
Bring your favorite modern game titles
from your office to your living room

High end gaming using ODROID-C2 and

GameStream

ODROID
Magazine

ODROID
Magazine

Linux/Android Gaming • Gentoo for ODROID-C2 • Compiling Android

Bring your favorite modern game titles
from your office to your living room

High end gaming using ODROID-C2 and

GameStream
• Remotely
Monitor Modbus
Registers using an
ODROID-XU4

• An ODROID IoT
Device and

Application: Gmail
Mechanical Notifier

Year Three
Issue #34
Oct 2016

What we stand for.
We strive to symbolize the edge of technology,
future, youth, humanity, and engineering.

Our philosophy is based on Developers.
And our efforts to keep close relationships with
developers around the world.

For that, you can always count on having the quality
and sophistication that is the hallmark of our products.

Simple, modern and distinctive.
So you can have the best to accomplish
everything you can dream of.

We are now shipping the ODROID-C2
and XU4 devices to EU countries!
Come and visit our online store to shop!

Address: Max-Pollin-Straße 1
85104 Pförring Germany

Telephone & Fax
phone: +49 (0) 8403 / 920-920
email: service@pollin.de

Our ODROID products can be found at
http://bit.ly/1tXPXwe

mailto:service@pollin.de
http://bit.ly/1tXPXwe

EDITORIAL

ODROID Magazine, published monthly at http://magazine.odroid.com, is your source for all things ODROIDian.
Hard Kernel, Ltd. • 704 Anyang K-Center, Gwanyang, Dongan, Anyang, Gyeonggi, South Korea, 431-815
Hardkernel manufactures the ODROID family of quad-core development boards and the world’s first ARM big.LITTLE single board computer.
For information on submitting articles, contact odroidmagazine@gmail.com, or visit http://bit.ly/1ypImXs.
You can join the growing ODROID community with members from over 135 countries at http://forum.odroid.com.
Explore the new technologies offered by Hardkernel at http://www.hardkernel.com.

Although ODROIDs can already play thousands of games,
including those available from the Google Play Store,
native Linux games that were ported by developers, and

emulated games using RetroArch, many modern games are not
yet capable of running natively on the ARM platform. However,

NVIDIA publishes a software pack-
age that allows streaming of high-
end games across a network, allow-
ing ODROIDs to work as a remote

gaming station. This gives the flexibil-
ity of running a central gaming server at

home and playing high-end games anywhere in
the house on a large monitor.

We also feature a few DIY projects this month,
including an IoT project from Miltiadis that raises a flag when an

email arrives. Adrian shows us how to set up an IP webcam, Joel gives
an overview of his industrial automation setup, and Bo documents his quest in finding
the best cooling setup for an ODROID-XU4. If you want to have complete control over
your operating system, we have instructions for compiling both Gentoo and Android
Lollipop. We also have some game reviews for our favorite Android and Linux games,
including some ports that were recently updated by Tobias for the ODROID-C2.

http://magazine.odroid.com
mailto:odroidmagazine@gmail.com
http://bit.ly/1ypImXs
http://forum.odroid.com
http://www.hardkernel.com

Manuel Adamuz, Spanish Editor
I am 31 years old and live in Seville, Spain, and was born in Granada. I am married to a wonderful woman and have
a child. A few years ago I worked as a computer technician and programmer, but my current job is related to quality
management and information technology: ISO 9001, ISO 27001, and ISO 20000. I am passionate about computer
science, especially microcomputers such as the ODROID and Raspberry Pi. I love experimenting with these com-

puters. My wife says I’m crazy because I just think of ODROIDs! My other great hobby is mountain biking, and I
occasionally participate in semi-professional competitions.

Andrew Ruggeri, Assistant Editor
I am a Biomedical Systems engineer located in New England currently working in the Aerospace industry. An 8-bit
68HC11 microcontroller and assembly code are what got me interested in embedded systems. Nowadays, most proj-
ects I do are in C and C++, or high-level languages such as C# and Java. For many projects, I use ODROID boards,
but I still try to use 8bit controllers whenever I can (I’m an ATMEL fan). Apart from electronics, I’m an analog
analogue photography and film development geek who enjoys trying to speak foreign languages.

Venkat Bommakanti, Assistant Editor
I’m a computer enthusiast from the San Francisco Bay Area in California. I try to incorporate many of my interests
into single board computer projects, such as hardware tinkering, metal and woodworking, reusing salvaged materials,
software development, and creating audiophile music recordings. I enjoy learning something new all the time, and
try to share my joy and enthusiasm with the community.

Josh Sherman, Assistant Editor
I’m from the New York area, and volunteer my time as a writer and editor for ODROID Magazine. I tinker with
computers of all shapes and sizes: tearing apart tablets, turning Raspberry Pis into PlayStations, and experimenting
with ODROIDs and other SoCs. I love getting into the nitty gritty in order to learn more, and enjoy teaching oth-
ers by writing stories and guides about Linux, ARM, and other fun experimental projects.

Nicole Scott, Art Editor
Nicole is a Digital Strategist and Transmedia Producer specializing in online optimization and inbound marketing
strategies, social media management, and media production for print, web, video, and film. Managing multiple ac-
counts with agencies and filmmakers, from web design and programming, Analytics and Adwords, to video editing
and DVD authoring, Nicole helps clients with the all aspects of online visibility. Nicole owns anODROID-U2,
and a number of ODROID-U3’s and looks forward to using the latest technologies for both personal and business

endeavors. Nicole’s web site can be found at http://www.nicolecscott.com.

James LeFevour, Art Editor
I’m a Digital Media Specialist who is also enjoying freelance work in social network marketing and website administra-
tion. The more I learn about ODROID capabilities, the more excited I am to try new things I’m learning about. Being
a transplant to San Diego from the Midwest, I am still quite enamored with many aspects that I think most West Coast
people take for granted. I live with my lovely wife and our adorable pet rabbit; the latter keeps my books and computer

equipment in constant peril, the former consoles me when said peril manifests.

Bruno Doiche, Senior Art Editor
Is the GameStream the holy grail that Bruno always wished to play his favorite PC games on his living room when his

wife is not around to scoot him back to his dungeon/design lab? Maybe. Just don’t tell her that he is considering purchasing
yet another computer just to play games. After all, he is already struggling to make all his electronics to fit his apartment, so
he avoids the endless call to reunite himself to the PC MASTER RACE!

OUR AMAZING ODROIDIAN STAFF:

Rob Roy, Chief Editor
I’m a computer programmer in San Francisco, CA, designing and building web applications for local clients on my
network cluster of ODROIDs. My primary languages are jQuery, Angular JS and HTML5/CSS3. I also develop pre-
built operating systems, custom kernels and optimized applications for the ODROID platform based on Hardkernel’s
official releases, for which I have won several Monthly Forum Awards. I use my ODROIDs for a variety of purposes,

including media center, web server, application development, workstation, and gaming console. You can check out my
100GB collection of ODROID software, prebuilt kernels and OS images at http://bit.ly/1fsaXQs.

http://
http://

INDEX

compiling android - 26

odroid-xu4 cooling- 18

android gaming: Ultimate briefcase - 19

linux gaming - 24

nvidia game streaming - 22

gentoo for ocroid-c2 - 29

android gaming: reaper - 28

ip webcam - 12

industrial automation - 20

mechanial notifIer - 6

meet an odroidian - 32

Gmail Mechanical
Notifier
An ODROID IoT Device and Application
by Miltiadis Melissas

MECHANICAL NOTIFIER

Following my last article in the September issue of ODROID Magazine titled
“ODROID-C2 as an IoT device: Interfacing with the real world”, I was
looking for an Internet of Things (IoT) application that made use of a servo

motor. This tutorial details my servo motor project, through an enjoyable process
of constructing an IoT device which is constantly checking your Gmail account for
any incoming messages.

The IoT device employing an ODROID-C2 under the hood, logins automati-
cally to your gmail account, and checks for new incoming messages. If such mes-
sages exist, an LED lights up and a mechanical mail-flag is raised to notify you with
the banner that declares “YOU’VE GOT MAIL!” When all of the new messages
have been read by the user, the mail flag
moves back down and the LED goes off.
Watch the video on my Youtube chan-
nel at http://bit.ly/2bT9bMz to see the
device in action.

System
requirements

You will need an ODROID-C2 with
Hardkernel’s latest Ubuntu v2.0 release
(http://bit.ly/2cBibbk) and Python
Ver. 2.7.12 installed. Additional materi-
als include:

1 x ODROID-C2 (ARM 64bit 1.5Ghz
quad core single board computer)
1 x Gmail account (which is free)
1 x Breadboard
1 x LED (Light Emitted Diode)
1 x 220 ohm Resistor
1 x Servo motor (link)
4 x 1.5 Batteries and of course (6V)
1 x set of Jumpers

Hardware
connections

Please refer to the schematic in Figure
3 and to the Hardkernel’s excellent pin-
layout diagram for the ODROID-C2 at
http://bit.ly/2aXAlmt. The LED’s an-
ode(+) is connected to pin7 through a

Flag down - LED off

Flag up - LED on

ODROID MAGAZINE	 6

http://bit.ly/2bT9bMz
http://bit.ly/2cBibbk
http://bit.ly/2aXAlmt

MECHANICAL NOTIFIER

Gmail notifier schematic

resistor (220Ω) while its cathode(-) to the ground (pin9). The two pins are lying
out, side by side according to the Hardkernel’s pin layout.

Now let’s explore how to use a servo to control the mail flag. The servo is
attached to pins 19 and 20. However, since it requires more current than the
ODROID-C2 can supply, we will need a set of the four (4) batteries as an added
power supply. The servo has three (3) wires: yellow, red and brown. The yellow
carries the signal, which is the pulse width modulation (PWM) and its attached
to pin19. Please refer again to Hardkernel documentation page at http://bit.
ly/2ckfdKn for the pins that can provide those kind of pulses. For the ground(-),
the servo is connected to pin20, using the brown wire. However, it’s better to use
a common ground and leave it unplugged as pins are precious commodity, espe-
cially for more complicated projects. Finally, the red wire of servo is connected
to the power bank, in other words, with the four batteries (+Vcc). So it is red
to red, leaving the blank wire of the power bank for the last, for the connection
with the common ground as its negative(-). The hardware phase of the Gmail
Mechanical Notifier is now ready. Let us spring it to life with the Python script
we will write for this purpose!

