JavaVM *java_vm;

mirf* receiver;

jint JNI_OnLoad(JavaVM* vm, void* reserved)

{

 JNIEnv* env;

 if (vm->GetEnv(reinterpret_cast<void**>(&env),

JNI_VERSION_1_6) != JNI_OK) {

 return -1;

 }

 // Get jclass with env->FindClass.

 // Register methods with env->RegisterNatives.

 system(“insmod /system/lib/modules/spicc.ko”);

 system(“insmod /system/lib/modules/spidev.ko”);

 return JNI_VERSION_1_6;

}

//mirf(uint8_t _cepin, uint32_t _freq, uint8_t _spi_

channel, uint8_t _payload_size, uint8_t _mirf_CH);

JNIEXPORT void JNICALL

Java_path_to_your_app_MirfSetup(JNIEnv * env, jobject

obj, uint8_t ce, uint32_t speed, uint8_t spi_channel,

uint8_t size, uint8_t mirf_channel) {

 receiver = new mirf(ce, speed, spi_channel, size,

mirf_channel);

 //LOG_D(“Setup”);

}

//void config(void);

JNIEXPORT void JNICALL

Java_path_to_your_app_MirfConfig(JNIEnv* env, jobject

obj) {

 if (receiver != NULL) receiver->config();

}

//void reconfig_rx(void);

JNIEXPORT void JNICALL

ALARM CENTRAL

ODROID MAGAZINE	 19

http://bit.ly/2eiANjl
http://bit.ly/2eiANjl

ALARM CENTRAL

Java_path_to_your_app_MirfReConfigRx(JNIEnv* env, job-

ject obj) {

 if (receiver != NULL) receiver->reconfig_rx();

}

//void reconfig_tx(void);

JNIEXPORT void JNICALL

Java_path_to_your_app_MirfReConfigTx(JNIEnv* env, job-

ject obj) {

 if (receiver != NULL) receiver->reconfig_tx();

}

//void set_address(uint8_t pos, uint8_t* address);

JNIEXPORT void JNICALL

Java_path_to_your_app_MirfSetAddress(JNIEnv* env,

jobject obj, jbyte pos, jstring address) {

 if (receiver != NULL){

 const char *nativeString = env-

>GetStringUTFChars(address, 0);

 receiver->set_address(pos, (uint8_t*)na-

tiveString);

 LOG_D(“SetAddress: %s”, nativeString);

 env->ReleaseStringUTFChars(address, na-

tiveString);

 }

}

//uint8_t receive_data(void* buf);

JNIEXPORT jbyteArray JNICALL

Java_path_to_your_app_MirfReceiveData(JNIEnv* env,

jobject obj, jbyte size) {

 if (receiver != NULL) {

 jbyte *data=(jbyte *)

malloc(size*sizeof(jbyte));

 receiver->receive_data(data);

 jbyteArray result=env->NewByteArray(size);

 env->SetByteArrayRegion(result, 0, size,

data);

 delete[] data;

 return result;

 }

 return 0;

}

//uint8_t transmit_data(void* buf);

JNIEXPORT void JNICALL

Java_path_to_your_app_MirfTransmitData(JNIEnv* env,

jobject obj, jbyteArray array) {

 if (receiver != NULL) {

 jbyte *buf = env->GetByteArrayElements(array,

NULL);

 receiver->transmit_data(buf);

 env->ReleaseByteArrayElements(array, buf, 0);

 }

}

//uint8_t status(void);

//uint8_t max_rt_reached(void);

//uint8_t data_ready(void);

JNIEXPORT int JNICALL

Java_path_to_your_app_MirfDataReady(JNIEnv* env, job-

ject obj) {

 if (receiver != NULL) return receiver->data_

ready();

 LOG_D(“MirfDataReady:return 0”);

 return 0;

}

//uint8_t read_register(uint8_t reg, uint8_t* buf,

uint8_t len);

//uint8_t read_register(uint8_t reg);

//uint8_t write_register(uint8_t reg, const uint8_t*

buf, uint8_t len);

//uint8_t write_register(uint8_t reg, uint8_t value);

//void config_register(uint8_t reg, uint8_t value);

//uint8_t get_data(void* buf);

//uint8_t send_data(void* buf);

//void power_up_rx(void);

JNIEXPORT void JNICALL

Java_path_to_your_app_MirfPowerUpRx(JNIEnv* env, job-

ject obj) {

 if (receiver != NULL) receiver->power_up_rx();

}

//void power_up_tx(void);

JNIEXPORT void JNICALL

Java_path_to_your_app_MirfPowerUpTx(JNIEnv* env, job-

ject obj) {

 if (receiver != NULL) receiver->power_up_tx();

}

ODROID MAGAZINE	 20

ALARM CENTRAL

//void power_down(void);

//uint8_t flush_rx(void);

JNIEXPORT int JNICALL

Java_path_to_your_app_MirfFlushRx(JNIEnv* env, job-

ject obj) {

 if (receiver != NULL) return receiver->flush_rx();

 return 0;

}

//uint8_t flush_tx(void);

JNIEXPORT int JNICALL

Java_path_to_your_app_MirfFlushTx(JNIEnv* env, job-

ject obj) {

 if (receiver != NULL) return receiver->flush_tx();

 return 0;

}

//void start_listening(void);

JNIEXPORT void JNICALL

Java_path_to_your_app_MirfStartListening(JNIEnv* env,

jobject obj) {

 if (receiver != NULL) receiver->start_listen-

ing();

}

//void stop_listening(void);

JNIEXPORT void JNICALL

Java_path_to_your_app_MirfStopListening(JNIEnv* env,

jobject obj) {

 if (receiver != NULL) receiver->stop_listening();

}

//void delay_us(unsigned int howLong);

JNIEXPORT void JNICALL

Java_path_to_your_app_MirfDelayMicroSeconds(JNIEnv*

env, jobject obj, int us) {

 if (receiver != NULL) receiver->delay_us(us);

}

#ifdef __cplusplus

}

#endif

The Mirf library and the functions need some glue code,
so the Java app can call the C++ library:

static {

 System.loadLibrary(“mirf_android”);

}

public native int MirfSetup(byte ce, int speed, byte

spi_channel, byte size, byte mirf_channel);

public native void MirfConfig();

public native void MirfReConfigTx();

public native void MirfReConfigRx();

public native void MirfPowerUpRx();

public native void MirfPowerUpTx();

public native void MirfSetAddress(byte pos, String

address);

public native byte[] MirfReceiveData(int size);

public native void MirfTransmitData(byte[] data);

public native int MirfDataReady();

public native void MirfStartListening();

public native void MirfStopListening();

public native int MirfFlushRx();

public native void MirfDelayMicroSeconds(int us);

And to create a mirf object, this code as example in the
onCreate() function:

/*

* Some needed constants for the mirf object

*/

byte pin_ce = 6; //Header pin 22

byte spi_channel = 0;

byte length_payload = 20;

byte mirf_channel = 5;

int spi_speed = 4000000;

/*

* Setup the mirf communication

*/

MirfSetup(pin_ce, spi_speed, spi_channel, length_pay-

load, mirf_channel);

MirfConfig();

In a loop,or a HandlerThread, the messages can be read
from the sensors, as shown in the following code snippet:

ODROID MAGAZINE	 21

ALARM CENTRALANDROID GAMING

while (true) {

 MirfPowerUpRx();

 MirfFlushRx();

 MirfStartListening();

 while (MirfDataReady() == 0) {

 MirfDelayMicroSeconds(250);

 }

 MirfStopListening();

 inbuffer = Arrays.copyOf(MirfReceiveData(length_

payload), 16);

 //Do something with inbuffer.

 try {

 Thread.sleep(5L);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

}

The wiring of the nRF24L01 module to the ODROID-
C1 is as follow:

C1.Header.19 – nRF24L01.6	 (MOSI)
C1.Header.21 – nRF24L01.7	 (MISO)
C1.Header.23 – nRF24L01.5	 (SCK)
C1.Header.22 – nRF24L01.3	 (CE)
C1.Header.24 – nRF24L01.4	 (CSN)
C1.Header.1 – nRF24L01.2	 (VCC)
C1.Header.6 – nRF24L01.1	 (GND)

In the next part of this series, I will share more infor-
mation on the RF24 motion sensor, the Alarm Central App
itself, and a nice handmade case for the ODROID-VU7+.

Ancestor
A game full of fun with
perfect gameplay, visuals
and details
by Bruno Doiche

While we and our beloved
ODROIDS are still far
from emulating the Play-

station 3, where we can enjoy playing
Journey to the point of exhaustion, we
can get a game with similar visuals,
puzzles and the added bonus of being
an endless runner game with bosses!
Ancestor was written by a brother and sister production team that
absolutely loved Mass Effect. They teamed up with their father,
who is a programmer, and the rest is up to you to figure out how
far you can go in this absolutely enjoyable game. Grab your joy-
stick and think fast!

https://play.google.com/store/apps/details?id=com.

supermegaquest.ancestor

The look is similar to Journey (PS3), but the gameplay is frantic

In Ancestor, you solve puzzles to progress and have fun

ODROID MAGAZINE	 22

https://play.google.com/store/apps/details?id=com.supermegaquest.ancestor
https://play.google.com/store/apps/details?id=com.supermegaquest.ancestor

such as playing the media file, capturing
the video frame, and sending the LED
color data format via USB serial inter-
face. Arduino receive the color data for-
mat from ODROID-C2, and then sets
the color of each LED.

Hardware setup
The first step is to set up the wiring

on the Arduino board. There are two
wiring areas: the 4-pin LED connector,
and the ODROID-C2 DC plug cable.
The 4-pin LED connector connects to
the WS2801 LEDs which are able to be
controlled via the SPI interface.

4-pin LED connector cable
•	 Red: VCC
•	 Black: Ground
•	 Blue: SCK (13)
•	 Green: MOSI (11)
DC Plug Cable
•	 Red: VCC
•	 Black: Ground

The WS2801 is a constant current
LED driver, and is designed for indoor/

Ambilight, short for “ambient
lighting”, is a lighting system
for television developed by Phil-

ips in which lighting effects are created
around the TV that corresponds to the
video content. You can achieve a simi-
lar effect by using a strip of RGB LEDs
and software that samples the image on
the screen, then colors each individual
LED in a different shade accordingly. In
this article, we shall see how to use an
ODROID to achieve this.

