
• MUNIN system monitoring
• Windows 2000 gaming
• The OWEN Robot Kit

Year Three
Issue #26
Feb 2016

ISCSi • Cyanogenmod for U3/XU/XU3/XU4 • Overscan Fix in Ubuntu

• Fire detection security system

The ODROID-C0
is the newest mini
wonder computer

ODROID
Magazine

PowerPortable
The next generation of

What we stand for.
We strive to symbolize the edge of technology,
future, youth, humanity, and engineering.

Our philosophy is based on Developers.
And our efforts to keep close relationships with
developers around the world.

For that, you can always count on having the quality
and sophistication that is the hallmark of our products.

Simple, modern and distinctive.
So you can have the best to accomplish
everything you can dream of.

We are now shipping the ODROID-U3
device to EU countries! Come and visit
our online store to shop!

Address: Max-Pollin-Straße 1
85104 Pförring Germany

Telephone & Fax
phone: +49 (0) 8403 / 920-920
email: service@pollin.de

Our ODROID products can be found at
http://bit.ly/1tXPXwe

http://hardkernel.com
mailto:service@pollin.de
http://bit.ly/1tXPXwe
http://pollin.de

EDITORIAL

ODROID Magazine, published monthly at http://magazine.odroid.com, is your source for all things ODROIDian.
Hard Kernel, Ltd. • 704 Anyang K-Center, Gwanyang, Dongan, Anyang, Gyeonggi, South Korea, 431-815
Hardkernel manufactures the ODROID family of quad-core development boards and the world’s first ARM big.LITTLE single board computer.
For information on submitting articles, contact odroidmagazine@gmail.com, or visit http://bit.ly/1ypImXs.
You can join the growing ODROID community with members from over 135 countries at http://forum.odroid.com.
Explore the new technologies offered by Hardkernel at http://www.hardkernel.com.

Many ODROID users loved the ODROID-W, which was
discontinued in 2014. Since then, many requests were
made for a similar IoT computer that could be used for

industrial applications, wearables, and anything that required
a minimal hardware footprint and low power consumption.

Hardkernel has responded with the
ODROID-C0, which has the comput-
ing power of the popular ODROID-
C1 with some of the interfaces

removed, so that users can build the
perfect device to exactly fit their needs.

An example application of the ODROID-C0 is
the OWEN compact robot, designed by Bo at

Ameridroid, that can walk, dance, and show fa-
cial expressions via a web interface. The ODROID-C0 is avail-

able at http://bit.ly/1WFYKOL for USD$25.
Did you know that you can run Windows 2000 on an ODROID? Tobias shows us how to
install it using QEMU, so that you can run your favorite Windows programs and games!
Josh introduces us to the stock Android alternative called Cyanogenmod, Ilham helps
us stay safe with a robust fire detection kit, Nanik demystifies the Android Bluetooth
stack, Adrian explains how to use Munin, and David details the iSCSI protocol for LVM.

http://ameridroid.com
http://magazine.odroid.com
big.LITTLE
mailto:odroidmagazine@gmail.com
http://bit.ly/1ypImXs
http://forum.odroid.com
http://www.hardkernel.com
http://bit.ly/1WFYKO

Manuel
Adamuz,
Spanish
Editor

I am 31 years old and
live in Seville, Spain, and

was born in Granada. I am married
to a wonderful woman and have a
child. A few years ago I worked as
a computer technician and program-
mer, but my current job is related
to quality management and infor-
mation technology: ISO 9001, ISO
27001, and ISO 20000. I am pas-
sionate about computer science, es-
pecially microcomputers such as the
ODROID and Raspberry Pi. I love
experimenting with these computers.
My wife says I’m crazy because I just
think of ODROIDs! My other great
hobby is mountain biking, and I oc-
casionally participate in semi-profes-
sional competitions.

Andrew
Ruggeri,
Assistant
Editor

I am a Biomedical
Systems engineer located

in New England currently working
in the Aerospace industry. An 8-bit
68HC11 microcontroller and assem-
bly code are what got me interested
in embedded systems. Nowadays,
most projects I do are in C and C++,
or high-level languages such as C#
and Java. For many projects, I use
ODROID boards, but I still try to
use 8bit controllers whenever I can
(I’m an ATMEL fan). Apart from
electronics, I’m an analog analogue
photography and film development
geek who enjoys trying to speak for-
eign languages.