Preliminary
software

Before we start writing the Python
script, let us examine the ODROID-
C2 operating systems (OS). All
boards made by Hardkernel can run
either Linux or Android, and the
ODROID-C2 is no different. For
the Gmail Mechanical Notifier, we
will use Linux as the main OS. The
reason is that Linux is more versatile
and robust when it comes to the In-
ternet of Things (IoT) applications.
You can flash Linux Ubuntu 16.04
Mate following the guide at http://
bit.ly/1Vk9u4o.

Finally, install the WiringPi2
library. This library controls the pins on
ODROID-C2. Hardkernel provides an excellent guide on their site for install-
ing the WiringPi2 library at http://bit.ly/2ba6h8o.

You will need additional utilities if you manually rebuild the bindings with
swig-python WiringPi. They can be installed using the following command:

$ sudo apt-get install python-dev python-setuptools

Download and setup WiringPi2 for Python from the repository:
$ git clone https://github.com/hardkernel/WiringPi2-Python.git

$ cd WiringPi2-Python

$ git submodule init

$ git submodule update

Build and install the library:
$ sudo python setup.py install

ODROID MAGAZINE	 7

http://bit.ly/2ckfdKn
http://bit.ly/2ckfdKn
http://bit.ly/1Vk9u4o
http://bit.ly/1Vk9u4o
http://bit.ly/2ba6h8o

MECHANICAL NOTIFIER

Download and run the example source code from http://bit.ly/2cKcwkd, which
is optional and only for testing purposes.

$ wgeg http://dn.odroid.com/source_peripherals/ctinkeringkit/example-led.py

$ sudo python example-led.py

You can also use a python IDE called IDLE by running the following command:

$ sudo apt-get install idle

Application software
Run the IDLE utility and copy and paste the lines of code indicated below. When

done editing, save the Python script under the name of trace_messages.py in the di-
rectory /home/odroid/Documents/gmail_Python. If you don’t have IDLE installed,
you can copy and paste the script to any installed editor on your system and save it
under the same name.

I will discuss each line of code to explain what is going on inside this script:

#! python
import gmail, wiringpi2 as wpi, time # import the modules

#use ODROID-C2 pin numbers for LED and SERVO
LED_PIN=7
SERVO_PIN=12

wpi.wiringPiSetup()

#setup pin (LED) as an output
wpi.pinMode(LED_PIN,1)

#setup pin (SERVO) as an output too
wpi.pinMode(SERVO_PIN,1)

#setup Pulse Width Modulation(PWM) for Servo
wpi.softPwmCreate(SERVO_PIN,0,50)

#setup
g = gmail.login(‘youremail@gmail.com’, ‘yourpassword’)
unread_messages = g.inbox().mail(unread=True)
total_messages = 0

for message in unread_messages:
	 total_messages += 1

if total_messages > 0:
	 # there are unread emails, turn light on
	 wpi.digitalWrite(LED_PIN,1)
	 for i in range (15):
 	 wpi.softPwmWrite(SERVO_PIN,i)
 	 time.sleep(0.2)
else:
	 # there are no unread emails, turn light off
	 wpi.digitalWrite(LED_PIN,0)
	 for i in range (15,0,-1):
 	 wpi.softPwmWrite(SERVO_PIN,i)
 	 time.sleep(0.2)

This script is heavily modified, adapted and upgraded properly for the needs of
this project, using http://bit.ly/2cGSwBS as a reference. The basic idea remains the
same, however. Let us break up the code and see what is going on:

<import gmail, wiringpi2 as wpi, time> # import the modules

ODROID MAGAZINE	 8

http://bit.ly/2cKcwkd
http://bit.ly/2cGSwBS

MECHANICAL NOTIFIER

ODROID-C2 GPIO pin map

First, we import the modules. They are three (3) of them: gmail, wiringpi and
time. Modules in Python are small pieces of code written for a purpose, similar to
libraries in the Arduino IDE. “Wiringpi2” is the module for controlling the pins
on ODROID-C2, and that is why we installed this module previously. “Time”
is a module built into Python (system module) to provide timing functions. The
“gmail” module is written by Charlie Guo (http://bit.ly/2bY7Vhh), and it is
very important for our project to work. In order to import it, you have to install
it first, which is not that hard. Download the library from Github (http://bit.
ly/2cC01Jb) into a known directory and extract the contents there. Inside, there
should be a folder called “gmail”. Copy this whole folder into the directory /home/
odroid/Documents/gmail_python. The module is, in essence, a script that logs into
your Gmail account with your credentials and reads your incoming messages.

The next line sets up the wiring to refer to the WiringPi GPIO#, which is the
first column according to the Hardkernel’s GPIO pin map in Figure 4.

<wpi.wiringPiSetup()>

These two lines of code are very simple: we define the pins we are going to use.

<LED_PIN=7>

<SERVO_PIN=12>

Note that we are referring to pin19
providing the pulse width modulation
to the servo as pin12. Again, this is ac-
cording to the pin layout from Hard-
kernel: pin19 is referred to as WiringPi
GPIO#12 according Hardkernel’s ta-
ble already given above (http://bit.
ly/2aXAlmt). Fortunately, pin7 remains
as pin7 itself.

<wpi.pinMode(LED_PIN,1)>

We set pin7 driving the LED as an
output here:
<wpi.pinMode(SERVO_PIN,1)>

We are doing the same with the servo
too by declaring it as an output:
<wpi.softPwmCreate(SERVO_PIN,0,50)>

This is a very important function within the object of wpi inside the script,
which sets up the pulse width modulation for the servo. The arguments are the
SERVO_PIN (i.e pin12), the initial value (‘0’), and the pulse width modulation
range (‘50’). To make things simple, we keep the pulse high for 5ms made of 50
steps. Of course, you can experiment with other values when you are calibrating
your servo. The code represents my values after some experimentation with cali-
brating the servo with the correct position of the flag.

ODROID MAGAZINE	 9

http://bit.ly/2bY7Vhh
http://bit.ly/2cC01Jb
http://bit.ly/2cC01Jb
http://bit.ly/2aXAlmt
http://bit.ly/2aXAlmt

MECHANICAL NOTIFIER

<g = gmail.login(‘youremail@gmail.com’, ‘yourpassword’)>

We create the object “g” and call the login method based on the gmail module
imported previously. Substitute your email and password with your real gmail ac-
count and password, leaving the quotes in place.
<unread_messages = g.inbox().mail(unread=True)>

We retrieve all unread messages and store them under the variable “unread_
messages”. Notice how “unread=True” is passed as a parameter. You can change
this to retrieve messages based on different parameters, such as sender or subject.

<total_messages = 0>

<for message in unread_messages:

	 total_messages += 1>

We iterate through unread messages and we increment the variable “total_mes-
sages” by one if necessary:

<if total_messages > 0:
	 # there are unread emails, turn light on
	 wpi.digitalWrite(LED_PIN,1)
	 for i in range (15):
 	 wpi.softPwmWrite(SERVO_PIN,i)
 	 time.sleep(0.2)
else:
	 # there are no unread emails, turn light off
	 wpi.digitalWrite(LED_PIN,0)
	 for i in range (15,0,-1):
 	 wpi.softPwmWrite(SERVO_PIN,i)
 	 time.sleep(0.2)>

This is a very simple conditional check. If the number of the variable “to-
tal_messages” is greater than zero, then we do two things. First, we turn the LED
on with the following statement:
<wpi.digitalWrite(LED_PIN,1)>

Second, we start the servo, which raises the flag by changing the duty cycle:
<wpi.softPwmWrite(SERVO_PIN,i)>

Otherwise, if there are no unread messages, we turn the LED off and bring the
flag down. The flag gets its horizontal position by changing the duty cycle of pulse
as we count now counterclockwise within the same range by deducting -1 in each
iteration. Please note the following loop:
<for i in range {15,0,-1):>

Run the script
Now it is time to run our script. Open a terminal (from the GUI go to Appli-

cations->System Tools->Mate Terminal) and type the following:
$ sudo python /home/odroid/Documents/\

gmail_python/trace_messages.py

Then watch what happens. If there are any incoming messages, the flag should
be raised and our LED should be set to on. If so, we are successful and our script is
working! If not, trace for any mistakes through your code. Next, we need to take a

ODROID MAGAZINE	 10

MECHANICAL NOTIFIER

further step to make it run automatically for given intervals of time, such as every 5
minutes. For this task, we will use the cron utility. What is cron? It defines actu-
ally jobs that are used to schedule tasks and scripts, such as deftags, backups and
alarms. For more information about cron, please refer to http://bit.ly/2bTmNaN.
In order to activate cron, we must execute the command crontab which gives us a
list of scheduled tasks:
$ crontab -e <Enter>

It will probably be empty. Then, choose any text editor and add the following
line of code at the end of the scheduled tasks list:
*/5 * * * * sudo python /home/odroid/Documents/gmail_python/

\trace_incomings.py

The five “stars” (“* * * * *”) specify how often you want the task to be run. The first
star controls the minutes, that is why I put this ‘/5’ after it, since I want this scheduled
task to run every five minutes. The second star controls the hours, the third specifies
the day of month, the fourth indicates the month and the fifth represents the day of
the week. Those four were intentionally left blank without any ‘/numbers’ besides the
stars. You can experiment with other options as well. At the end of the scheduled task,
there is the command itself we want to be run automatically:
$ sudo python /home/odroid/Documents/gmail_python/trace_incomings.py

This command runs our script and points to the path where it is located, which
is, in this case, /home/odroid/Documents/gmail_python.

Then, save and close the editor. Now, wait and watch as the application does
its magic. Send any message to your gmail account for a test if you do not have
any unread ones and see your flag go up. The flag with “You’ve Got Mail!” should
raise at a time perfectly matching with your LED lighting up. Congratulations,
your Gmail Mechanical Notifier is now working!

Final notes
You should keep in mind that any Python code in IDLE must be executed as

root user, otherwise your code will not work. A simple approach it is just to create a
shortcut of IDLE on your desktop after installation and then edit this shortcut with:

$ cd ~/Desktop

$ sudo nano idle.desktop

and then amend the line “Exec=/usr/bin/idle” to read “Exec=/usr/bin/gksu -u
root idle”, then save the file.

I hope you enjoyed this project as much as I did when I was developing and
writing it. The Gmail Mechanical Notifier is the second one of a series of three
projects that I wrote about for ODROID Magazine. My next IoT project uses an
ODROID-C2 to observe and control the fermentation of wine bottles in a cellar.
In particular, the ODROID-C2 observes and controls the air-conditioning setup
by measuring the temperature and humidity of the fermentation environment in
the cellar. It notifies the user of any diversions from its acceptable values through
some actuators. Any anomalies will update the user’s Twitter stream, giving the
opportunity for further product analysis. As I always say, “with ODROIDs, the
sky’s the limit!”