Requirements
We used an Arduino for controlling

the LEDs and are using an ODROID-
C2 in order to run Kodi media player as
the interface for the video content. The
hardware components are listed below.

•	 ODROID-C2
•	 Arduino UNO
•	 USB cable Type A – Type B
•	 5V/6A power Supply
•	 32GB eMMC Module C2 Linux
•	 WS2801 LEDs
•	 DC Plug Cable Assembly 2.5mm
•	 4-pin connector cable x 3
We used an Arduino to control LEDs

and ODROID-C2 to do everything else,

outdoor LED displays and decorative
LED lighting system. In order to mount
LEDs into the TV, we cut the LEDs roll
with an alternative size from the TV
height and width size. Each cut LEDs
need to be connected with 4-pin con-
nector cables.

Software setup
There are three kinds of main soft-

ware for DIY ambilight: Arduino LED
control firmware, Hyperion, and Kodi
media player. The Arduino is connected
to the ODROID-C2 via USB serial de-
vice (ttyACM0). We can easily develop
the Arduino firmware in Linux natively
on the ODROID-C2 using the Arduino
IDE:

Ultra-HD 4K Ambilight
Create a spectacular
synchronized visual
background for
your home theatER
by Charles Park and Brian Kim

Figure 1 - Ambilight on ODROID-C2

Figure 2 - Hardware components for
Ambilight

Figure 3 - Arduino Wiring

Figure 4 - LED Wiring

AMBILIGHT

ODROID MAGAZINE	 23

$ sudo apt-get update

$ sudo apt-get install git build-

essential

$ git clone --depth 1 \

 https://github.com/hardkernel/

linux.git -b odroidc2-3.14.y

$ cd linux

$ make odroidc2_defconfig

$ make menuconfig

Device Drivers --->

 Amlogic Device Drivers --->

 Video Decoders --->

 [*] Amlogic Video Capture

support

 Generic Driver Options --->

 *** Default contiguous memory

area size: ***

 (12) Size in Mega Bytes

$ make -j4

$ sudo make modules_install

$ sudo mv /media/boot/Image /

media/boot/Image.back

$ sudo mv /media/boot/ /media/

boot/Image.back

$ sudo mv /media/boot/meson64_

odroidc2.dtb \

 /media/boot/meson64_odroidc2.

dtb.back

$ sudo cp arch/arm64/boot/Image /

media/boot/

$ sudo cp arch/arm64/boot/dts/me-

son64_odroidc2.dtb \

 /media/boot/

$ sudo sync

$ sudo reboot

Hyperion is a good choice for LED
color control software because it requires
less processing power, works quickly
and effectively, and also provides an easy
configuration. Furthermore, Hyperion
is compatible with the Amlogic platform
on the ODROID-C2, even though it
does not officially support it yet. How-
ever, it is not complicated to add support
for the ODROID-C2 in Hyperion:

$ sudo apt-get update

$ sudo apt-get install cmake

libqt4-dev \

$ sudo apt-get update

$ sudo apt-get install arduino

$ cd /usr/share/arduino/librar-

ies/

$ sudo git clone \

 https://github.com/adafruit/

Adafruit_NeoPixel.git

The Adafruit NeoPixel library is for
controlling LEDs. The LED control
firmware source code is available for
download at https://git.io/vPVqT:

$ wget https://git.io/vPVqT -O

odlight.ino

$ arduino

(Ctrl + O) -> (Select /home/

odroid/odlight.ino file)

(Ctrl + R) Verify / Compile

(Ctrl + U) Upload

Of course, the Arduino needs to be
connected to ODROID-C2 during the
firmware upload. You can get more in-
formation about Arduino IDE software
on the Arduino home page at http://bit.
ly/212hc7p.

To describe Ambilight behavior,
background software captures the video
frame while the media file is display-
ing, and then sends the RGB data to
the LED control device. Hyperion is
an open source Ambilight implemen-
tations that runs on many platforms,
which uses the video capture driver of
the ODROID-C2 for getting the video
frame data. However, the video capture
driver allocates 8 megabytes DMA area,
so ODROID-C2 Linux kernel needs
more contiguous memory:

 libusb-1.0-0-dev python-dev

libxrender-dev \

 python libasound2-dev zlib1g-

dev

$ git clone --depth 1 \

 https://github.com/mdrjr/c2_

aml_libs.git

$ cd c2_aml_libs

$ sudo make

$ sudo make install

$ cd

$ git clone --depth 1 \

 --recursive https://github.com/

bkrepo/hyperion.git

$ cd hyperion

$ mkdir build

$ cd build

$ cmake -DENABLE_DISPMANX=OFF \

 -DENABLE_SPIDEV=OFF -DENABLE_

AMLOGIC=ON \

 -DCMAKE_BUILD_TYPE=Release

-Wno-dev ..

$ make -j4

$ sudo make install

Hyperion needs a configuration file,
which can easily be generated by the Hy-
percon configuration program, which is
available at http://bit.ly/2dRqkgO. Even
if Hypercon cannot generate a complete
configuration file for ODROID-C2, the
program is useful for LED position set-
ting. There are three options in order
to set LED positions: LEDs horizontal,
LEDs Left and LEDs Right. The first
LED offset option is for adjusting LED
starting point, and we can also set the
direction to clockwise or counterclock-
wise. To get the JSON format configura-
tion file after finished the LED position
setting, just click the Create Hyperion
Configuration button.

Figure 5 - Ambilight mounted on the TV

Figure 6 - Hypercon

AMBILIGHT

ODROID MAGAZINE	 24

https://git.io/vPVqT
http://bit.ly/212hc7p
http://bit.ly/212hc7p
http://bit.ly/2dRqkgO

For more information, please re-
fer to the Adalight Project http://bit.
ly/1EnG6zZ), our previous Ambilight
article in ODROID Magazine (http://
bit.ly/2dOPWsk) and our ODROID
forum threads at http://bit.ly/2eyPrUr
and http://bit.ly/2eo1DrY.

The “leds” option in the generated
JSON configuration file via Hypercon
needs to be copied to the default config-
uration file (https://git.io/vPrKR). All
of the other options in the default JSON
configuration file can remain set to the
default values:

$ wget https://git.io/vPovU -O /

etc/hyperion/hyperion.config.json

Open the generated configuration file
via Hypercon, then overwrite the “leds”
option from the generated configuration
file, and write it to the file /etc/hyperion/
hyperion.config.json.

Playing a movie
To play Ambilight on the ODROID-

C2, run the Hyperion daemon in the
background, then play the movie in
Kodi:

$ hyperiond /etc/hyperion/hyper-

ion.config.json &

$ kodi

ODROID-C2 also supports 4K
H265 movies, which requires setting the
double_write_mode option, as detailed
at http://bit.ly/2doJtDU:

$ echo 1 | sudo tee \

 /sys/module/amvdec_h265/param-

eters/double_write_mode

Figure 7 - Ambilight Running

Figure 8 - Ambilight closeup

AMBILIGHT

ODROID Talk
Subreddit

 http://www.reddit.com/r/odroid

ODROID
Magazine

is on
Reddit!

ODROID MAGAZINE	 25

http://bit.ly/1EnG6zZ
http://bit.ly/1EnG6zZ
http://bit.ly/2dOPWsk
http://bit.ly/2dOPWsk
http://bit.ly/2eyPrUr
http://bit.ly/2eo1DrY
https://git.io/vPrKR
http://bit.ly/2doJtDU
http://www.reddit.com/r/odroid

require an application packaged with de-
pendent binaries and libraries in an im-
age. For virtual machines, the virtualiza-
tion is all the way down to the device
level, while that for containers is down
to the operating system level only.

Compared to virtual machines, con-
tainers are smaller and consume less re-
sources while operating with improved
performance. Since your application is
isolated in a Docker image together with
its dependencies (binaries and libraries),
you can build it once and run it on any
Docker host with the same computer ar-
chitecture the image was built on. This
means that Docker images built for Intel
x86 architecture will not run on ARM64
machines and vice-versa.

There are many more reasons for en-
terprises to use including Docker CI/
CD, DevOps, blue/green deployment,
rolling updates, etc. I just don’t have
space in this article to cover them all.
An interesting fact about Docker is that
anytime you use Google, such as search-
ing, Gmail, or Google Docs, you are be-
ing issued a new container.

Using Docker
Figure 2 shows the flow of working

with Docker. The list below details the
flow:

1.	 Someone creates a Dockerfile
2.	 The Dockerfile is used to build

The article “Why People user
Docker” (http://bit.ly/2f5nRyi),
sums up Docker nicely. Docker

interests me because it allows simple en-
vironment isolation and repeatability. I
can create a run-time environment once,
package it up, then run it again on any
other machine. Furthermore, every-
thing that runs in that environment is
isolated from the underlying host (much
like a virtual machine). And best of all,
everything is fast and simple.

Docker uses a virtualization tech-
nology called containers. Containers
use the Linux kernel feature “cgroups”
to isolate between containers and oth-
er processes running on the host, and
“namespaces” to make available a set of
system resources and present them to a
process as if they are dedicated to that
process. Container technology is differ-
ent from virtual machine technology in
that it does not need a hypervisor nor a
guest operating system. Containers only

an image, which is your applica-
tion with its dependent binaries
and libraries.

3.	 The image is pushed to Docker
Hub, which serves as a central
repository for the Docker imag-
es. You can find a large number
of Docker images that you can
download and use if they suit
your purpose.

4.	 A user pulls an image from
Docker Hub and runs the image
in a container. Multiple replicas
of the application can be run on
the same Docker host or on a
Docker cluster on demand.

Overview
In this tutorial, I will cover all of the

activities listed above, and is split into
2 parts. The first part covers the clas-
sic Docker commands to start and stop
containers and let them communicate
with each other. The second part cov-

Docker 101
Part 1 - Why Docker?
by Andy Yuen

DOCKER

Figure 1 - Virtual Machine versus
Container Figure 2 - Using Docker

ODROID MAGAZINE	 26

http://bit.ly/2f5nRyi

DOCKER

Running your first
container

Make sure you have an Internet con-
nection, and issue the following com-
mand:

$ docker run -d -p 80:80 --name

Figure 3 - Checking the Docker version

Figure 4 - Finding out more about Docker

Figure 5 - Getting Help

Figure 6 - Docker Build Help

 -e MYSQL_USER=fishuser \

 -e MYSQL_PASSWORD=fish456 \

 -e MYSQL_DATABASE=fish \

 -v /media/sata/fish-mysql:/u01/

my3306/data \

 mrdreambot/arm64-mysql

If you are using a different OS
from mine, you have to use your OS’s
package management command such
as yum, dnf, or apt-get. If Docker is
not available in your OS’s repository,
try the Docker v1.12.1 binaries that I
used along with an installation script at
http://bit.ly/2ejY1FE. These binaries
have been tested on Armbian Xenial and
Jessie servers. For Part 1 of the tutorial,
either docker.io v1.10, v1.11 or v1.12
will work fine. Part 2 will require v1.12.

In order to avoid having to add
“sudo” in front of every Docker com-
mand you issue during the tutorial, you
should add your user name (login) to the
“docker” group as follows, then reboot
the system and then log back in:

$ docker run -d \

 -p 8080:8080 --name fish \

 -e MYSQL_SERVER=192.168.1.100 \

 -e MYSQL_PORT=3306 \

 mrdreambot/arm64-fish

3. ODROID-C2 with a working In-
ternet connection

Your ODROID-C2 will need an in-
ternet connection to pull down images
from the Docker Hub during this tuto-
rial.

Basic Docker
commands

In the tutorial that follows, for simple
commands whose output is self-explan-
atory, I shall just include the screenshots
for the command and output. For more
complicated commands, I shall also ex-
plain the command syntax and what the
options mean. If you want help for the
options available to a certain command,
just enter the command and append
--help as shown in Figure 6.

ers Docker swarm mode, which is new
in Docker version 1.12. Swarm mode
is all about orchestration, which means
clustering and scheduling of where to
run the containers, and how many repli-
cas should be started in a cluster.

ODROID Magazine published sev-
eral Docker articles back in early 2015,
so what has changed since then? For one
thing, kernels that support Docker were
not that common in stock Operating
Systems for ODROID. In order to run
Docker, one has to tinker with kernel
builds which, for most people, myself
included, is too much trouble. How-
ever, kernel features that are required
for Docker have been incorporated in
many operating systems. Another thing
to note is that Docker has been designed
and built for 64-bit machines. Back in
2015, all ODROIDs were based on 32-
bit architecture only. The ODROID-
C2 is the first 64-bit ODROID to date.
Although Docker can be, and has been,
adapted to run on 32-bit ARM architec-
ture, this is the first 64-bit implementa-
tion. Let’s explore its capabilities in this
tutorial.

Prerequisites
In order to follow this tutorial, you

must have the following in place:
1. ODROID-C2 running an OS

with kernel features required by Docker
enabled

I use Armbian Xenial server, which
is based on Ubuntu. How I decided
on using the Armbian Xenial server is
documented in my blog at http://bit.
ly/2dyTUGr. I had a look at the Arm-
bian website at http://bit.ly/2exEWPH
recently, and noticed that only the Jes-
sie server, which is based on Debian, is
available for download.

2. ODROID-C2 with Docker en-
gine installed

To install the Docker engine on your
machine, issue the following commands:

$ docker run -d -p 3306:3306 \

 --name mysql \

ODROID MAGAZINE	 27

http://bit.ly/2ejY1FE
http://bit.ly/2dyTUGr
http://bit.ly/2dyTUGr
http://bit.ly/2exEWPH

Stopping and
removing your
active running
containers

To list the running containers issue
the following command:

$ docker ps

To stop and remove the httpd con-
tainer we started, issue the following
commands:

$ docker stop httpd

$ docker rm httpd

Sometimes when you run a container
in an interaction session and exit, you
will not see the container in the “docker
ps” command. You have to use the fol-
lowing command:

$ docker ps -a

I did not give a name to the interac-
tive session. I have to identify the ses-
sion and issue a “docker rm” command
as shown where d4e0029be98e is the
container Id identified in the “docker ps
-a” command.

In this case, we want to start the com-
mand shell

We can run any command available
to the command shell. In this example,
we run the ping command. When we
are done, we just type “exit” to exit the
container. The container is still running
after you exited from the interactive ses-
sion.

We could have started the container
in the interactive mode when we started
the container. For example, instead of
using the following command:

$ docker run -d -p 80:80 --name

httpd \

 mrdreambot/arm64-busybox-httpd

We could have used this command:

$ docker run -it -rm \

 mrdreambot/arm64-busybox-httpd

bin/sh

The options used are:

-it means interactive tty mode
-rm means remove the container

when we exit from the shell
/bin/sh means replace the default en-

try point (starting the httpd server) with
the /bin/sh command.

httpd \

 mrdreambot/arm64-busybox-httpd

Options:
-d means run in the daemon mode
-p 80:80 means map port 80 of the

container to the host’s port 80 so that
you can access the application on your
ODROID-C2’s port 80

--name gives a name to the container
you just started. This is optional, al-
though I highly recommend you to al-
ways give it a name so that you can refer
to your container easily. You can identify
running containers even without using
the --name option by issuing the “docker
ps” command, which is described later.
Since the image “mrdreambot/arm64-
busybox-httpd” is not already on your
Docker host, Docker will download it
from the Docker hub.

Navigate your web browser on your
PC to your Docker host, which is your
ODROID-C2 machine. You should get
the page shown in Figure 7, which is our
Docker “Hello World” program.

Connecting to your
running container

You can connect to your running
container by issuing the following com-
mand:

$ docker exec -it httpd /bin/sh

The options are as follows:
-it means Interactive tty mode
httpd is the name we gave the con-

tainer when we started it
/bin/sh is the command we want to

run when we connect to the container.

Figure 7 - ODROID Docker test page

Figure 8 - Docker Exec

Figure 9 - Docker PS command output

Figure 10 - docker ps -a and docker rm
command outputs

Figure 11 - Docker images

DOCKER

ODROID MAGAZINE	 28

data onto your host directory /media/
sata/fish-mysql.

Although we have provided the stor-
age for the database, we have not yet ini-
tialized the database content. The next
section shows how this is done.

Using multiple
Docker containers

In this section, I am demonstrating
a more common deployment scenario
in which an application has a web front
end and a MySQL database backend.
This means that the web front end and
the database are running in their own
container. For this tutorial, I am using
the WEB4J sample application called
the “Fish and Chips Club”. From now
on, I am going to refer to this applica-
tion as “Fish”. This application includes
features to:

•	 edit club members
•	 edit local restaurants
•	 edit ratings of each restaurant
•	 add new lunches (a given restau-

rant on a given day)
•	 RSVP for each upcoming lunch
•	 interact using a simple discussion

board
•	 produce simple reports
•	 provide a simple search page

Fish uses 3 databases running on
MySQL. You can find out more about
how to configure this application at
http://bit.ly/2eHmxOW.

Running the Fish
application

To start the Fish container, issue the
following command:

$ docker run -d \

 -p 8080:8080 \

 --name fish \

 -e MYSQL_SERVER=192.168.1.100 \

 -e MYSQL_PORT=3306 \

 mrdreambot/arm64-fish

The option -e MYSQL_SERVER=

The second command searches for
all images with “arm64” in its name and
have a star rating of 5 or above. You can
use the -- help option to explore other
options for the search command:

$ docker search --help

You can also do a search using your
browser by navigating to http://hub.
docker.com. You can find out more in-
formation such as how to use the image
you are interested in on the Docker hub,
as shown in Figure 13.

Managing persistent
storage

If you save data inside your Docker
container, the data will be gone once the
container is removed using the “docker
rm” command. There are different ways
of making your data persistent such as
using Data Volumes or Data Containers.
However, the easier way is to use the “-v”
option as shown below:

$ docker run -d -p 3306:3306 \

 -- name mysql \

 -e MYSQL_USER=fishuser \

 -e MYSQL_PASSWORD=fish456 \

 -e MYSQL_DATABASE=fish \

 -v /media/sata/fish-mysql:/u01/

my3306/data \

 mrdreambot/arm64-mysql

-e MYSQL_USER=fishuser sets the
environment variable to tell the contain-
er to set the MySQL user to fishuser

-e MYSQL_PASSWORD=fish456
sets the environment variable to tell the
container to set the MySQL password to
fish456

-e MYSQL_DATABASE=fish sets
the environment variable to tell the con-
tainer to set the database to use fish

-v /media/sata/fish-mysql:/u01/
my3306/data bind mounts the /media/
sata/fish-mysql volume on the contain-
er’s :/u01/my3306/data directory which
is the MySQL database data directory.
This means that MySQL will save all

Managing images
You can list the images available on

your Docker host using the “docker im-
ages” command as shown in Figure 11.

As described earlier, if you do not
have the image on your Docker host
when you start a container, Docker will
try to download it from the Docker
Hub. However, you can download the
image beforehand using the “docker
pull” command:

$ docker pull mrdreambot/arm64-

busybox-httpd

You can remove an image from your
Docker host using the following com-
mand, where adda0ff62710 is the image
ID listed in the “docker images” com-
mand:

$ docker rmi adda0ff62710

In Figure 11, adda0ff62710 refers to
the mrdreambot/arm64-fish image.

Searching for images
Figure 12 shows two examples of

searching for arm64 images. The first
command searches for all images with
“arm64” in the image name and limits
the maximum of results to 10.

Figure 12 - Docker search

Figure 13 - image details

DOCKER

ODROID MAGAZINE	 29

http://bit.ly/2eHmxOW
http://hub.docker.com
http://hub.docker.com

images
MAINTAINER - specifies the author

of the Dockerfile
COPY - copies the www directory

in the current directory to the image’s /
www directory

ENTRYPOINT - set default com-
mand and argument to start the con-
tainer

CMD - sets additional defaults that
are more likely to be changed.

If mrdreambot/arm64-busybox-
httpd still shows up when you issue
the “docker images” command. Use
the “docker rmi” command to remove
the images before you carry out the next
step. Then, change to the directory
where you cloned my project and issue
the following command, as shown in
Figure 17:

$ docker build -t arm64-busybox-

httpd .