ODROID MAGAZINE	 11

http://bit.ly/2bTmNaN

compressed mode) with lower frames per second, or in MJPEG
(compressed mode). High-end cameras can also output H264
video that is encoded directly inside the camera. This tutorial
assumes you have a MJPEG-compatible camera available, but
would like to view H264 streams from your system.

The v4l2-ctl utility also allows you to list and change some
of the camera’s parameters, such as the brightness, contrast,
or gamma, which is useful if you don’t have optimal lighting
conditions. You can list these parameters with the following
command:

$ v4l2-ctl --list-ctrls

If your camera doesn’t expose a /dev/video0 pseudo-file, but

There have been some articles in the past year detail-
ing how to set up your ODROID with a webcam
to perform all sorts of interesting tasks, from detect-

ing fires (http://bit.ly/2cviz9K) to augmenting reality
(http://bit.ly/2cV74eA), and even enforcing home security
(http://bit.ly/2dsqnen). For me, all I wanted was a web-
cam that worked over the Internet. A typical off-the-shelf
IP webcam allows you to view the camera remotely in real
time with sound through the Real Time Stream Protocol
(RTSP), and usually has support for other features, such as
grabbing a still image or controlling any pan or tilt function-
ality. This is often utilized to support robust home moni-
toring solutions, such as with a remote DVR to store your
recordings, or to allow remote access on-demand. Android
has plenty of apps that manage all of these needs for you,
but we’ll focus on Linux instead, because you might want
to use your ODROID for other Linux-based tasks as well.
By the end of this article, you will learn how to grab im-
ages from your webcam over the web, view real time streams
with sound, and record your stream.

Setup the camera
Most modern cameras are supported under Linux with the

generic “uvc” driver. The driver exposes several new devices to
your Linux machine when a webcam is plugged in. For exam-
ple, you may see a /dev/video0 Video4Linux interface, a new
input device in ALSA, and maybe a button that acts like a HID
keyboard. By installing the v4l-utils package, you can list the
supported modes of your camera. An example listing for Hard-
Kernel’s 720p webcam is at http://pastebin.com/L1VwZZFs.

$ sudo apt-get install v4l-utils

$ v4l2-ctl --list-formats-ext

You may notice that most cameras can output in YUV (un-

Transforming
Your ODROID
Into an IP Webcam
by Adrian Popa

ODROID IP WEBCAM

Making an IP webcam work with your ODROID is a breeze

ODROID MAGAZINE	 12

http://bit.ly/2cviz9K
http://bit.ly/2cV74eA
http://bit.ly/2dsqnen
http://pastebin.com/L1VwZZFs

$ sudo /usr/local/bin/mjpg_streamer -i ‘input_uvc.

so -r 1280x720 -m 50000 -n -f 25 -d /dev/video0’ -o

‘output_http.so -p 8090 -w /usr/local/share/mjpg-

streamer/www/ -c odroid:odroidpass’

This command is complex, so let’s explain what all the
switches do. “-i” specifies input plugin, which is input_uvc.so
(grabbing from a UVC camera). Next comes the camera’s de-
sired resolution, and “-m” specifies the minimum size of the in-
put. I’ve set this to 50kB, so mjpg-streamer will drop any jpeg
frames smaller than that (720p frames are around 120kB in
size). This is a good thing, because sometimes the camera starts
outputting incomplete frames, which are not useful images.
This however also has the side effect of not capturing anything
in low light conditions, as the frames are mostly dark and the
jpeg compression reduces them to under 50kB. You will need
to tune this parameter according to your input resolution.

The “-n” parameter disables dynamic controls in the UVC
driver, while “-f ” specifies the input framerate. “-d” points
to the video device (/dev/video0 by default). On the output
side of the equation, we use output_http.so module on port
“-p” 8090 and serving HTTP files from the directory pointed
to by “-w”. You can optionally add password protection with
the “-c” parameter and specifying the username:password com-
bination. There is detailed usage information at http://bit.
ly/2dbB97p and http://bit.ly/2dbALWx.

Once you successfully start mjpg_streamer as an HTTP serv-
er, you will be able to access it with a browser at http://<your-
odroid-ip>:8090/. You will be asked for your user/password
combination and be presented with the demo page, as shown
in Figure 1. You can, of course, create your own page, but the
demo page gives you all the necessary information to access the
camera.

you can grab images with a custom API, you can use v4l2loop-
back (http://bit.ly/2cxa6rc) to feed your data to a virtual /
dev/videoX device so that you can read it with standard tools.

Getting still images
Now that the camera is up and running, the first task is to

grab images from it, whether to be saved on the local disk, or to
be viewed remotely. Even if the task seems simple and there are
several tools to help you do it, the details are important. Tools
like uvccapture or streamer can do the job, but I found that in
practice both suffer from the following problems:

Grabbing a picture initializes the camera and it can take
a variable amount of time to complete, sometimes up to 30
seconds.

Pictures from these tools are usually dark because the cam-
era hasn’t had enough time to balance the light level. A stream-
er can compensate this by “recording” for a specified time, such
as 1 second, before snapping the picture.

Sometimes the camera may return incomplete frames, such
as where only the top part is visible.

Also, if you are using the camera for something else, like
live streaming or motion detection, the tools can’t connect to /
dev/video0 to grab still images while recording, so you may also
have a need for multiplex access to the camera.

The best tool for the job needs to have exclusive access to
the video device while allowing other tools to grab images and
video at the same time. Also, it needs to keep the camera ac-
tive while taking images so that it compensates for darkness.
For me, this miraculous tool was mjpg-streamer (http://bit.
ly/2d2qSvQ). To install it under /usr/local, follow these steps:

$ git clone https://github.com/\

jacksonliam/mjpg-streamer.git

$ cd mjpg-streamer/\

mjpg-streamer-experimental

$ sudo apt-get install \

cmake libjpeg62-dev

$ make

$ sudo make install

It’s best to test mjpg-streamer before enabling it at startup.
The program has a configurable number of inputs (cameras)
and several output settings. It can run as a HTTP server, out-
put to a file on your local disk, or output to a UDP/RTSP
streams. In my tests, the RTSP function was not reliable and
did not work with any RTSP clients, which is likely as the RTSP
protocol does not support MJPEG data streaming in standard
implementations. In this tutorial, we will use it as a HTTP
server and use other processes to read from mjpg-streamer.

To start mjpg-streamer as a web server with authentication
and read from the first camera, run the following command:

ODROID IP WEBCAM

MJPEG Streamer web interface featuring some action figures

ODROID MAGAZINE	 13

http://bit.ly/2dbB97p
http://bit.ly/2dbB97p
http://bit.ly/2dbALWx
http://bit.ly/2cxa6rc
http://bit.ly/2d2qSvQ
http://bit.ly/2d2qSvQ

Getting videos
Motion JPEG is widely supported in all browsers, so that’s

a good thing, but it doesn’t support sound, and compression is
rather poor. The bit rate of 25FPS on a 720p MJPEG stream is
around 13Mbps, which may be high for typical Internet usage.
In order to get videos with sound, we’ll need to multiplex the
MJPEG stream with a sound stream from the camera’s micro-
phone into a supported media format.

Since we know how to get the video stream, let’s concen-
trate on the microphone. You can list the current devices sup-
ported by ALSA in your system with the “arecord -L” com-
mand. For the ODROID webcam, you should see several
inputs relating to a USB 2.0 camera with varying capabilities,
as shown in Figure 3. We will need the name in order to con-
figure it in ffmpeg later on (in our case we’ll use the last one
- plughw:CARD=Camera,DEV=0).

$ arecord -L

Before we start record-
ing, we need to check
that the microphone
is unmuted and is
at an acceptable
level. I really like
the microphone on
Hardkernel’s 720p
webcam, since it has
adaptive gain so that
I can hear whispers
in a room followed
by kids shouting, all
without going deaf in
the process. To tune
the volume we will use
alsamixer. First, press
F6 to select the sound card and
use F4 to go to the Capture tab. Use your arrow keys to
adjust the audio level (I use it at maximum).

You can grab a still image from your ODROID using the
following command:

$ sudo apt-get install curl

$ curl -s -f -m 5 http://odroid:odroidpass@odroid-

ip:8090/\

?action=snapshot > /tmp/snapshot.jpeg

You can use this together with crond to take pictures at a set
interval of time. You can also use the timestamp as a filename
or use a tool like montage to add the time as a watermark on
top of the image. Here is a small script that snaps pictures in
a specific directory of your ODROID’s local disk and adds the
date and time: http://bit.ly/2d2fstx. Additionally, you can
use ffmpeg in a script like this to combine all these pictures in a
video for easier later viewing: http://bit.ly/2cOzXqY.

To get an MJPEG video stream from the camera, which is
essentially a sequence of JPEG images, you can run the follow-
ing command:

$ vlc http://odroid:odroidpass@odroid-ip:8090/\

?action=stream

If all is well, and you are getting an image, it’s time to add a
systemd startup script for mjpeg_streamer. Create a file called
/etc/systemd/system/mjpg_streamer.service with the contents
downloaded from http://bit.ly/2dbCPxO. To activate the ser-
vice, type the following commands:

$ sudo systemctl enable mjpg_streamer.service

$ sudo systemctl start mjpg_streamer.service

To check that the service is running, you can query systemd:

$ sudo systemctl status mjpeg_streamer.service

ODROID IP WEBCAM

Sample snapshot with the timestamp superimposed

A listing of audio devices

Alsa mixer showing the audio level

ODROID MAGAZINE	 14

http://bit.ly/2d2fstx
http://bit.ly/2cOzXqY
http://bit.ly/2dbCPxO

We can now build our ffmpeg query that grabs a video
stream from MJPEG Streamer, adds audio from ALSA, and
produces a file on disk of that combined stream:

$ sudo apt-get install ffmpeg

$ ffmpeg -framerate 5 -f mjpeg -i ‘http://odroid:odro

idpass@127.0.0.1:8090/?action=stream’ \

-f alsa -i plughw:CARD=Camera,DEV=0 -acodec \

libmp3lame -c:v libx264 -preset ultrafast \

-r 5 -pix_fmt yuv420p -b:v 1500k \

-async 1 myvideo.mp4

The command above specifies that the input frame rate
should be 5 FPS and that the input is the mjpeg stream from
the address above. The “-f ” parameter specifies that you should
use ALSA for audio from the following device listed. Audio
should be encoded with mp3lame and video with h264 using
the ultrafast preset and an output frame rate of 5 FPS. The
video bandwidth is limited to 1500 kbps, otherwise ffmpeg
starts calculating what’s best and you can’t really do real-time
encoding. The async option tries to synchronize video and au-
dio, but drifts often occur anyway. Finally, the last parameter
is the output filename that we want to write to.

With an ODROID-C2 you can (almost) do software en-
coding up to 10 FPS at 720p in real-time, but audio gets gar-
bled, and your safest bet is to keep the framerate low. I have
compiled an optimized version of ffmpeg for the C2 using the
“-march=armv8-a+crypto+crc+fp+simd -mtune=cortex-a53”
flag, but there was no noticeable change in encoding perfor-
mance with this optimized version. Depending on your needs,
this may or may not be acceptable. If you want a high frame
rate, you need to reduce the resolution or switch to a XU4
where work has been done to support hardware encoding in
the mainline kernel. You can read more about this at http://
bit.ly/2cxbMkK.

My best results were with mjpg_streamer set to 640x480
and with ffmpeg recording at 10fps and with a video band-
width of 1Mbps. Curiously, going lower than this results in
poorer throughput at around 6 FPS. In case you hear choppy
sound in your recordings, it means that ffmpeg can’t keep up
with the imposed frame rate. As far as I’ve seen, if you try to
record to a higher framerate than what ffmpeg can do in real
time, you will get choppy audio. Worst of all, the encoding
performance depends on system load, so on higher loads you’ll
get a lower FPS in real time. To see a few recipes that I have
tried, and also to see how to record audio only, consult this
cheat sheet at http://bit.ly/2cvjBlO.

I also redid the tests after Hardkernel pushed their new
overclock boot.ini settings with the C2 running at 1.75GHz
and 4 cores. Using this, I was able to get stable sound at 720p
with 8 FPS (instead of 5), and 15 FPS with a resolution of

ODROID IP WEBCAM

640x480, which is nice. I wasn’t able to test performance at
higher frequencies with less cores due to too much instability,
but I expect things to improve over time. Also, if you increase
the RAM frequency to 1104 MHz, you can expect to gain 1
to 2 FPS.

If you want to bypass mjpg_streamer completely, you can
also read directly from /dev/video0:

$ ffmpeg -r 5 -f v4l2 -video_size 640x480 \

-i /dev/video0 -f alsa \

-i plughw:CARD=Camera,DEV=0 -acodec \

libmp3lame -c:v libx264 -preset ultrafast \

-r 5 -pix_fmt yuv420p -b:v 1000k \

-async 1 myvideo.mp4

In fact, ODROID Forum contributor @crashoverride just
recently released a library and a test program that allows you
to do hardware encoding of H.264 on the C2 at full FPS, but
it needs raw access to your camera, so mjpg_streamer must be
disabled. Work is being done to further improve this method,
so make sure to check out its support thread for updates at
http://bit.ly/2dcQDJn, as updates can happen quickly.

Streaming RTSP on demand
The main use of an IP camera is to be able to view the video

stream on demand. Ideally, it should be viewable by multiple
concurrent users at the same time. In order to do this, we will
use ffserver to create a RTSP stream that plays on demand.

The Real Time Streaming Protocol (RTSP) is a protocol
similar to SIP that handles signalling and media transport be-
tween a client and a server. Usually, signalling is done on TCP
port 554 and the data streams over UDP with the client and
server negotiating a suitable port. However NAT and firewall
environments sometimes interfere with this negotiation, so
there is also a way to transport the data over TCP interleaved
with control traffic. This transport method will be used for
our tests.

The ffserver application provides a way of serving RTSP cli-
ent requests based on ffmpeg video feeds. It is part of the ffm-
peg package, so you already have it installed if you’ve followed
the tutorial up to this point. To start the server, you’ll need a
suitable configuration and a systemd startup script. The con-
figuration needs to be saved to /etc/ffserver.conf and you can
get one from http://bit.ly/2cYWPcq.

If you browse through the configuration, it sets up a listener
on RTSP port 554, defines a feed called mjpg-streamer.ffm and
ties it to an output stream called live.h264.sdp. The ffserver
application allows you to set up different output formats, but
for this example it will pass through the input stream, which
will be already h264.

To start ffserver at startup, you will need to add the follow-

ODROID MAGAZINE	 15

http://bit.ly/2cxbMkK
http://bit.ly/2cxbMkK
http://bit.ly/2cvjBlO
http://bit.ly/2dcQDJn
http://bit.ly/2cYWPcq

ing systemd service to the file /etc/systemd/system/ffserver.
service:

https://github.com/mad-ady/odroid-webcam-scripts/

blob/master/ffserver.service

To enable it and see its status do:

$ sudo systemctl enable ffserver

$ sudo systemctl start ffserver

$ sudo systemctl status ffserver

At this point, you have an RTSP server listening for re-
quests, but no video is being processed. To start a video
feed, you will need to run ffmpeg like this:

$ /usr/bin/ffmpeg -loglevel 8 \

-r 5 -f mjpeg -i ‘http://odroid:odroidpass@127.0.0

.1:8090/?action=stream’ \

-f alsa -i plughw:CARD=Camera,DEV=0 \

-acodec libmp3lame -c:v libx264 \

-preset ultrafast -r 5 \

-pix_fmt yuv420p -b:v 1500k \

-async 1 -x264-params keyint=30:no-scenecut=1 \

-vf “drawtext=fontfile=/usr/share/fonts/truetype/

dejavu/DejaVuSans-Bold.ttf: text=’Webcam feed

%{localtime\\:%F %T}’: fontcolor=white@0.8: x=7:

y=5” \

-override_ffserver http://localhost:8099/mjpg-

streamer.ffm

Before you panic at the complexity of this command,
note that it’s similar to the one you’ve seen before with the
simple addition that we add an overlay text in the top left
corner with the current date and time, just like the “pro-
fessional” IP webcams! The ffmpeg application writes the
output to ffserver, specifying the feed name.

You should now be able to connect with a RTSP viewer
and enjoy your video feed. If you’re testing from your An-
droid smartphone, you can try RTSP Viewer, available at
http://bit.ly/2cvl0J8:

$ vlc rtsp://odroid-ip:554/live.h264.sdp

To make things more permanent, you can add the
“https://github.com/mad-ady/odroid-webcam-scripts/
blob/master/ffmpeg.service” systemd ffmpeg service file
into /etc/systemd/system/ffmpeg.service. To enable it and
see its status, type the following commands:

$ sudo systemctl enable ffmpeg

$ sudo systemctl start ffmpeg

$ sudo systemctl status ffmpeg

The XU4 with mainline the kernel can already do hard-
ware encoding, if you have one around, so if your cameras are
connected to other hardware like C2, you can run ffserver on
the XU4 and read the MJPEG stream from the C2 over the
network (hopefully wired), get mp3 audio from an ffserver
running on the C2, and transcode video on the XU4 before
presenting it to the viewer. When my XU4 is operational, I
plan to offload transcoding to it and will post the changes on
the support thread in order to improve support for multiple
cameras/streams.

Improve idle performance

The video feeds are expected to be up at all times, which
means ffmpeg must be transcoding even if there is no viewer
connected. This may be fine if you expect to have a lot of
viewers connected simultaneously, but if you intend to con-
nect rarely (e.g., 5 minutes/day), it’s not worth it to have the
stream transcode in the background when not being used. It
would be best if we had a system that could trigger the start
of the video stream when a viewer connects and could trigger
the stop of the stream when all viewers disconnect. I wrote the
ffserver-trigger script just for this scenario.

The script runs in the background and continuously runs
a tail -f command on /var/log/syslog. It will pick up messages
from ffserver such as “PLAY live.h264.sdp”, check if the stream
is already running, and start it if not. It will also look for stop
messages such as “ RTP/TCP” and stop the stream if necessary.
It logs its actions under syslog as well, for added convenience.
Note that this trigger is customized for a single stream and fol-
lows the naming convention used in the article. It might need
tweaking if you want to use it for other setups.

To install ffserver-trigger, type the following commands:

ODROID IP WEBCAM

RTSP streaming with sound

ODROID MAGAZINE	 16

https://github.com/mad-ady/odroid-webcam-scripts/blob/master/ffserver.service
https://github.com/mad-ady/odroid-webcam-scripts/blob/master/ffserver.service
http://bit.ly/2cvl0J8
https://github.com/mad-ady/odroid-webcam-scripts/blob/master/ffmpeg.service
https://github.com/mad-ady/odroid-webcam-scripts/blob/master/ffmpeg.service

$ sudo apt-get install libfile-tail-perl

$ sudo perl -MCPAN -e ‘install Linux::Proc::Net::TCP’

$ sudo wget -O /usr/local/bin/ffserver-trigger.pl \

https://raw.githubusercontent.com/mad-ady/\

ffserver-trigger/master/ffserver-trigger.pl

$ sudo chmod a+x /usr/local/bin/ffserver-trigger.pl

$ sudo wget -O /etc/systemd/system/ffserver-trigger.

service \

https://raw.githubusercontent.com/mad-ady/\

ffserver-trigger/master/ffserver-trigger.service

$ sudo systemctl enable ffserver-trigger

$ sudo systemctl start ffserver-trigger

$ sudo systemctl status ffserver-trigger

Since you’re using the ffserver-trigger now, you should dis-
able the ffmpeg service so that it doesn’t start automatically on
boot. Instead, it will be started by ffserver-trigger when needed.

$ sudo systemctl disable ffmpeg

Figure 6 shows the entire workflow.

If you want to be able to also record your stream to a file, you can
connect to it as a regular RTSP viewer and dump it to a file without
transcoding. This is advantageous, since you can do it even while
other clients are connected without interrupting their experience:

$ ffmpeg -i rtsp://127.0.0.1:554/live.h264.sdp \

 -acodec copy -vcodec copy rtsp-recording.mp4

In terms of video processing delays, mjpg_streamer adds
about a 1 second delay, while ffmpeg + ffserver will add be-
tween 2-3 extra seconds. At those speeds, your experience will
not be real-time, and not suitable for remote controlling a ro-
bot, but should be good enough for remote viewing.

Troubleshooting Tips
Question: I’m unable to get images from mjpg_streamer/ffm-
peg seems stuck.
Answer: Check the value of -m parameter, and lower it to fit
your needs.

Question: How do I fix my audio being out of sync of choppy?
Answer: Try 640x480 @ 10fps, or reduce the frame rate in
ffmpeg.service.

Question: Why does stopping a RTSP stream stops all con-
nected clients?
Answer: Sometimes ffserver will crash with a segfault when a
client stops. It gets restarted automatically by systemd, but
will disconnect all clients.