$ docker images

Now you have created your first
Docker image called arm64-busybox-
httpd, which can be deployed in the
same way that I showed you in the
“Running your first container” section.
Just replace “mrdreambot/arm64-busyb-
ox-httpd” with “arm64-busybox-httpd”
in the “docker run” command and
point your browser to it to see the same
ODROID-C2 image.

What’s next?
In this tutorial, I’ve outlined all the

classic Docker commands that you will
need to run and manage applications
running in containers. The Docker

Test-driving “Fish”
Now that we have set up the databases

required for Fish with proper content, we
can point a web browser to the Fish ap-
plication at http://192.168.1.100:8080/
fish. Replace 192.168.1.100 with your
ODROID-C2’s IP address. You will be
asked to login. Use “testeA” and “test-
test” as username and password respec-
tively. After logging in, you will see the
Fish home page.

Creating a Docker
image

So far, we have used images already
created by me. How do we create an im-
age in the first place? Here is a really
quick look at how this is done. First,
clone my simple mrdreambot/arm64-
busybox-httpd on Github at http://bit.
ly/2eWnLdb. Here is the content of the
Dockerfile which tells Docker how the
images is to be created:

FROM arm64el/busybox-arm64el

MAINTAINER MrDreamBot

COPY www /www

ENTRYPOINT [“bin/busybox”]

CMD [“httpd, “-f”, “-p”, “80”,

“-h”, “/www”]

FROM - specifies that this images is
based on the arm64el/busybox-arm64el

192.168.1.100 sets the environment
variable to tell the container the name/
IP address of the MySQL server

-e MYSQL_PORT=3306 sets the en-
vironment variable to tell the container
the port number to use to access the
MySQL server

Notice that up to now, we’ve not set
up the fish databases with content yet.
We are going to do that in the next sec-
tion.

Setting up the
database

To set up the Fish databases, issue the
following commands:

$ docker exec -it fish /bin/bash

$ cd /fish/WEB-INF/datastore/

mysql/

$ mysql -u fishuser -p -h

192.168.1.100 < CreateALL.SQL

$ mysql -u fishuser -p -h

192.168.1.100

$ show databases;

$ exit

$ exit

The SQL script to set up the Fish
databases is in the Fish container’s /fish/
WEB-INF/datastore/mysql/ directory.
We get into the running Fish contain-
er using “docker exec” and proceed to
run the MySQL client to initialize the
MySQL database which runs on a sep-
arate container. After that, we use the
MySQL client again to verify that the
databases have been created using the
“show databases;” command, as shown
in Figure 14.

Figure 14 - Create database

Figure 15 - Fish and Chips login

Figure 16 - Fish and Chips club

Figure 17 - Build Image

DOCKER

ODROID MAGAZINE	 30

http://bit.ly/2eWnLdb
http://bit.ly/2eWnLdb

commands that I showed you will only
work on your local Docker host, which
in this case is your ODROID-C2. You
will realize soon there is a limit to the
number of containers that you can run
on a single machine. What about enter-
prises that use Docker in a production
environment? Surely a single machine
will not be able to run all their produc-
tion workload! This is where Docker
Swarm Mode comes in. Swarm mode
is new to Docker 1.12. It has a built-in
orchestration engine, which means that,
in this context, it handles clustering,
scheduling of workload, and state man-
agement. Clustering is the use of a set of
machines to work together and act like
a single machine. Scheduling and state
management means deciding where to
run the containers among the machines
that make up a cluster, and how many
replicas of the containers should be run.
Before Docker 1.12, you have to do
lots of extra setup work before you can
achieve Docker orchestration. In Part 2,
I will show you how to use swarm mode
commands for orchestration.

DOCKER

ly/2eOG92v. Serious Sam is in my jes-
sie/main package list, both games Seri-
ous Sam – The First Encounter (TFE)
and Serious Sam – The Second Encoun-
ter (TSE) can be installed separately de-
pending on which game(s) you own:

$ apt-get install ssam-tfe-odroid

$ apt-get install ssam-tse-odroid

The Serious-Engine requires
OpenGL, and since ODROIDs don’t
have OpenGL but only OpenGL ES,
we have to use GLshim to run the game,
which is also provided by @ptitseb. You
will also need the original game data
files, specifically the “Data”, “Levels”
and “Demo” folders, as well as all of
the “.gro” files. These files have to be
placed in the game folder, which is in
your home folder of the current user and
named either “.tfe” or “.tse”. Copy your
game files in that folder and you’re ready
to play.

Known issues
Although the game is working very

well, there are some issues that I en-
countered during my tests, which I hope
can be fixed sometime in the future.
For example, there seem to be some
graphical glitches on the Exynos boards
(ODROID-X, X2, U2, U3, XU3, and
XU4) which show strange colors in dif-
ferent places. These issues are not every-

In this article, I want to talk about a
guy that is nearly as much of a ren-
egade as Duke Nukem himself. His

name is Sam, and he’s very serious! A
while ago, I saw that forum user @ptit-
Seb from the OpenPandora forums was
working on one of his many awesome
game ports. This time, it was the “Se-
rious-Engine”, which is an open source
engine for the game Serious Sam – The
First Encounter and Serious Sam: The
Second Encounter. I remember this
game well, and I spent many hours
with a friend fighting wave after wave of
monsters. I immediately started trying
to compile the games for the ODROID
platform with moderate success. I got
them to work, but since there was no
installer with it and the structure of the
game files and libraries was somewhat
strange, I temporarily abandoned the
project. @ptitSeb kept improving his
version, as well as GLshim, which he
used to run the engine, and now the
game runs very well. I took the time
again to compile and test the game, and
was finally able to create an installer to
take care of the different requirements of
the game, as well as make it easier for us-
ers to add the missing game data.t

Installation
As usual, you can install this game

from my repository, the installation
steps of which are detailed at http://bit.

Linux Gaming
Get Serious with
the Serious-Engine
by Tobias Schaaf

LINUX GAMING

ODROID MAGAZINE	 31

http://bit.ly/2eOG92v
http://bit.ly/2eOG92v

mostly everything else. You can play
Serious Sam – The First Encounter and
Serious Sam – The Second Encounter in
single player mode with all of its goodies
and baddies. It’s really a one-of-a-kind
shooter that defies all types of realism.
You are a one man army, killing hun-
dreds and hundreds of monsters. The
game looks great and plays nicely on
ODROIDs.

As you can see from the screenshots,
you can still play and enjoy the game.
Have fun playing the game and keep an
eye on the forums for updates and bug
fixes.

where, and can probably be ignored, but
it’s slightly annoying. I couldn’t see the
same glitches on the C2, so apparently
it has something to do with the Exynos
drivers. Although they are not pretty,
these glitches don’t hinder you in play-
ing the game. They do not appear too
often on the screen, and in later levels
they disappear completely, so this bug
can probably be ignored.

I also found that no music is working
currently at this time, but I think that’s
an issue that can be solved, and it might
already be fixed by the time this article
is released. Also, it seems that the mul-

Figure 1 - ODROID XU3/XU4 (top) vs
ODROID C2 (bottom), showing some of
the color glitches that can be seen on
Exynos devices

Figures 2 and 3 - Serious Sam offers a
lot of nice weapons and monsters

Figure 4 and 5 - I love the great sharp
shooting action in Serious Sam

tiplayer modes don’t yet work. You can’t
join an Internet game, although there
are plenty of servers available. Appar-
ently, even LAN games are not currently
working correctly, so I hope this can be
fixed as well.

I also tried split screen, which seems
to work, and you can play with up to
four people with different control-
lers, or as a single player using mouse
and keyboard. However, the C2 is not
powerful enough to handle two players
simultaneously, and on the XU4, I saw
some graphical glitches where the pic-
ture started to flicker, which looks like
a vertical sync issue. I hope that LAN
gaming can be fixed, since this game is
really awesome in multiplayer.

There seems to be another issue in
Serious Sam – The Second Encounter
as well, where you slip underneath the
surface and are stuck between the level
and the ground. This happens randomly
and only on a few locations. If it hap-
pens, you can’t do anything except re-
load the game and restart it from the last
save point. @ptitSeb is working hard
on fixing some of these issues, and I will
update Serious Sam and GLshim when
there are some fixes available.

Gameplay
You might ask, with all the issues,

what is actually working? Well, it seems

LINUX GAMING

ODROID MAGAZINE	 32

ANDROID DEVELOPMENT

Android
Development
Android WiFi Stack
by Nanik Tolaram

Not only are Android devices typically quite powerful
and come packed with features, but they can also be
quite portable and easy to carry. But what good is any

device without a connection to the Internet? Of course, por-
tability means doing this without wires, which leaves us two
main ways of getting our device online: via Wi-Fi or a cellu-
lar connection. All Android devices have built-in Wi-Fi func-
tionality, and in this article we’re going to take a look at how
that Wi-Fi connectivity works internally inside the operating
system. The source code that is used in this article is based
on Android Open Source Project (AOSP) android-5.1.1_r38
release build.

A High Level Overview
Let’s start by taking a look at Figure 1. It

shows a high level interaction between the dif-
ferent system stacks inside the Android oper-
ating system. The top layer is where our ap-
plications like YouTube and Twitter run. To
make it easier to build applications, Android
uses a framework to help these applications
communicate with the kernel and hardware-
level technology that makes our internet con-
nection work. This 2nd layer is where we’re
going to take a look at the Wi-Fi stack for
Android and how it works between the Linux
Kernel and our applications.

Understanding wpa_supplicant
In our previous article, we looked at the HAL (Hardware

Abstraction Layer) inside Android to understand how applica-
tions use this framework to communicate with the hardware
inside our devices. Normally most software takes advantage
of this layer, but Wi-Fi doesn’t. This is because it uses an open
source low-level stack to support its software-hardware com-
munication called wpa_supplicant.

A High Level Overview Android’s Stack

A closer look at the Wi-Fi stack

The Android framework uses wpa_supplicant as a way to
communicate with the Linux kernel, much like many Linux
and Unix-based operating systems. This is achieved by us-
ing the wpa_supplicant client library to
communicate via a socket connection to
the wpa_supplicant daemon running on
the device. As shown in Figure 2, com-
mands are initiating from an applica-
tion in the Android framework that uses
the socket connection to the daemon in
order to relay Wi-Fi commands to the
hardware itself. The daemon helps en-
sure that these commands, such as en-
abling and disabling the Wi-Fi radio, are
understood by the Linux kernel.