Question: Pressing Play as the first connected client does
not start the RTSP stream when using ffserver-trigger, why
is that?
Answer: This is a known issue. The RTSP stream will timeout
in about 10s before ffserver manages to send data back to
the client. Press Play again after the timeout. If a client con-
nects when a stream is active, this issue doesn’t happen. The
trigger script has a 20 second cooldown period in which it
will ignore stop requests after a stream start to mitigate this.

Question: Sometimes connecting to a stream doesn’t work,
and ffmpeg seems stuck. How do I fix this?
Answer: The cause is mjpg_streamer. It sometimes gets
stuck and needs to be restarted. There are two lines you can
uncomment in ffserver-trigger.pl to restart it automatically
when ffmpeg is restarted to avoid this.

Question: But wait, an off-the-shelf webcam has pan and tilt
support. How do I add those to my camera?
Answer: You can add them with some motors and PWM pins
or an Arduino (http://bit.ly/2diWcKh).

If you run into other problems, or if you find better ways to
achieve this, feel free to let me know on the support thread for
this guide at http://bit.ly/2d2j6DH.

ODROID IP WEBCAM

Our streaming pipeline

ODROID MAGAZINE	 17

http://bit.ly/2diWcKh
http://bit.ly/2d2j6DH

ODROID-XU4
Cooling Tests
DISCOVER THE BEST COOLING
FOR YOUR NEEDS
by Bo Lechnowsky

Passive Shapedmedia Aluminum Enclosure
Effective clock speed under load: 1.56GHz

Passive Northbridge Heatsink (Blue Zalman) ventilated by 120mm case fan
Effective clock speed under load: 1.67GHz

I ran several temperature tests using an ODROID-XU4
with different types of cooling systems. The goal was to
find the most effective way to cool the device while under

heavy load. In the graphs below, the temperature is indicated
by a blue line, and the speed of the XU4 is marked in orange.
The device will throttle its speed based on temperature, and the
best situation is where the temperature remains under 95 de-
grees Celsius indefinitely which minimizes throttling, keeping
the effective clock speed as close to 2 GHz as possible. Each
test ran for over approximately 5-6 minutes, which is indicated
on the X axis, and the temperature tends to remain below 100
degrees Celsius, which is indicated on the Y axis.

ODROID-XU4 COOLING

XU4 Default Active Cooler
Effective clock speed under load: 1.32GHz

Passive Northbridge Heatsink (Blue Zalman)
Effective clock speed under load: 1.35GHz

Active Northbridge Heatsink (Gold) ventilated by 40mm Noctua 5VDC fan
Effective clock speed under load: 1.78GHz

ODROID MAGAZINE	 18

The best way to cool the ODROID-XU4 is to use a thermal
compound in conjunction with a 40mm Noctua 5V DC fan
and an active Northbridge heatsink, which may be purchased
at http://bit.ly/2cBeTGm. It keeps the temperature below 93
degrees Celsius, and allows the device to run at 2.0GHz effec-
tively without throttling. The best passive cooling method was
the Shapedmedia case, available from Ameridroid at http://
bit.ly/2d4YCMH, which kept the ODROID-XU4 at around 95
degrees Celsius. For more details, visit http://bit.ly/2fR7pDb.

ODROID-XU4 COOLING ANDROID GAMING

Active Northbridge Heatsink (Gold) with thermal compound
ventilated by 40mm Noctua 5VDC fan @ 1.9GHz
Effective clock speed under load: 1.9GHz

Passive Northbridge Heatsink (Gold) ventilated by 120mm case fan
Effective clock speed under load: 1.79GHz

Ultimate
briefcase
get ready to rumble In a
frantic survival Game
by Bruno Doiche

Well, it is a typical day, you
are walking around with
your briefcase, and by a

little mistake you slip on a banana
peel, escaping from the first of many,
many, maaaany bombs that are be-
ing thrown towards you!

What happened? Will it ever end?
Is there a reason for this violence against your person? Dodge the
bombs, get your power ups, unlock items, recruit other characters
from a really endearing ensembl,e and get ready for a super enter-
taining game. If you are good enough, you may very well discover
that there is more to this story then meets the eye!

https://play.google.com/store/apps/details?id=com.

nitrome.ultimatebriefcasew

Who among us ever took the time to survive an endless bombing?

You can use items to survive longer to see more of the game story

Active Northbridge Heatsink (Gold) with thermal compound
ventilated by 40mm Noctua 5VDC fan @ 2.0GHz
Effective clock speed under load: 2.0GHz

ODROID MAGAZINE	 19

http://bit.ly/2cBeTGm
http://bit.ly/2d4YCMH
http://bit.ly/2d4YCMH
http://bit.ly/2fR7pDb
https://play.google.com/store/apps/details?id=com.nitrome.ultimatebriefcasew
https://play.google.com/store/apps/details?id=com.nitrome.ultimatebriefcasew

Choosing the
framework

NodeJS was the first framework that
we tested. It seemed promising, but
at the time of evaluations, was not the
most stable or well-supported platform.
The biggest issue was connecting to a
database using their experimental data-
base module. After trial and error with
various frameworks, we settled for a pure
Python solution, as we had staff experi-
enced in advanced Python techniques
and use of its vast array of special pur-
pose modules.

Selecting the
hardware

After a very brief experience using
current industrial grade single board
computers (SBCs), it was immediately
obvious that they weren’t suitable. Most
use out-dated Intel Atoms in large noisy
enclosures. This sent us on the path of
today’s competitive credit sized PC mar-
ket, and here are a few that we tried:

•	 Raspberry Pi 2 Model B
•	 Raspberry Pi 1 Model B
•	 ODROID-U3
•	 ODROID-C1
•	 ODROID-XU4

Each board was extensively tested
running our Python framework with

The field of Industrial Automa-
tion is not known to adopt main-
stream technologies at a fast pace.

This is partly due to the large monopoly
held by the three main players: Sie-
mens, Allen Bradley and Wonderware.
For various reasons, they do not aggres-
sively adopt innovations, such as build-
ing native industrial web applications.
At Bubble Automation, we realized this
shortcoming. Most clients who wanted
remote monitoring capabilities of their
sites were stuck using inefficient propri-
etary add-ons. Some of these add-ons
required high license fees and mainte-
nance costs, or insecure TeamViewer/
VNC connections needing third party
tools to be installed on the client’s sys-
tems.

Project goals
We wanted to build a modern secure

native web application that required no
special browser or PC plugins. While
handling live data, the application was
required to work on any computing de-
vice, including, smartphones, tablets,
netbooks and desktops. The design
called for no dependency on unnecessary
platform specific applications. To ensure
high levels of security, the web server
hardware had to be on the customer’s
premise, be small enough to be installed
in a control panel, and be robust enough
to survive industrial conditions.

unrealistic loads. The board that stood
out was the ODROID-XU4 which was
clearly superior all around, as shown in
the benchmark results in Figures 1-4.

Industrial
Automation
Remotely Monitor Modbus Registers
using an ODROID-XU4
by Joel Duncan

INDUSTRIAL AUTOMATION

Figure 3 - Hdparm results are in mega-
bytes per second

Figure 2 - Whetstone results are an
index relative to a SPARCstation
20-61, rated at 10.0

Figure 1 - Dhrystone results are an
index relative to a SPARCstation
20-61, rated at 10.0

ODROID MAGAZINE	 20

ate a daemon that could read Modbus
registers over TCP/IP from the field, as
shown in Figure 5. This later grew to
a context-sensitive event-based system
that could translate field events into
alarms, live trending, historical graphs,
event logs and notification emails.

Providing this information to the cli-
ent proved to be a difficult task. Display-
ing real-time information on a web page
using pure HTML5 and no plugins, has
always been challenging. Using tech-
niques such as long-polling would only
lead to crashing the browser, as there was
just far too much information that need-
ed to be fed into the browser at relatively
high speed, at around 1-second scan in-
tervals.

We noticed that NodeJS was such a
good candidate for Real Time data so-
lutions, due its efficient integration with
Websockets, which is a technology pro-
viding full-duplex communication over
a TCP connection. Thankfully, we came
across a powerful PHP Library that pro-
vided this functionality. For this reason,
we could build all server-side compo-
nents in PHP using Twitter Bootstrap to
provide a simple interface with respon-
sive design at its foundation.

A LEMP stack (Linux, Nginx,

This board had far better CPU and net-
work performance, but most important-
ly, exhibited much higher I/O speeds
and bandwidth, which was critical for
our MySQL based database.

Architecture &
Software Design

The basic starting point was to cre-

INDUSTRIAL AUTOMATION

MySQL, & PHP) is used to provide a
robust base with speed, stability and reli-
ability for our PHP, HTML and Javas-
cript front-end. The main reasons for
using Nginx over Apache is its better
utilization of multicore processors as-
signing a worker per core and its better
security track-record over Apache.

Security
Due to the nature of our industry,

building our application to be secure
by design was critical. A lot of time was
spent creating a secure login not vulner-
able to SQL injection, session hijacking,
cross-site scripting and brute force at-
tacks. To top this off, we created a hard-
ened minimal Linux image to use on our
servers this is kept up to date with all of
the current security patches. We work
strictly on a non-control basis, which
means that in the unlikely event that
our software is compromised, there is no
way the intruder could damage the site.
Our software only monitors the state of
the field and does not affect the control
process.

For comments, questions and sug-
gestions, please visit the original post at
http://bit.ly/2cp6tzj.

Figure 4 - DD results are in megabytes
per second

Figure 5 - Application flowchart

Figure 6 - Front-end screenshot

ODROID MAGAZINE	 21

http://bit.ly/2cp6tzj

select the “SHIELD” category. Ensure
that the “Allow this PC to stream games
to SHIELD devices” box is checked.

If you want to add any custom games
that GeForce Experience didn’t auto-
matically find, you can add them to the
Games list under Preferences -> Shield.
You can actually add any program here,
even desktop programs.

Moonlight
installation

1. Install the ODROID-C2 Debian
Jessie image from http://bit.ly/2cj6V6F
and boot it.

2. Update the image with the follow-
ing command, which could take a while:

$ sudo apt-get update && \

 apt-get-upgrade && \

 apt-get dist-upgrade

NVIDIA’s GameStream technol-
ogy lets you stream games from
a GeForce-powered Windows

PC to another device. It only officially
supports NVIDIA’s own Android-based
SHIELD devices, but with a third-party
open-source GameStream client called
Moonlight, you can stream games to
your ODROID.

PC installation
First, you’ll need to set up NVIDIA

GameStream on your Windows PC,
and you’ll need to be using an NVIDIA
video card for this to work. If you don’t
have the GeForce Experience software
installed, you’ll need to download and
install it from NVIDIA at http://bit.
ly/1kIWAdz. Then, launch the “GeForce
Experience” app from your Start menu.
Click the “Preferences” tab at the top of
the GeForce Experience window and

3. Install Moonlight:

$ sudo apt-get install moonlight-

embedded

4. Install PulseAudio (newer version
of pulseaudio is reported to have less au-
dio delay):

$ apt-get install -t \

 jessie-backports pulseaudio

5. Reboot the computer, at which
point Moonlight should be working
both on H.264 and H.265.

6. If you also want to use Kodi, run
the following command and install both
Mate Desktop and Kodi:

$ sudo setup-odroid

9. If you also want to autostart Kodi,
you can go to the “Startup Applications”
section of the Control Center and add
Kodi.

10. To start Moonlight directly from
Kodi, you can install Luna from http://
bit.ly/2cWy3sD. If you are only using
Steam, you could create some automa-
tion by yourself. For example, you could
create a Steam streaming systemd unit
by creating a file at /etc/systemd/system/
steam.service with the following con-
tents:

NVIDIA Game Streaming
on the ODROID-C2
Play Modern Games ON Your ODROID
by @khaine

NVIDIA GAME STREAMING

Figure 1 - Setting up NVIDIA Game Streaming on the PC

ODROID MAGAZINE	 22

http://bit.ly/2cj6V6F%20
http://bit.ly/1kIWAdz
http://bit.ly/1kIWAdz
http://bit.ly/2cWy3sD
http://bit.ly/2cWy3sD

Then, add a Kodi shortcut to the Sys-
tem.Exec file at /home/odroid/steam.sh
that points to steam.sh script:

#!/bin/bash

sudo /usr/bin/nohup /bin/system-

ctl start steam &

Now you should have both Kodi and
Moonlight working with easy switch
between them. To connect to your PC,
the Moonlight app will give you a PIN.
Enter it in the “SHIELD is requesting
to connect” pop-up that appears on your
PC, and your devices will be paired.

If you don’t see the PIN request dia-
log, open the NVIDIA Control Panel
application on the Windows PC, click
the “Desktop” menu, and select “Show
Notification Tray Icon.” The next time
you attempt to pair your devices, the
PIN pop-up will appear. For whatever
reason, the PIN pop-up is tied to this
system tray icon, and it just won’t appear
if you haven’t enabled it.

For comments, questions or sug-
gestions, please visit the original post
at http://bit.ly/2cYgG74, or check out
the official documentation at http://bit.
ly/1skHFjN.

[Unit]

Description = Steam Streaming

After = systemd-user-sessions.

service network.target sound.

target

Conflicts = kodi.service

OnFailure=kodi.service

[Service]

User = odroid

Group = odroid

Type = simple

ExecStart = /usr/bin/moonlight

stream -app Steam -60fps -1080

STREAMING_MACHINE_IP

ExecStop = /usr/bin/moonlight

quit STREAMING_MACHINE_IP

ExecStopPost = /usr/bin/sudo /

bin/systemctl start kodi

NVIDIA GAME STREAMING

Figures 1 and 2 - Connecting to the
NVIDIA Game Stream using the
generated PIN

Figure 3 - Show Notification Tray Icon selection

ODROID Talk
Subreddit

 http://www.reddit.com/r/odroid

ODROID
Magazine

is on
Reddit!

ODROID MAGAZINE	 23

http://bit.ly/2cYgG74
http://bit.ly/1skHFjN
http://bit.ly/1skHFjN

able to build the newest version of UFO:
AI for ODROIDs. The game offers nice
3D graphics different languages and
resolutions and very good music. It is
similar to the original XCom game, but

The ODROID-C2 is a great gam-
ing device, and this month I’d
like to highlight some of my

game ports that are compatible with the
C2. I recently updated several of them
with new binaries and improvements.
I recommend using my Debian Jessie
64-bit image, which already has my re-
pository installed. If you are using a dif-
ferent Ubuntu or Debian distribution,
type the following commands to access
my software packages:

$ wget http://oph.mdrjr.net/mev-

eric/\

sources.lists/meveric-jessie-

main.list

$ wget -O- http://oph.mdrjr.net/

meveric/\

meveric.asc | apt-key add -

$ apt-get update

Unfortunately, this might not work
for all games and distributions, since
some dependencies are not yet available
on Ubuntu.

UFO: Alien Invasion
UFO: AI is a remake of the original

XCom series in a more modern way,
with much better graphics. Originally,
@ptitSeb ported it to the Pandora, and I
used his build to bring it to ODROID,
but by now many of his changes were
merged into the main project and I’m

in a modern style.
To download and install UFO: Alien

Invasion, type the following command:

$ sudo apt-get install ufoai-

odroid

SmokinGuns
SmokinGuns is a wild west shooting

game based on the ioQuake (Quake 3)
engine. It’s fun in multiplayer and offers
some nice game modes, such as defend-
ing a bank from bandits. It runs very
smoothly on the ODROID-C2 even
in high settings. You can check out a
gameplay video https://youtu.be/RGI-
YZf-BBfA.

Linux
Gaming
SOME GREAt GAMES
FOR THE ODROID-C2
by Tobias Schaaf

LINUX GAMING

Figures 1 - 3 - UFO: Alien Invasion

ODROID MAGAZINE	 24

https://youtu.be/RGIYZf-BBfA
https://youtu.be/RGIYZf-BBfA

date set in the level file.)
•	 Machine smoke is now visible when

machines are close to worn out.
•	 Right-clicking the timer is now

supported like in the original game
for moving to affected patients

•	 Numpad support - The num-
ber pad can now be used to move
around the map when numlock is
off, or to type numbers when num-
lock is on, without side effects.

•	 The MP3 folder can now be unset
from within the game. Previously
after setting an mp3 folder it could
only be removed by editing the
config file by hand.

•	 The interface now uses the proper
cursor for resizing rooms.

•	 Bins can now be placed in the hall-
ways.

To download and install Corsix TH,
type the following command:

$ apt-get install corsixth-odroid

YQuake 2
Yquake 2 is an open-source Quake

2 remake it even supports multi-player

To download and install
SmokinGuns, type the following com-
mand:

$ sudo apt-get install

smokinguns-odroid

CorsixTH
CorsixTH is a remake of the old

classic game Theme Hospital, similar to
OpenTTD. It is a very close rebuild to
the original version with some improve-
ments, like different resolutions. The
Game is still a work in progress, but is
far from being just an alpha version. You
can play the original game just fine with
lots of improvements, and it will get bet-
ter and better over time as new versions
are released. A gameplay video is avail-
able at https://youtu.be/rSN1p247J74.
You need the original files in order to
play the game. Version 0.60 was recent-
ly released, which added the following
features:

•	 User campaigns: it is now possible
to create a series of levels that play
together just like the original game.

•	 In game map editor: a new map
editor is available directly from the
game menu.

•	 Drug price impact: patients will
now react to the price you set for
treatments. If treatments cost too
much patients will opt to go home
instead and this can affect your
reputation.

•	 Variable spawn rate: the spawn
rate will now take into account
your hospital’s reputation (after a

LINUX GAMING

Figures 9 - 10 - YQuake 2

matches against other players. The game
runs in full speed in 1080p resolution,
and uses GLShim.

To download and install YQuake 2,
type the following command:

$ apt-get install yquake2-odroid

There is also a high resolution pack
available, which is shown in the screen-
shots. Happy fragging!

Figures 4 - 6 - SmokinGuns

Figures 7 - 8 - CorsixTH

ODROID MAGAZINE	 25

https://youtu.be/rSN1p247J74

Compiling Android
Lollipop for the
ODROID-C2
Using Linux Mint 18 or UBuntu 16.04
by Jörg Wolff

COMPILING ANDROID

for other programs such as Eclipse or
Android Studio. Both versions can co-
exist side-by-side, but before compil-
ing Android, the Java version must be
switched to OpenJDK7. This can be
done with these commands:

$ sudo update-alternatives \

 --config java

$ sudo update-alternatives \

 --config javac

$ sudo update-alternatives \

 --config javadoc

The console output from the previ-
ous commands should look like this :

 Auswahl Pfad

Priorität Status

 0 /usr/lib/jvm/

java-8-oracle/jre/bin/java

1082 automatischer Modus

* 1 /usr/lib/jvm/

java-7-openjdk-amd64/jre/bin/java

1071 manueller Modus

 2 /usr/lib/jvm/

java-8-openjdk-amd64/jre/bin/java

1081 manueller Modus

 3 /usr/lib/jvm/

This guide details how to compile
Android 5.1.1 Lollipop for the
ODROID-C2 on a computer

running either Linux Mint 18 or Ubun-
tu 16.04. The guide will build upon the
official Hardkernel instructions for com-
piling Android. Before compiling An-
droid Lollipop, there are a few software
packages and build dependencies that
must be set up. For Android Lollipop,
the Java Development kit (JDK) Open-
JDK7 is required. Since both Ubuntu
16.04 and Linux Mint 18 use Open-
JDK8, OpenJDK7 must be installed
from the Personal Package Archives
(PPA) sources. To install OpenJDK 7,
enter the following commands in a ter-
minal window:

$ sudo add-apt-repository \

 ppa:openjdk-r/ppa && sudo apt-

get update

$ sudo apt-get upgrade && \

 sudo apt-get dist-upgrade

$ sudo apt-get install adb fast-

boot openjdk-7-jdk

It is not necessary to remove the de-
fault version of OpenJDK 8 that comes
preinstalled. In fact, it is recommended
to leave it installed as it may be needed

java-8-oracle/jre/bin/java

1082 manueller Modus

For successful compilation of An-
droid, there are several required packages
that must be installed on the host com-
puter (the computer doing the compil-
ing). The packages can be installed with
the following apt-get command:

$ sudo apt-get install adb fast-

boot git\

 ccache automake lzop bison

gperf\

 build-essential zip curl zlib1g-

dev\

 zlib1g-dev:i386 g++-multilib

python-networkx\

 libxml2-utils bzip2 libbz2-dev

libbz2-1.0\

 libghc-bzlib-dev squashfs-tools

pngcrush\

 schedtool dpkg-dev liblz4-tool

make\

 optipng maven python-mako py-

thon3-mako\

 python python3 syslinux-utils\

 Google-android-build-tools-in-

staller

These are the preparations for your

ODROID MAGAZINE	 26

$ make update-api

$ make -j4 selfinstall

Now you can follow the build steps
from Hardkernel‘s wiki page:

$ export ARCH=arm64

$ export CROSS_COMPILE=aarch64-

none-elf-

$ export PATH=/opt/toolchains/\

gcc-linaro-aarch64-none-

elf-4.9-2014.09_linux/\

bin:$PATH

$ export PATH=/opt/toolchains/\

gcc-linaro-arm-none-ea-

bi-4.8-2014.04_linux/\

bin:$PATH

$ export JAVA_HOME=/usr/lib/jvm/

java-1.7.0-openjdk-amd64

$ export PATH=$JAVA_HOME/

bin:$PATH

$ source build/envsetup.sh

$ lunch odroidc2-eng-32

$ make -j4 selfinstall

If you have installed the toolchain
to another folder, as I normally do, you
will need to supply the correct path to
the toolchains. These steps should give
you a working version of Android that is
ready to be installed on an eMMC mod-
ule or SD card.