The wpa_supplicant is initialized during Android startup
process, as seen in Figure 3. This snippet was taken from
http://bit.ly/2eNRphu.

ODROID MAGAZINE	 33

http://bit.ly/2eNRphu

Internal framework
Android user applications have access to the Wi-Fi hardware

under the Linux Kernel layer through the framework by accessing
the Context.WIFI_SERVICE service using the Context object:

$ Context.getSystemService(Context.WIFI_SERVICE)

The user will launch an instance of the WiFiManager pro-
viding users with the ability to access Wi-Fi services such as
their current active connection, re-associating with the connec-
tion, and many more features. You can see the implementation
of the “actual” Wi-Fi manager in Figure 4, inside the frame-
works/opt/net/wifi directory.

If you’re interested in knowing the framework code that
lives in each of these folders, you can review the information
outlined in Table 1.

The low level code that interfaces with the wpa_supplicant
is packaged inside the libwifi-service.so binary file, which can
be seen in the Android.mk Makefile as shown here.

As you can see, the
libwifi-service.so file
uses com_android_serv-
er_wifi_WifiNative.cpp,
which is loaded by the
framework as shown in
Figure 6 during the time
while the class is being set
up.

State
Management

The Wi-Fi stack
tracks every changes in
the Wi-Fi connection
and this is done by us-
ing state management
internally. In keeping
tabs with the different
Wi-Fi state, this allows
the framework to react
accordingly and provide

the ability to inform user appli-
cation via broadcast intent. Be-

low we outline the different classes we uses internally to under-
stand Wi-Fi state management status.

Class
DefaultState
InitialState
DriverStoppingState
DriverStartingState
DriverStartedState
DriverStoppedState
ScanmodeState
SupplicantStartingState
SupplicantStartedState
SupplicantStoppingState
VerifyingLinkState
RoamingState

ANDROID DEVELOPMENT

The wpa_supplicant daemon startup process

Figure 4 - The frameworks/opt/net/wifi folder

A look at Android.mk

A look at WifiNative.java

Table 1 - The frameworks/opt/net/wifi directory code

ODROID MAGAZINE	 34

L2ConnectedState
WaitForP2PDisableState
SoftAPRunningState
WPSRunningState
SoftAPStartedState
ConnectedState
ObtainingIPState
DisconnectingState
DisconnectedState
ConnectModeState
TetheringState
TetheredState
TetheringState
UntheteringState

Intents are the lifeblood of Android applications, and inter-
nally the framework uses each intent to communicate wifi sta-
tus/states to user applications. Let’s take a look at an example
at how the intent is used internally to inform user applications
about some state. The easiest example is when applications
wants to be informed about Wi-Fi status (enabled/disabled) so
it can take some action accordingly. This is done using the fol-
lowing <intent> declaration in AndroidManifest.xml.

<receiver android:name=”.WifiReceiver”>

 <intent-filter>

 <action android:name=”android.net.wifi.WIFI_

STATE_CHANGED” />

 </intent-filter>

</receiver>

Inside the application there will be a class that extends the
BroadcastReceiver, like this:

public class WifiReceiver extends BroadcastReceiver {

 …

 @Override

 public void onReceive(final Context context, final

Intent intent) {

 int wifiState = intent.getIntExtra(WifiManager.

EXTRA_WIFI_STATE, -1);

 if (WifiManager.WIFI_STATE_CHANGED_ACTION.

equals(intent.getAction())

 && WifiManager.WIFI_STATE_ENABLED ==

wifiState) {

 …

 }

 }

The application now all ready to receive intent from the
framework when the wifi state changes. Inside the framework
this intent is broadcast out in the WifiStateMachine.java class
as shown here.

Internally, there is more code before calling the set-
WifiState(..) but this method is the point where the user will
get information about the current Wi-Fi state. I hope this gives
you some insight about the Wi-Fi stack and how your applica-
tions interact with it.

ANDROID DEVELOPMENT

Sending WIFI_STATE_CHANGED_ACTION

List of Wifi state management intents

ODROID MAGAZINE	 35

the use of “approved” hardware and
software that you have to spend money
month after month to use, under the
premise that this protects content from
redistribution.

Some cable companies mark almost
everything as copy-once, but others only
mark premium paid-sub channels, like
HBO or Cinemax. Some channels that,
in my opinion, should not be marked
as copy-once, are often done because
of demands to that effect on the part of
the channel, not the cable company. If
your cable company flags everything or
nearly everything as heavily restricted,
don’t bother with HDHomeRuns or
any other consumer-owned equipment.
You’ll have to stick with the cable box
or just stop using cable television service
entirely.

The HDHomeRun Prime can view
protected content with the right soft-
ware, but if you do want to watch and
stream DRM-protected content, the
only sure way of doing this is to use
Windows Media Center running on
Windows. Keep in mind that only Win-
dows 7 includes Windows Media Center
for free. SiliconDust reportedly had an
Android app that did allow watching
copy-once content but the current app
doesn’t do it consistently. I did hear that
you can watch DRMed content from a
HDHR Prime over an Nvidia Shield,
but I haven’t tried this myself.

I use several ODROID-C2s on my
TVs as front-ends for watching live
video streams, using MythTV as the

main software driver. On the back-end
is a standard computer running Ubuntu
16.04.1 LTS and using a HDHomeRun
PRIME with a paired CableCard and
tuning adapter as the means of convert-
ing my digital cable service into streams
that I can view remotely. Since this can
take a lot of time to set up the first time,
here’s a how-to on creating the same
setup for yourself. This guide is written
for the latest LTS release of Ubuntu as of
its writing, 16.04.1 LTS, but I know it
works on 14.04 LTS as well and should
also work on any Debian derivative.

About DRM
DRM is the bane of live TV users ev-

erywhere. Expect this to be your single
biggest problem, and if you’re trying to
wean others off live TV, such as your
spouse or elderly parents, expect the big-
gest point of contention to be over not
being able to watch DRMed content or
channels.

Please note that this means MythTV
cannot and will not work with any live-
TV programming that is flagged as “pro-
tected/copy-once” or “protected/no-co-
py.” There is, by design, no way around
this with any open-source software. The
whole point of this approach is to force

Setup
Here are the general steps necessary

to use MythTV with your ODROID:
1.	 Install and update Ubuntu 16.04

LTS
2.	 Install HDHomeRun driver

software on your Linux box
3.	 Install and configure the Myth-

TV backend on your Linux box
4.	 Set up the clients/frontends on

your ODROID
5.	 Watch live TV along with any-

thing you can download/stream
over the Internet

Install and update
Ubuntu

If you’re using the latest 16.04 LTS
version of Ubuntu already, start off by
doing repetitions of the following two
commands until everything’s up-to-date:

$ sudo apt-get update

$ sudo apt-get upgrade

If you’re using an older version, keep
in mind that upgrading the OS is usually
more time-consuming and more risky
than just reinstalling fresh from the latest
image. These instructions should work
to varying degrees with other Debian-
based distros, although your experience
may differ.

MythTV
Running THE OPEN-SOuRCE
HOME ENTERTAINMENT
APPLICATION ON YOUR
ODROID-C2
by @WebMaka

MYTH TV

ODROID MAGAZINE	 36

right there on the first row of icons.
If it asks for information for a data-

base connection, note what the settings
say for database name, username, and
password and then close the backend
configuration application. You’ll need to
add the database to MySQL, create the
user account that MythTV will use, and
give it full permissions on the database
MythTV will use. Do not just give it
the MySQL “root” username and pass-
word, as this is a very insecure method.
Instead, use a MySQL management tool
to create a new user for MythTV. Then,
restart the backend setup program. If all
went well, it shouldn’t ask for database
connection details. If not, correct this
before proceeding.

It’s important to give the machine
that will be the primary backend for
MythTV a static IP address. You will
need to access it at a fixed IP, and DHCP
will most likely change the IP address
whenever the router reboots. Consult
your router’s documentation on how to
assign IPs statically. Do this before pro-
ceeding if the machine currently has a
dynamic/DHCP-assigned IP.

Setting the IP
address

Once MythTV’s backend setup tool
is happy with the MySQL configuration
and its ability to connect to the database,
you should get a series of options with
“General” as the first option. “Host
Address Backend Setup” is where you’ll
start. Change “IPv4 Address” to what-
ever the static IP is. Do not leave it on
127.0.0.1, or it will only accept client
connections from localhost, effectively
ignoring all other clients on the network.

Change “IPv6 Address” to blank un-
less you’re using IPv6. If you don’t do
this, MythTV may bind only to an IPv6
address and may ignore IPv4 connec-
tions. It’s not supposed to, but it did for
me and people have complained online
about this happening to them. Then,
change “Security Pin (required)” to
0000 (for “allow any clients,” or to an

Install HDHomeRun
driver

To install the HDHomeRun libraries
and configuration tool, use the following
command:

$ sudo apt-get install libhdhome-

run hdhomerun-config

Next, install a suitable driver. The
easiest approach for the driver part is to
grab the DVB driver with Debian pack-
aging that was published on GitHub by
@h0tw1r3:

$ git clone https://github.com/

h0tw1r3/dvbhdhomerun

$ cd dvbhdhomerun

$ dpkg-buildpackage -b

If this fails with a dependency error,
you’ll need to run “sudo apt-get install”
for whatever packages are missing, such
as dkms. Assuming that the buildpack-
age command completed successfully,
let’s install the built packages:

$ cd ..

$ dpkg -i *hdhomerun*.deb

Once this is done, you should be able
to launch the HDHomeRun Config
GUI and have it list your Prime’s three
tuners. If it doesn’t detect the HDHR
Prime, correct this before proceeding,
since you may have skipped a step or had
a failure that you overlooked.

Install and configure
MythTV’s backend

Type the following command to in-
stall the MythTV package:

$ sudo apt-get install mythtv

Expect a number of dependencies to
be installed on a fresh Ubuntu install, so,
let it do what it needs to do. Then, click
the Ubuntu button at the top of the bar
and then click MythTV Backend Setup.
You may need to search for it if it’s not

MYTH TV

actual pin if you need to restrict access)
or MythTV won’t accept connections.

For the “Master Backend” part,
change “IP address” to match the static
IP as well, or again it’ll only watch local-
host for connections from slave backends
if you use them. Keep pressing “next”
until you end up back at the main menu.
For the initial setup, you shouldn’t need
to change anything else in the General
options, and can go back later if you do.

Setup the capture
cards

Navigate to the “Capture Cards” sec-
tion. We’ll do this three times, one for
each tuner on the HDHR Prime. First,
click “New Capture Card”, or use the ar-
row keys to select and hit Enter. For the
first box, “DVB Device,” open the list
and choose the HDHomeRun option.
If you do not have it, you missed some-
thing in step one, so backtrack accord-
ingly. Again, if HDHomeRun Config
cannot “see” your HDHR Prime, Myth-
TV won’t either. In “Available Devices,”
open the list and pick the first tuner. It’ll
be an ID code for the HDHR followed
by “-0”, e.g., 1234ABCD-0. “Tuner”
should be “0” for obvious reasons. Click
“Recorder Options.”

Increase “Signal timeout (ms)” to
“10000” (read: add zero at the end)
and increase “Tuning timeout (ms)” to
“30000” (see previous). This will reduce
timeouts from slow clients or during
overloads on busy non-gigabit networks.
Reduce “Max recordings” to “1” as the
HDHR Prime can only support one ac-
tion at a time on any one tuner.

Click “Next” and “Finish” until you
see the list of capture cards, and repeat
the setup for the other two tuners on the
HDHR Prime. Then, press the Escape
key to get back to the main menu.

Configuring the video
sources

In the main menu, navigate to “Vid-
eo Sources.” This is where you’ll set up
your channel listings and guide. Give

ODROID MAGAZINE	 37

so that it will fetch the complete chan-
nel lineup and programming guide. The
backend will come up pretty quickly,
which can be tested by navigating a
browser to http://localhost:6544. The
guide update will take approximately 20
minutes to run the first time.

Set up the clients
Most people that user MythTV back-

ends are probably going to be using Kodi
for the clients. I’m running Kodi 16.1
(Jarvis) on a custom build of LibreELEC
for the ODROID-C2 since OpenEL-
EC’s support for the C2 is not as robust.
This is very likely going to change when
OpenELEC hits its first full 7.x release,
since C2 support is currently in develop-
ment.

Find the MythTV PVR plugin in
Kodi by navigating to System -> Settings
-> Add-Ons -> My Add-Ons -> PVR
Addons, then finding the plugin and
selecting “Config”. Give it the IP ad-
dress of the backend machine, enable the
add-on by following the same navigation
steps and selecting “Enable”, then restart
Kodi. The plugin should then fetch the
channel list/lineup/guide info from the
backend and the “TV” section should be
visible in the main menu.

Watch live TV
 From your device and environment

of choice, select “TV,” select “Guide,”
and select a channel/show. If every-
thing is working properly, you should be
able to enjoy your video content on the
ODROID-C2. For comments, ques-
tions, or suggestions, please visit the
original thread at http://bit.ly/2dvs3oQ.

you had set up previously, such as your
SchedulesDirect.org account. For “Use
quick tuning,” I didn’t see where it made
any difference for my HDHR Prime, so
I left it on “Never.”

Click the “Fetch channels from list-
ings source” button and immediately hit
the down-arrow key twice. It’ll take a
few seconds or so to fetch the channel/
freq/program data, and you’ll know it’s
finished when the selected control jumps
suddenly to the “Next” button. When it
does, click the “Next” button.

This is an important step: “Schedule
Order” and “Live TV Order” will be dif-
ferent for each tuner. Tuner 0 will be
“3” for “Schedule Order” and “1” for
“Live TV Order”, tuner 1 will be “2”
for both, and tuner 2 will be “1” for
“Schedule Order” and “3” for “Live TV
order” 3 and 1, 2 and 2, and 1 and 3. If
you don’t do it this way, you’ll have cli-
ents fetch tuners out of order and likely
won’t have HDHR hand out access to all
three tuners because MythTV will think
it’s at the end of the tuner pool before
it actually hands out all three. Also, if
you don’t give them a reverse sequence
between the two settings, MythTV will
hand out tuner 2 to the first client and
the HDHR Prime will tell MythTV it’s
out of available tuners. This took me a
lot of time to figure out, since it’s not
mentioned anywhere except for a single
forum post that I stumbled across.

I left the input group settings set to
the default values. Press “Next” and
“Finish” until you return to the list of
sources, and repeat the steps if you want
to set up more than one. Use the Escape
key to return to the main menu when
you’re done.

From the main menu, hit the Escape
key again. MythTV should then display
a dialog about refreshing the guide if you
changed any channel info. Click OK or
tap Enter to dismiss this and let the con-
figuration program close. Confirm that
you want to run the MythTV backend,
and give it the proper username and
password. Then, run “mythfilldatabase”

the guide setup a suitable name in “Vid-
eo Source name.”

If you have an active subscription
to SchedulesDirect.org for listing/guide
data, change “Listings Grabber” to the
SchedulesDirect option and fill in the
blanks for the username and password
as required. Then, click “Retrieve Line-
ups” to fetch what you’ve selected in
your SchedulesDirect.org account for
your location. Choose the appropriate
entry for “Data Direct lineup”. Myth-
TV will then fetch channel/guide data as
required. Just make sure to leave “Per-
form EIT scan” unchecked, since EIT
data will overwrite all over the SD.org
guide data and your guides will be much
less usable.

If you don’t have an active sub to
SchedulesDirect.org, consider spending
the $25 a year for one, as their guides
are very useful. At the very least, get a
7-day trial to see if their data will suit
your needs. Otherwise, if you’re not in
an area they have listings for, leave “List-
ings grabber” on “Transmitted guide
only (EIT)” to try to pull down the cable
company’s guide information or change
it to “xmltv Selections” and step through
the options for that if you have another
grabber setup that you’d like to use.

Again, click “Next” and “Finish” un-
til you return to the list of sources. Re-
peat the steps if you want to set up more
than one, and press the Escape key to the
main menu when you’re done.

Input connections
Navigate to the “Input Connections”

section, where you tell MythTV to use
the guide source’s channel, frequency,
and program data to tell the tuners what
to tune to. Please note that we will also
do this part three times, once for each
tuner, but with a couple subtle but im-
portant changes. Click the first HDHR
tuner on the list, or use the arrow keys
and the Enter key. I left “Display name”
blank but you can change it to anything
so long as it’s unique for your stream.

For “Video Source,” pick the grabber

MYTH TV

ODROID MAGAZINE	 38

http://bit.ly/2dvs3oQ
SchedulesDirect.org
SchedulesDirect.org
SchedulesDirect.org
SD.org
SchedulesDirect.org

example, to use a Realtek 8192cu (de-
fault), set the following parameter:

wlan.modname=8192cu

To use Realtek 8188eu:

wlan.modname=8188eu

To use Ralink RT33XX/RT35XX/
RT53XX/RT55XX:

wlan.modname=rt2800usb

If you are using a USB GPS dongle,
set the correct tty port and speed in
build.prop:

ro.kernel.android.gps=ttyACM0

ro.kernel.android.gps.speed=9600

To enable the ability to shutdown the
system without confirmation by long
pressing the power button, add the fol-
lowing line:

setprop persist.pwbtn.shutdown

true

If you want to enable the Cloud Print
feature, download and install Google
Cloud Print Service app from http://bit.
ly/2e2YyLw.

For comments, questions or sugges-
tions, please visit the original post at
http://bit.ly/2ec67zI.

•	 Selinux Enforce
•	 Bluetooth and USB-3G don’t

work yet

Installation
To install Android Nougat onto a

blank media, you need prepare your
eMMC or SD card with an appropriate
self-installation image, which is avail-
able at http://bit.ly/2eWb1zi. Write
the image to your eMMC or SD card
using Win32DiskImager (http://bit.
ly/1Vk9u4o).

If you are updating from the CM
13.0 image, copy and paste the follow-
ing URL into the ODROID-Updater
URL section:

http://oph.mdrjr.net/voodik/5422/
ODROID-XU3/Android/CM-14.0/Al-
pha-0.1_10.10.16/update.zip

The update process might take up to
20 minutes, so be patient.

Tips
To get Wifi working set the correct

module name in the build.prop file. For

Android Nougat, which was of-
ficially released earlier this year,
introduces notable changes to

the operating system and its develop-
ment platform, including the ability to
display multiple apps on-screen at once
in a split-screen view, support for in-
line replies to notifications, as well as an
OpenJDK-based Java environment and
support for the Vulkan graphics render-
ing API, and “seamless” system updates
on supported devices.

Features
•	 Android 7.0 Nougat Cyanogen-

mod 14.0
•	 Kernel 3.10.9
•	 OpenGL ES 1.1/2.0/3.0 (GPU

acceleration)
•	 OpenCL 1.1 EP (GPU accelera-

tion)
•	 Multi-user feature is enabled (Up

to 8 users)
•	 On board Ethernet and external

USB 3.0 Gigabit Ethernet sup-
port

•	 RTL8188CUS , RTL8191SU
and Ralink Wireless USB dongle
support

•	 USB GPS dongle support
•	 USB tethering
•	 Portable Wi-Fi hotspot
•	 Android native USB DAC sup-

port
•	 USB UVC Webcam support
•	 HDMI-CEC support

Android Nougat
Impress YOUR FRIENDS
WITH THE Latest
ANDROID VERSION
by @voodik

Figure 1 - Android Nougat screenshot

ODROID MAGAZINE	 39

http://bit.ly/2e2YyLw
http://bit.ly/2e2YyLw
http://bit.ly/2ec67zI
http://bit.ly/2eWb1zi
http://bit.ly/1Vk9u4o
http://bit.ly/1Vk9u4o
http://oph.mdrjr.net/voodik/5422/ODROID-XU3/Android/CM-14.0/Alpha-0.1_10.10.16/update.zip
http://oph.mdrjr.net/voodik/5422/ODROID-XU3/Android/CM-14.0/Alpha-0.1_10.10.16/update.zip
http://oph.mdrjr.net/voodik/5422/ODROID-XU3/Android/CM-14.0/Alpha-0.1_10.10.16/update.zip

built ffmpeg package is used for video
decoding. This means that as soon as
some brave developer ports aml-libs sup-
port to ffmpeg, we might have Chromi-
um builds that play accelerated videos on
C1/C2. Work is being done with patch-
es to ffmpeg by forum user @LongChair
that should allow native playback in the
end (http://bit.ly/2eWjRwY). Hopeful-
ly, by the time you’re reading this article,
this approach will already be working.