COMPILING ANDROID

a workaround on the xda-developers fo-
rums at http://bit.ly/2cCtfrp:

$ ln -sf /usr/bin/ld.gold /home/

(your account name)\

/(build source repository)/pre-

builts/gcc/linux-x86/host/\

(glibc version)/x86_64-linux/bin/

ld

Note that it needs to check the er-
ror messages, regarding which version
of x86_64-linux-glibc2 is used. On my
system, I was successful with the follow-
ing command, which creates a symlink
id:

$ ln -sf /usr/bin/ld.gold \

/home/joerg/odroid_c2/lollipop/\

prebuilts/gcc/linux-x86/host/\

x86_64-linux-glibc2.11-4.6/

x86_64-linux/bin/ld

Always make a backup first! Another
error that may occur is the following:

public_api.txt:20: error 5

out/target/common/obj/PACKAGING/

public_api.txt:20: error 5: Added

public field android.Manifest.per-

mission.BACKUP

The solution is to type the following
command:

host computer. On my system, I had
some build errors. If you have acciden-
tally started to compile with a wrong
JDK version, it is best to clean the git
repo, or to redownload the source and
start fresh. Since downloading can take
1-2 days, the cleaning option should be
tried first. To clean the source, run the
command from the top folder of the
source tree. Additionally, the “out” fold-
er should be removed:

$ repo forall -c \

 ‘git reset --hard ; git clean

-fdx’

$ rm -rf out

The next steps are well documented
on Hardkernel‘s wiki page at http://
bit.ly/2chF4Tu. When following these
steps, don‘t forget to install the following
toolchains, without which you will run
into build errors:

•	 g c c - l i n a r o - a r m - n o n e - e a -
bi-4.8-2014.04_linux

•	 g c c - l i n a ro - a a r c h 6 4 - n o n e -
elf-4.9-2014.09_linux

Repo sync failure
If you are dealing with old sources,

a repo sync might fail. If that happens,
then it is needed to force the sync:

$ repo sync --force-sync

And after cleaning and syncing, don‘t
forget to switch to the master branch:

$ repo start s905_5.1.1_master

--all

You may also encounter this recur-
ring error:

unsupported reloc 43

libnativehelper/JniInvocation.

cpp:165: error: unsupported reloc

43

After a lot of trial and error, I found

ODROID MAGAZINE	 27

http://bit.ly/2cCtfrp
http://bit.ly/2chF4Tu
http://bit.ly/2chF4Tu

earn more gold and more experience points. Using the gold,
you are able to buy new weapons, armour, and other items to
help your player increase his stats. Using the experience, you
will level-up throughout the game. Each time you level-up,
you will be shown 3 options of abilities that you can choose.
Thankfully, this game does not follow the “freemium” mind-
set of many other games, which slowly forces you to pay for
upgrade to beat the game. Instead, Reaper’s free version is set
up like a demo, where you are free to play until your character
reaches level 10. The full unlocked game can be purchased
in-game, after which there are no more addition in-game pur-
chases necessary.

Combat makes up most of the game, and you will spend a
lot of time fighting a variety of different characters in different

If you’re looking for a great looking fun action video game
for Android, Reaper is it! Reaper: Tale of a Pale Swordsman
is an action and role-playing video game available for free

from the Google Play store at http://bit.ly/1sIRjYd.

The game takes place in a land known as the “wilderness,”
where your character, the pale swordsman, has just awoken.
The “wilderness” is a magical land full wild tribes and imperial
guards, and various groups in-between. The pale swordsman
works as a type of mercenary by going on quests and adventures
for the different groups of the wilderness and his friend named
Old Grey Beard. Later in the game, a new enemy arises which
threatens not only the pale swordsman but the entire popula-
tion of the wilderness.

The gamer controls the swordsman and can choose the path
that the swordsman takes. The menu of the game is a large
map with various points of interest the gamer can move the
swordsman to. Once at a point, the gamer can interact with
various tribes and guards by selecting dialog options. The dia-
log options a nice way to help give the game a less rigid feel as
the gamer can choose: to accept or reject a quest, demand more
money, attack or defend a group, and many other options.

As the swordsman progresses through the game, he will

Android
Gaming
Reaper, Tale of a
Pale Swordsman
by @synportack24

REAPER

ODROID MAGAZINE	 28

http://bit.ly/1sIRjYd

Then, copy over /lib/modules and /
lib/firmware from Ubuntu to Gentoo.
Gentoo stage 3 has /lib and /lib64. We
also copy over the modules and firmware
directories into Gentoo’s /lib just in case:

$ cp -afv /lib/modules /opt/gen-

too/lib64/

$ cp -afv /lib/firmware /opt/gen-

too/lib64/

$ cp -afv /lib/modules /opt/gen-

too/lib/

$ cp -afv /lib/firmware /opt/gen-

too/lib/

Next, making sure that /opt/gentoo/
etc/portage/make.conf is setup prop-
erly according to the Gentoo handbook
available at http://bit.ly/1swpkQq. For
the ODROID-C2, I leave the CFLAG
untouched for now (CFLAGS=”-O2
-pipe”), because adding in -march and
-mtune seems to result in compile er-
rors for some packages. I tried setting
MAKEOPTS=”-j5”, but ran into low
memory issue and the process was killed.
However, using “-j3” instead resolves
it. Just use conservative settings in the
make.conf for now because it can always
be fine-tuned later. The following com-
mands will change root (chroot) into
Gentoo:

level locations. The game offers a great
range of unique opponents that you
will face. However, your best method
to attack them stays relatively the same,
which is to jump behind any land based
troops and attack, then move away.
With that in mind, there will be many
other things attacking you as well as in
level obstacles and enemy projectiles you
will need to avoid.

Overall, Reaper is very simple to just
pick up and play for a couple minutes or
sit down for a while and enjoy. Every-
thing about the game is very polished,
and the artwork and graphics are terrific.
I found all the levels and maps to be very
captivating and interesting. Everything
ran perfectly smooth on my ODROID-
XU4, even though I have it under-
clocked with a passive cooler. Addition-
ally, the game can be completely played
using a Xbox 360 controller, or with a
keyboard and mouse. I found the con-
troller to be much easier to play with,
and the game even showed all the get-
ting started dialogs with the proper xbox
controller buttons. I would strongly
recommend any gamer looking for a fun
action game to take a look at Reaper, as I
know they will surely enjoy it.

REAPER

Gentoo for
the ODROID-C2
Creating YOUR OWN
Custom Installation
by @rev0lt

GENTOO

Gentoo Linux is a free operating
system based on FreeBSD that
can be automatically optimized

and customized for just about any ap-
plication or need. I have successfully
gotten Gentoo’s experimental stage
3 for ARM64 to boot and run on the
ODROID-C2.

To begin, boot the C2 into any Linux
distribution, making sure to backup im-
portant files just in case anything goes
wrong. I used Ubuntu for the C2 since
it is officially supported by Hardkernel.

Preparation
Prepare the Gentoo root filesystem

by download the experimental Gentoo
stage 3 for ARM64 from gentoo.org
to a local directory in Ubuntu. In this
example, we use /opt/gentoo as a local
directory in Ubuntu and the latest stage
3 from date 3/24/2016, which you may
change if you wish.

$ mkdir /opt/gentoo && cd /opt/

gentoo	

$ wget http://distfiles.gentoo.

org/experimental/\

arm64/stage3-arm64-20160324.tar.

bz2

$ bzip2 -d stage3*

$ tar xvf stage3*

ODROID MAGAZINE	 29

http://bit.ly/1swpkQq
gentoo.org

$ ln -s net.lo net.eth0

$ rc-update add net.eth0 default

$ ln -s net.lo net.wlan0

$ rc-update add net.wlan0 default

$ rc-update add sshd default

$ emerge net-misc/dhcpcd sys-ker-

nel/linux-firmware ntp wpa_suppli-

cant # ntp is needed as C2 has no

persistent clock or else Gentoo

would boot to 1970

$ rc-update add ntpd default

$ wpa_passphrase MYSSID myssid-

passphrase > \

 /etc/wpa_supplicant/wpa_sup-

plicant.conf # insert your MYSSID

and myssidpassphrase accordingly

Note that to unmask some pack-
ages, you may want to use the com-
mand “emerge --autounmask-write”
and then run “dispatch-conf” for ease of
use. Then, exit chroot and unmount the
chroot pseudo-filesystems:

$ exit

$ umount -l /opt/gentoo/dev{/

shm,/pts,}

$ umount /opt/gentoo{/boot,/sys,/

proc,}

Create the
filesystem

Next, we need to create the filesystem
on the partition for Gentoo, and then
copy the Gentoo files prepared in the
above steps over to that filesystem. In
this example, I will be using partition 3
on my eMMC card for Gentoo:

$ mkfs.ext4 /dev/mmcblk0p3

$ mkdir /mnt/gentoo

$ mount /dev/mmcblk0p3 /mnt/gen-

too

Then, we copy over the files from /
opt/gentoo to /mnt/gentoo:

$ cp -afv /opt/gentoo/* /mnt/gen-

too/ 	

In this example, because the boot.

3 on my eMMC as the Gentoo root file-
system, I use the following command to
update the file to match the following

$ nano /etc/fstab

# <fs>		 <mountpoint>	

<type>		 <opts>		

			 <dump/pass>

/dev/mmcblk0p3	 /		

ext4		 errors=remount-

ro,noatime,nodiratime	0 1

tmpfs		 /

tmp		 tmpfs		

nodev,nosuid,mode=1777		

	 0 0

/dev/mmcblk0p1	 /boot		

vfat		 defaults,rw,owner,fl

ush,umask=000 	 0 0

If you are booting using a microSD
card, the device will also be identified
as mmcblk0 after booting, so the above
should still work, but you must change
the partition number accordingly. For
example, if you are booting Gentoo
from a microSD card with Gentoo on
partition 2, you would specify /dev/
mmcblk0p2 as mount point / in your
fstab (i.e., still use mmcblk0 but change
p3 to p2).