The convoluted
approach

In case the “best approach” method
is not yet ready, we’ll have to try some-
thing else. The technique in this guide

If you’re using your ODROID-C2
as a desktop computer, chances are
you’re also surfing the web on it.

By now, you may have noticed that in-
browser video playback doesn’t have the
performance that you would expect.
Although you can view 720p Youtube
videos in-browser, it’s choppy, so 360p
is the only acceptable resolution where
playback is watchable. Other sites sim-
ply report that they can’t play any videos.

In order to improve video playback
quality, two things are needed: Acceler-
ated video decoding, which is handled
by the aml-libs package on the C1/C2,
and accelerated rendering, which should
be handled by the X11 drivers. Unfortu-
nately, Chrome does not support acceler-
ated video decoding for aml-libs though,
so playback is done with the CPU in-
stead, causing these slow and choppy
experiences on HD video streams. The
goal of this article is to offload the video
playback to a process which can do it us-
ing accelerated hardware and improve
the browser’s video playback experience

The best approach
The best way to get this done is to fix

the egg before we have a problem with
the chicken in the first place. By this,
we mean adding aml-libs support to
Chrome’s source code. If you look into
Chromium’s documentation (http://bit.
ly/2eTfcww), you can see that a custom-

is inspired by work done on Firefox by
a friend of mine. A word of caution is
that it might not be directly applicable
to Chromium due to changes in Chro-
mium’s plugin API (and its deprecation
of NAPI). So, the story goes that my
friend has a very old PC that he uses to
browse the web. Unfortunately, the PC
could not keep up with playing back vid-
eo content in the browser, but it could
do the job in an external player, so my
friend, whose name is Silviu, decided to
do something about it instead of throw-
ing money at the problem. He used
Firefox and the Greasemonkey plugin
to write his own mini-plugin for Firefox
and managed to offload video playback
to the mpv video player software. He
did this all while rendering everything in
the browser window itself to give the im-
pression of a cohesive experience. This
is what I wanted to try to replicate on
ODROIDs at first.

What he did was use Greasemonkey
to load a custom 1600-line JavaScript
function that overrides all HTML5 video
elements and replaces them with proxy
objects that forward the calls to his plu-
gin. For this he needed to reimplement
the whole HTML5 video API which is
described at https://mzl.la/2dRRTjP
and https://mzl.la/2eTgUxS. His code
gets the calls the browser makes to create
new video objects, set the video source,
and can start, seek, and stop playback.

Accelerated Video
Playback for
Browsing on the
ODROID-C2
WATCH YOUR WEB MEDIA CONTENT IN FULL HD
by Adrian Popa

VIDEO HELPER

Figure 1 - A diagram of the rendering
process

ODROID MAGAZINE	 40

http://bit.ly/2eWjRwY
http://bit.ly/2eTfcww
http://bit.ly/2eTfcww
https://mzl.la/2dRRTjP
https://mzl.la/2eTgUxS

Also, the plugin allows you to create multiple instances of the
player, so that several tabs can play video simultaneously.

Unfortunately, the solution I’ve seen was tested only on
Firefox and Windows, but with a bit of work, it could be port-
ed to Chromium as well. I have to convince my friend to
release his sources so that others could join in.

The resulting
solution

A relatively simple way to get accelerated playback from
the browser is to pass the URL of the video to a player which
has aml-libs support. Fortunately, after a long and very enter-
taining discussion on the forum at http://bit.ly/2eLzOpA, we
now have a standalone player for the C2 as well as patches to
ffmpeg and mpv that could lead to a more diverse player selec-
tion in the future. However, for our needs, we’ll use c2play, a
minimalistic player built especially for the C2 by forum user @
crashoverride (http://bit.ly/2eXOp0s).

Our plan consists of the following: 1) create a chrome plu-
gin to send the current URL (or the video element’s URL) to
a backend script, and 2) the backend script calls youtube-dl to
get the video URL (if needed) and calls the player to play it.

Fortunately, Chrome has a native messaging API (http://
bit.ly/1cOVcrU) that lets you communicate with external pro-
cesses (which it’s kind enough to spawn for you), so this is what
we’ll do.

To install c2play, you will need to consult the latest in-
structions from the ongoing support thread at http://bit.
ly/2eXOp0s, since development is progressing rapidly. But at
the time of this writing, you can install it with the following
commands:

$ git clone -b beta1 https://github.com/OtherCrash-

Override/c2play.git

$ sudo apt-get install libasound2-dev \

 libavformat-dev libass-dev libx11-dev premake4

$ cd c2play

$ premake4 gmake

$ make c2play-x11

$ sudo cp c2play-x11 \

 /usr/local/bin/c2play-x11

You’ll also need youtube-dl, which you can get from Ubun-
tu’s repositories, or from http://bit.ly/1Vej3Vi. Youtube-dl is
a program that takes a page URL and extracts the video ele-
ment URL embedded inside. It can do this for a wide range of
websites that either use HTML5 or Flash for playback (http://
bit.ly/2d9yknp). I recommend that you install it manually,
because changes to sites happen often and you’ll need to be
able to update it easily, which can be done with the following
set of commands:

Upon intercepting the messages, the JavaScript code cre-
ates a request with a fake content-type which is handled by a
plugin library specially designed to be the middleman in this
scenario. The JavaScript code doesn’t have the right to read
or execute files, but the plugins do, so the plugin is used to
start up an mpv instance and communicate with it through a
piped connection. The JavaScript code sends play, pause, and
seek requests to the plugin, which it then converts them into
mpv commands and lets the mpv process do all the heavy lift-
ing. Also, the reverse is true: when you control mpv through
its built-in controls, it reports things such as play/pause/seek
events back to the plugin library, which translates them back to
JavaScript events which are passed through the Greasemonkey
plugin back to the original player.

The result of all this is that the original player shows the
correct status, current position and can be used to control the
player in an intuitive way. This is important because a lot of
sites have built-in protections against scraping and may query
periodically through JavaScript to see the player’s state and
check for anything strange taking place.

In terms of presentation, using a plugin allows you to create
a new operating system window without titlebar decorations,
and position it on top of the HTML5 video object. The fun
fact is that the window is embedded inside the webpage so it
gets hidden out of view when you scroll. MPV can use the
--wid parameter to draw its output to an arbitrary window,
which is a cool option that works in Windows and Linux alike.
This makes the player look like it’s native and unobtrusive.

VIDEO HELPER

Figure 2 - MPV plays to a Mousepad editor window

Figure 3 - Firefox proof-of-concept with skinned mpv controls

ODROID MAGAZINE	 41

http://bit.ly/2eLzOpA
http://bit.ly/2eXOp0s
http://bit.ly/1cOVcrU
http://bit.ly/1cOVcrU
http://bit.ly/2eXOp0s
http://bit.ly/2eXOp0s
http://bit.ly/1Vej3Vi
http://bit.ly/2d9yknp
http://bit.ly/2d9yknp

player next to your address bar. If you can make a better icon,
please contribute to the support thread referenced at the end
of the article.

After activating the plugin, when you navigate to a website
that has a video embedded, you can press this button, and the
tab’s URL will be passed to the backend script. The backend
script will run it through youtube-dl, which can take about 5-6
seconds, and will obtain the URL of the video. It will then call
the preferred player with this URL, and playback should start.
A video of the installation and playback process is available at
https://youtu.be/Z3ng8Qm8STI.

At the time of writing, I only tested it with c2play-x11 with
playback in fullscreen. In order to control it, consult the help
page at http://bit.ly/2eWl5IV. Adding windowed playback
support is on @crashoverride’s todo list (http://bit.ly/2fd8C7a)
and will probably become a reality in the near future. Also, @
LongChair’s mpv port could be used for playback in the future.
For now I’ve tried with the stock mpv, and playback is fine for
SD content, but 720p seems to lag. You can view a demo at
https://youtu.be/fJLv0cwPyfg.

The backend script has a configuration file stored at
~/.odroid.c2.video.helper.conf using an ini syntax. With this
file, you can disable debugging, which is on by default. You
can also change the player and set custom parameters, such as
quality, for various sites supported by youtube-dl. For instance,
the default config file sets the youtube quality to 720p (-f 22)
and disables playlist support. You can add new sections, which
must have a name that matches the URL’s domain. Also, the
section name must not contain the character dot (“.”) because
it’s not well supported by the configuration parser module. To
view debugging information you can run:

$ sudo journalctl -f

Playing 1080p or 4k from YouTube is a bit more problem-
atic because, for resolutions higher than 720p, YouTube splits
video and audio into two distinct streams, and their player

$ sudo curl -L \

 https://yt-dl.org/downloads/latest/youtube-dl \

 -o /usr/local/bin/youtube-dl

$ sudo chmod a+rx \

 /usr/local/bin/youtube-dl

Finally, to install the Chrome plugin that ties all of these
together, follow these steps:

$ git clone https://github.com/mad-ady/odroid.

c2.video.helper.git

$ cd odroid.c2.video.helper

$ sudo apt-get install libjson-perl \

 libproc-background-perl libconfig-simple-perl

To install the plugin, you will need to navigate inside
Chrome to chrome://extensions/. Next, drag and drop from
a file browser the extension located in odroid.c2.video.helper/
release/odroid.c2.video.helper-1.1.crx (or version 1.2, as de-
scribed below) into the Chrome window, and it will prompt
you to install it.

Once it is installed, continue to install the backend script:

$ cd host

$ bash install_host.sh

The install_host.sh script creates the necessary directories
in your Chromium installation and copies over the backend
script (typically to $HOME/.config/chromium/NativeMessag-
ingHosts) and its configuration file to your home directory. At
this point, you should see a new button that looks like a video

Figure 4 - Installing our plugin

Figure 5 - Push the button!

Figure 6 - Non-accelerated playback in mpv

VIDEO HELPER

ODROID MAGAZINE	 42

https://youtu.be/Z3ng8Qm8STI
http://bit.ly/2eWl5IV
http://bit.ly/2fd8C7a
https://youtu.be/fJLv0cwPyfg

Tube and Vimeo. Digging through the
page revealed why: these sites use a tech-
nique called “media-source” (http://bit.
ly/2eWmfnG) which uses JavaScript to
make requests and stream the video, so
we can’t extract a URL to pass for play-
back.

For sites that use a video element with
a real URL as as the source, the plugin
will play the content with the external
player on the first playback attempt. If
you try to play the video again without
reloading the page, it will play normally
inside the page. This is a protection in
case the external player can’t handle the
video format and you want to fall back
to the browser. In this case, you should
just see a black window flash briefly on
the screen while playback is attempted,
otherwise it will play normally.

I have released two versions of the
plugin. Version 1.1 supports only play-
back through youtube-dl through the
use of the toolbar button. Version 1.2
adds direct playback experimental sup-
port, but may not always work, or may
be too annoying for videos which play
automatically when you enter the page,
so which plugin you use is up to your
needs.

I’d like to hear your suggestions and
feedback on the support thread at http://
bit.ly/2eBVtCZ. All this wouldn’t have
been possible without the hard work
of @crashoverride and @LongChair, so
send them a big thank you!

the URL to the video directly from the
browser’s DOM. In case you’re not
aware of how things work in the wild
Internet, web pages can create video ob-
jects that have various properties includ-
ing a source pointing to the video being
played. Youtube-dl uses page scraping
and lots of internal magic to extract this
URL and present it to other processes.
However, since we’re running inside the
browser ,we should be able to get the
source of the video, thus saving about
6 seconds of processing time. I modi-
fied the Chrome extension to look for
video objects, and the plan was to create
a button which would initiate playback
externally. But this is guaranteed to fail,
since each page embeds the video under
various layers of objects, most of which
are either hidden or overlap with other
ones, so the button would be hidden or
positioned incorrectly in the page.

My next attempt was to intercept the
“playing” event and pause the video, steal
the URL and pass it to the backend for
playback. This worked surprisingly well
for my test site (http://bit.ly/1nAXG0z),
but failed for larger sites such as You-

merges them on the client browser.
This doesn’t happen on other sites such
as Vimeo. Fortunately, @crashover-
ride also has a branch called dualstream
that tries to support this, as described at
http://bit.ly/2fd7RLt. Preliminary tests
show that he is on the right track. I was
able to play 4K video with his player, but
playback unfortunately stalled after sev-
eral seconds. This will likely improve in
the near future.

What should you expect to work and
what should you expect not to work?
Sites supported by youtube-dl, such as
YouTube, Vimeo, Facebook, IMDB,
Engadget, DailyMotion, TED, Cracked,
Apple Trailers, 9gag TV and a variety of
adult sites should all work. In order to
play content, you need to navigate to a
page with a single video on it and click
on the button next to the address bar.
However, sites which require login to
view the content will not work, nor will
sites which require cookies to access the
data, due to how the plugin connects
and processes the stream.

Relying on youtube-dl for site sup-
port is fine, but my idea was to retrieve

Figure 7 - A configuration sample

Figure 8 - Normal video object vs media-source

VIDEO HELPER

ODROID MAGAZINE	 43

http://bit.ly/2eWmfnG
http://bit.ly/2eWmfnG
http://bit.ly/2eBVtCZ
http://bit.ly/2eBVtCZ
http://bit.ly/1nAXG0z
http://bit.ly/2fd7RLt

sonable price, so I bought my first ODROID, which was the
C1 model. I ported all of my projects onto it and it was fun to
see what it can do, and also to discover all its quirks.

I was very satisfied with the performance, because it did
everything that I wanted it to do. When the C2 came out, I
said to my wife, “Look at this! We need this one! More is bet-
ter!”. Admittedly, she didn’t really care, but I bought my first
C2 and a little bit later, my second C2 arrived, accompanied
by my wife shaking her head at me.

I have found that the ODROID community is a very active
one. Of course, there are some more and some less active mem-
bers, but in general, I was happily surprised by the community.
What I highly appreciate is the fact that even the administrators
and Hardkernel members contribute to the forum. For me, it
looks like there is an active collaboration between the Hardker-
nel members and the internet community, which is priceless.
The best board is worthless without proper support.

How do you use your ODROIDs?

My first approach was to get all of my projects running on
one single board. My original C1 was a network file server, a
media server, a media player, SVN server, a gaming machine,
Ambilight-maker, a development board, and an orbital defense
cannon. In Germany, we would call it an “egg-laying wool-
milk-sow”! However, every time I tinkered a little bit too hard,
several things broke at the same time, which prompted a low
Wife Acceptance Factor (WAF). I decided to decentralize my
system, which resulted in the need for more ODROIDs, which
prompted my wife to say “Wait, ... what was THIS thing for?!”
Now I have my C1 as a dedicated server device, which will be
ported to a V2 over time, one C2 as a media player running
LibreELEC, and one C2 to play around with. Later I will use
one of the ODROIDs as a retro-gaming platform again.

Please tell us a little about yourself.
My name is Joachim Althof, and I am 32 years old. I live

near Hanover in Germany along with my wife Katrin and our
two daughters. I did my studies in Mechatronics at the Uni-
versity of Applied Sciences in Lemgo, which is a tiny town in
northwestern Germany. After finishing my studies, I worked
for a company near the border to Denmark, where I wrote
embedded microcontroller software for relatively large grid in-
verters (>100 kW) and other kinds of photovoltaic- and wind-
power converters. Five years later, I went back to my former
hometown and started to work for a new company. I am the
first, and so far only, software developer for small PMSM in-
verters (<10 kW), and am responsible for many other things
regarding development coordination.

How did you get started with computers?
I gained my first computer experiences with my father’s Com-

modore 64 back in the early 1990s. Thinking back, this was re-
ally old-school, with an almost round-shaped greenscale monitor
that flickered a lot, , a reset-button and homemade loudspeaker,
along with a 9-pin parallel-port printer with gray “endless pa-
per”. At first, I had absolutely no clue about what was going on
when I typed <load “$”,8,1>. And honestly, I didn’t really care,
as long as the games started. A short while later, I started to be
more interested in understanding what was going on inside of
that gray box. I even got GEOS running, which was a type of
graphical OS for the C64, and managed to install the printer
driver. When I was around 12, I got my first i486 computer run-
ning DOS. Due to the fast hardware development at that time,
that device was slowly upgraded piece by piece and became my
first “serious” computer for years. At home, my wife says that I
am “responsible for everything with a cable”.

What attracted you to the ODROID platform?

When I started with SBCs, the Raspberry Pi was already
widespread. I wanted to join the hype, but desired something
different and more powerful than the RPi. I decided to pur-
chase a Cubieboard2, which was brand-new those days. I
learned a lot and met some really nice people in the forum.
However, I was soon slightly disappointed by the company, the
community and the product, so I searched for a new platform
to play around with, and that’s how I discovered the ODROID
platform. I was impressed by the hardware specs and the rea-

Meet an ODROIDian
Joachim Althof
edited by Rob Roy

MEET AN ODROIDIAN

Joachim sitting on the roof of a wind turbine in Estonia during
a commissioning trip in April 2015

ODROID MAGAZINE	 44

ready available on the XU4. The most important thing to me
is a good support of the features, since I had to struggle with
the buggy USB drivers on the C1. Also, something similar to
the RPi Zero would be great. I know that Hardkernel offers
the C0, but this is not comparable with the RPi Zero in many
ways. I think some people could use a MIPI-CSI port as well,
especially when it is compatible with the RPi. This could open
up a huge new field for ODROID applications.

What hobbies and interests do you have apart from computers?

I like doing sports like jogging and Freeletics. I am a fan of
metal music, and play drums. My singing is also not bad, and I
like to go to music concerts and festivals. During the dark and
cold days of winter, I work on an embedded project with AVR
microcontrollers and a lot of soldering. Most importantly, I
enjoy doing nothing as well as spending free time with friends
and my family.

What advice do you have for someone wanting to learn more
about programming?

It depends on the specific kind of programming. I think
that learning embedded C is a difficult way to start, because it is
less “visual” than writing software for a PC. You can only see or
measure your programming results on hardware I/Os. However,
it’s worth the effort when you think about the possibilities! Start
with something simple like an LED blink loop. Don’t be afraid
of pointers*, although they’re not necessary for beginning pro-
grammers. Always keep in mind how powerful software can be.
The software is the soul of a device, and to bring life to a piece
of dead hardware can be awesome! Also, knowing that some-
thing can explode by setting a wrong bit can be very exciting and
scary. On the other hand, programming shell scripts or C# can
be good to start with, because they is more visual then embed-
ded programming. It really depends on what the application is.
Most important: is to just do it! Show some self-initiative and
people will help you as you help yourself.

Which ODROID is your favorite and why?
At the moment, I only have experience with the C1 and C2,

but my favorite is the C2. It is really powerful for the price,
has a small form factor, is versatile, and well supported. In my
use cases, both boards perform very well. I think there will be
even more projects and possibilities, once the 64-bit ARM ar-
chitecture becomes more mature. I also like the I/O header of
the C1 and the C2, because it makes hardware tinkering easy.
Whether it is necessary to have the I/O header be Raspberry
Pi-compatible is another story.

What innovations would you like to see in future Hardkernel prod-
ucts?

That’s a good question, because many features are already
there. I’d like onboard-Wifi, or maybe USB 3.0, which is al-

MEET AN ODROIDIAN

Joachim’s home server powered by an ODROID-C1, all tightly
fitted into an old ATX power supply case

A homemade PCB for a 32-channel PWM, powerd by a ATTi-
ny85 via SPI and a bunch of shift-registers for a ceiling lamp
in his daughter’s room to make it look like a night sky full of
sparkling stars

MEET AN ODROIDIAN

Joachim and his girls having some fun at the fair, although
they enjoyed it more than he did

ODROID MAGAZINE	 45