Setup network	
To configure the network drivers,

type the following command:

$ emerge --noreplace net-misc/

netifrc

To use DHCP on network interfaces
eth0 and wlan0 (if you have a USB wifi
device for example), edit /etc/conf.d/net
as follows and save it:

config_eth0=”dhcp”

config_wlan0=”dhcp”

Then, type the following commands:

$ cd /etc/init.d

$ cp -L /etc/resolv.conf /opt/

gentoo/etc/

$ mount -t proc proc /opt/gentoo/

proc

$ mount --rbind /sys /opt/gentoo/

sys

$ mount --make-rslave /opt/gen-

too/sys

$ mount --rbind /dev /opt/gentoo/

dev

$ mount --make-rslave /opt/gen-

too/dev

$ chroot /opt/gentoo /bin/bash

$ source /etc/profile	

$ export PS1=”(chroot) $PS1”

Configure Gentoo

$ passwd # set root password

$ useradd -m -G wheel -s /bin/

bash yourname #add user youname

$ passwd yourname #set user your-

name’s password

$ emerge --webrsync

$ emerge --sync

$ echo “UTC” > /etc/timezone

$ emerge --config sys-libs/time-

zone-data

$ nano /etc/locale.gen # remove

the relevant comment from the file

$ locale-gen				

	

$ eselect locale list

$ eselect locale set X	

#where X is the desired locale

$ env-update && source /etc/pro-

file && \

export PS1=”(chroot) $PS1”

Download the c2_init.sh script from
http://bit.ly/2cWAjQP and place it as
c2_init.start in the /etc/local.d directory.

$ chmod +x /etc/local.d/c2_init.

start

$ rc-update add local default

We need to specify the Gentoo file-
system device in /etc/fstab. In this ex-
ample, because I will be using partition

GENTOO

ODROID MAGAZINE	 30

http://bit.ly/2cWAjQP

root filesystem, then you would specify
mmcblk0p2 as your / in Gentoo’s filesys-
tem in Gentoo’s /etc/fstab before reboot-
ing into Gentoo.

To prepare the microSD (/dev/sda1
for example), you would use sd_fusing.
sh /dev/sda, and make sure the boot files
(boot.ini, Image, meson64_odroidc2.
dtb, uInitrd) from /media/boot/ in
Ubuntu are copied over to /dev/sda1 be-
fore rebooting. You may want to keep
your Ubuntu partition so that you can
boot back into it and update kernel and
/lib/modules /lib/firmware later. To do
this, simply edit boot.ini in Gentoo’s /
boot and change the root= variable back
to /dev/mmcblk0p2 (in my example)
and reboot. Once kernel and /lib are up-
dated in Ubuntu, you can copy them to
Gentoo partition and reboot back into
Gentoo by editing /media/boot/boot.ini
as detailed above. One convenient way
is to script this into both Gentoo and
Ubuntu, and have them reboot back and
forth periodically to update Ubuntu and
copy the /lib/firmware and /lib/modules
directories over to Gentoo, so that it is all
done automatically in the background at
night as you sleep.

In Gentoo, because we only started
out with stage 3, once you have tuned
your make.conf variables, you can then
type the following command to recom-
pile everything in world:

$ emerge -e world

Note that some packages may require
kernel sources at /usr/src, so download or

git clone the needed branch from http://
bit.ly/2cISS9s into a directory in /usr/
src named, for example, linux-c2-3.14,
and then sym link (or eselect) it to the
directory /usr/src/linux because emerge
expects it there by default.

X Window compiles and runs quite
nicely on C2 in Gentoo. If you wish to
install it, you can use the following com-
mand:

$ USE=”-llvm” emerge x11-base/

xorg-server

$ emerge openbox xterm # or

choose your favorite

$ nano /etc/X11/xinit/xinitrc #

remove the reference to twm and

replace it with exec openbox or

your favorite

$ startx

You may also want to consider ac-
tive cooling solutions for the C2 if you
compile software often. Looking at my
log files, with the included stock CPU
heatsink and without active cooling, the
C2 runs a bit too hot for my personal
liking when running big emerge jobs,
topping out at around 70 degrees Cel-
sius. You can find and keep track of the
temperature during big compilation jobs
by searching for temp in /sys and look-
ing at the relevant file. It may be a good
idea to keep it cool with a fan when you
compile or at least keep it at some safe
distance away from the back of the TV.
For questions, comments and sugges-
tions, please visit the original forum post
at http://bit.ly/2ctWugX or the Gentoo
main page at http://www.gentoo.org.

ini in Ubuntu’s boot partition is point-
ing to the Ubuntu partition in /dev/
mmcblk0p2 (mounted as /media/boot/
in Ubuntu), we must edit boot.ini to
point it to the Gentoo root partition in-
stead:

$ nano /media/boot/boot.ini

Change the root= variable to root=/
dev/mmcblk0p3 in this line. For ex-
ample:

setenv bootargs “root=/dev/

mmcblk0p3 rootwait ro ${condev}

no_console_suspend hdmimode=${m}

m_bpp=${m_bpp} vout=${vout}

fsck.repair=yes net.ifnames=0

elevator=noop

disablehpd=${hpd}”

Please make sure that the above line
(i.e., the one that starts with the words
setenv bootargs followed by the variables
enclosed by the quotation marks) stays
in one line

when you edit in nano. Web page
formatting may likely cause the line to
be displayed in multiple lines inadver-
tently.

Finally, reboot the device, and the
C2 should boot into Gentoo, with the
network eth0 and wlan0 working. The
above method should also work if you are
installing Gentoo and booting Gentoo
on a microSD card instead of eMMC,
as long as you adjust everything accord-
ingly. For example, if you are installing
Gentoo on a microSD card with parti-
tion 1 as boot and partition 2 as Gentoo

GENTOO

ODROID MAGAZINE	 31

http://bit.ly/2cISS9s
http://bit.ly/2cISS9s
http://bit.ly/2ctWugX
http://www.gentoo.org

What attracted you to the ODROID platform?
My first contact with ODROID devices was a couple

of years ago. After porting FreeSpace and FreeSpace 2 to
OpenPandora, @meveric contacted me to help him with
porting it to the ODROID platform. I was happy that
my port could be used on other device other than initially
intended. Later, my collaboration with @meveric intensi-
fied, and I started adding more and more ODROID code
to my ports.

How do you use your ODROIDs?
My ODROID is plugged to my main TV. I use it for

casual browsing, playing a few games, testing of new ports,
and as a media player.

Your continuing work on the GLShim package is very popu-
lar, especially among game enthusiasts. What motivated you
to work on the project?

When I started porting games, I did the OpenGL to
Open GLES porting by hand. I made a few games, and up-
dated some major engines, such as FreeSpace, Jedi Knights
II and III. I then followed the GLShim project created by
@lunixbochs (http://bit.ly/2d4PHek). At first, I wasn’t
completely convinced, since my manual ports were good,
and sometimes even better than a simple GLShim port.
Still, some games were very complicated to port, like Ar-
magetron Advanced and Scorched Earth 3D, so I tried the
GLShim approach. I then forked @linuxboch’s GitHub
project in order to have my own sources, and worked in

Please tell us a little about yourself.
My name is Sebastien Chevalier. I’m 43, French, and

married with two children.

How did you get started with computers?
When I was around 10 years old, my father came back

home with a computer. It was an obscure French computer
called Hector, which plugged into the TV and came with 3
cassettes. Since it was the early 1980s, it didn’t have disks,
and ran Space Invaders, a useless mortgage software, and
BASIC. After spending many hours playing Space Invad-
ers, I started to look at the BASIC compiler. There were
also two printed manuals about BASIC, so I learned the
language in order to make more games.

Meet an ODROIDian
Sebastien Chevalier (@ptitseb),
GLShim Developer
edited by Rob Roy

MEET AN ODROIDIAN

Our man, Sebastien in his office

Sebastien’s first computer, the Hector

ODROID MAGAZINE	 32

http://bit.ly/2d4PHek

I’m a programmer in my job too, so I guess I’m easily
spending 12 hours a day in front of a computer screen.

What advice do you have for someone wanting to learn more
about programming?

Learning programming can take time. My main advice
is to take on projects, but not overly ambitious ones. To
learn, you can start with some simple games. For example,
if you have never programmed before, take a game like
“Find a number”, where the computer chooses a number
between 1 and 999 which you have to guess, and have the
computer tell you if you are above or below. Then, try a
simple text-based Tic-Tac-Toe game, then a basic Break
Out game, which should be a first step into graphics. The
language that you use is not that important, so try BASIC,
Pascal, C, C++, Python, or Lua. What is important is that
the objective is achievable, so you learn by doing things
and don’t get discouraged. You must allow yourself time
to become a good programer and shouldn’t compare your-
self too early with other people.

a “port by port” approach by taking a game or piece of
software and making it work. Some games and software
applications use functions that are difficult to implement,
or crash and don’t render correctly, so I analyze what is
happening, then add a function to fix it. Other times I
just give up, move on to other software, and come back
later after GLShim has evolved.

These days, GLShim is working pretty nicely, with
mostly all of the OpenGL 1.5 functions implemented, and
many GLX functions too. I can now run games like Mine-
craft, idTec 1, 2 or 3, the Serious Engine 1 games, and
software like Blender.

Which ODROID is your favorite and why?

I currently only own an ODROID-XU4, which is a
nice machine. It’s powerful on both the CPU and GPU
side, but the active cooling makes it less than ideal for my
current use as an HTPC. I’ll probably try the passively-
cooled C2, which seem powerful as well, especially now
that the 3D driver is available.

What innovations would you like to
see in future Hardkernel products?

I would like to see some kits
based on DIY designs from previous
issues of ODROID Magazine.

What hobbies and interests do you
have apart from computers?

I don’t have many hobbies. I
play games, but that is still comput-
er-related. I like to travel, especially
on holidays with my family (see the
picture of beautiful Como Lake in
Italy where I was this summer). I
spend most of my free time on eve-
nings and weekends on computer.

MEET AN ODROIDIAN

Sebastien visited Como Lake in Italy last summer

Sebastien enjoying a meal

MEET AN ODROIDIAN

ODROID MAGAZINE	 33