Nicole Scott,
Art Editor

Nicole is a Digital
Strategist and Trans-

media Producer spe-
cializing in online optimization and
inbound marketing strategies, social
media management, and media pro-
duction for print, web, video, and
film. Managing multiple accounts
with agencies and filmmakers, from
web design and programming, Ana-
lytics and Adwords, to video edit-
ing and DVD authoring, Nicole
helps clients with the all aspects
of online visibility. Nicole owns
anODROID-U2, and a number of
ODROID-U3’s and looks forward
to using the latest technologies for
both personal and business endeav-
ors. Nicole’s web site can be found at
http://www.nicolecscott.com.

James
LeFevour,
Art Editor

I’m a Digital Me-
dia Specialist who is

also enjoying freelance work in social
network marketing and website ad-
ministration. The more I learn about
ODROID capabilities, the more
excited I am to try new things I’m
learning about. Being a transplant to
San Diego from the Midwest, I am
still quite enamored with many as-
pects that I think most West Coast
people take for granted. I live with
my lovely wife and our adorable pet
rabbit; the latter keeps my books and
computer equipment in constant
peril, the former consoles me when
said peril manifests.

Bruno Doiche,
Senior
Art Editor

Bruno is now
used to losing to David

regularly on Magic the Gathering.
But he will get some gaming skills
doing a quick trip to Las Vegas.

STAFF

ODROID
Magazine

Rob Roy,
Chief Editor

I’m a computer
programmer in San

Francisco, CA, design-
ing and building web applications
for local clients on my network
cluster of ODROIDs. My primary
languages are jQuery, Angular JS
and HTML5/CSS3. I also develop
pre-built operating systems, custom
kernels and optimized applications
for the ODROID platform based
on Hardkernel’s official releases, for
which I have won several Monthly
Forum Awards. I use my ODROIDs
for a variety of purposes, including
media center, web server, applica-
tion development, workstation, and
gaming console. You can check out
my 100GB collection of ODROID
software, prebuilt kernels and OS
images at http://bit.ly/1fsaXQs.

http://www.nicolecscott.com
http://bit.ly/1fsaXQs

INDEX

Retrogaming arcade - 21

overscan for Ubuntu - 9

Fire Detection - 10

ODROID-xu4 manual - 20

odroid-c0 - 18

owen robot kit - 28

MEET AN ODROIDIAN - 33

android development - 31

munin - 24

cyanogenmod - 8

Linux Gaming: Windows 2000 - 13

ISCSI - 6

Internet Small
Computer System
Interface
iSCSI Made Simple
by David Lima

ISCSI

If you have one large hard drive, and
would like to share its available space
with another ODROID, or want

to setup a file server and consolidate all
storage in a single point, the first thing
you may think to use is Network File
System (NFS). However, there are se-
curity problems with NFS, since it does
not inherit the permissions properly, and
you probably don’t need the data shared
with a bunch of clients. In this article, I
will demonstrate an alternative, which is
to use iSCSI.

iSCSI, which is an acronym for Inter-
net Small Computer Systems Interface,
is an Internet protocol used to link data
storages across facilities. With iSCSI,
you can create a virtual disk on a server
and map it to a client as a block device
and do whatever you want with it, like
creating a file system of any type or us-
ing it as a swap area as if it was a physical
local drive. Instead of sending remote
procedure calls like NFS does, iSCSI
will send SCSI instructions over the
network. These are the same set of in-
structions your system uses to write data
blocks to your disk drive.

This way, you have better security,
since you can set the permissions nor-
mally and don’t have to worry about
“root squashing” in order to prevent root
account access to exported file systems.
You can also improve performance since
the system skips one layer of interaction
and just sends a write SCSI request.

Background
The virtual disk we are going to cre-

ate is called LUN (logical unit number).
The LUN is actually the number used
to identify the virtual disk, but is is also
often used to talk about the disk itself.
There is also the SCSI initiator and SCSI
target. SCSI target will act as a server,
where the storage device is located, and
the SCSI initiator is the client, which is
the one receiving the virtual disks. You
can think of the initiator as being a SCSI
bus adapter card, but instead of cables, it
will be using your network. First, install
the required dependency on target:

$ sudo apt-get install tgt

Then, do the same for the initiator:

$ apt-get install open-iscsi

Starting on the target side, we have
to create a target to be accessed by the
clients:

$ tgtadm --lld iscsi --op new \

 --mode target --tid 1 \

 -T iqn.2016-01.com.server-

iscsi:vdisk.1

The -T option specifies the initiator
address, which is how the initiator will
see the LUN you create. The initiator
address format is iqn.yyyy-mm.<reverse_
domain_name:LUN name, where iqn
means iSCSI qualified name, which
his is the addressing name-format type.
The date (yyyy-mm) specifies when the
naming authority took ownership of the
domain, which is required whenever the

iSCSI will be used over the internet. For
local networks, this can be any date. The
reverse domain name of the target server
is also used for Internet-specific configu-
rations, and can be any name on local
networks. The LUN name can be any
label that will be easy to identify by the
administrator, such as client name and
purpose. You can have multiple targets
on the same server by changing the tar-
get id(tid) and iqn.

Check the configuration so far with
the following command:

$ tgtadm --lld iscsi \

 --op show --mode target

You will see that LUN ID 0 is al-
ready attached. This is for internal con-
trol of the utility and does not need to
be changed. Next, we have to assign a
block device to create the LUN for our
client(s). For this, we have three options:

1. Use a regular partition from any
device attached to the system

2. Create a logical volume using
LVM to attach it to the target

3. Create a data file on a mounted
file system to use as if it was a block de-
vice

I would recommend option 2 so
that you can take advantage of all LVM
features for your target LUN. Option
1 is also good if you don’t want to use
LVM, and option 3 is useful for testing
purposes when you want to configure an
iSCSI and don’t want to change parti-

ODROID MAGAZINE	 6

ISCSI

ODROID Talk
Subreddit

 http://www.reddit.com/r/odroid

ODROID
Magazine is

now on
Reddit!

the IP addresses instead of just setting it
to be viewable by all.

This configuration will only be re-
tained until you reboot your server. If
you want to persist the changes through
a reboot, dump the configuration to /
etc/tgt/conf.d as any configuration file
under this path is automatically includ-
ed:

tgt-admin --dump | \

 grep -v default-driver > \

 /etc/tgt/conf.d/targets.conf

Moving back to the initiator, we need
to scan for new available LUNs. To do
so, use the following command:

iscsiadm --mode discovery \

 --type sendtargets \

 --portal 192.168.0.1

You will see the LUN created back
on the target, which can now be logged
into:

iscsiadm --mode node --target-

name \

 iqn.2016-01.com.server-

iscsi:vdisk.1 \

 --portal 192.168.0.1:3260

--login

If you want to initiator connect au-
tomatically after a reboot, edit the fol-
lowing file:

vi /etc/iscsi/iscsid.conf

and change this line from manual to
automatic:

node.startup = automatic

Now, if you type the command “fdisk
-l”, the target LUN will be visible as a
new device, for example /dev/sdb. All
you have to do then is to create a file
system of your preference on it or add
it to your Logical Volume Management
(LVM) list.

tion tables or logical volumes, but is not
recommended for long-term settings.

For the purposes of demonstration, I
will choose option 3. To create the stor-
age file, type the following commands,
which requires root privileges:

$ su

dd if=/dev/zero \

 of=/home/odroid/iscsi-lun \

 bs=4096 count=1024000

This will create a 4GB file, which can
then be attached to a new LUN:

tgtadm --lld iscsi \

 --op new --mode logicalunit \

 --tid 1 --lun 1 \

 -b /home/odroid/iscsi-lun

Next, check your newly created
LUN:

tgtadm --lld iscsi \

 --op show --mode target

If you are creating the LUN with an
actual block device, just replace the file
name with the device path, such as /dev/
sdb1 or /dev/rootvg/homelv. We are
now ready to allow clients to bind to this
target:

tgtadm --lld iscsi --op bind \

 --mode target --tid 1 -I

192.168.0.2

This will allow only clients with IP
192.168.0.2 to login and bind to this
LUN. You can also replace the IP with
“ALL” so that any initiator can bind to
this target, although this is not recom-
mended because of security issues. With
the “ALL” option, anyone on the same
network would be able to read data from
this target’s LUN, and if you login to it
from two different initiators and they
starting writing to it, the whole thing
may become corrupted. Even if you
have a cluster solution and need the
LUNs to be shared, make sure to specify

ODROID MAGAZINE	 7

http://www.reddit.com/r/odroid

Android has stormed the world in the last nine years,
invading devices of all shapes and sizes, including our
ODROIDs. While Android itself comes from Google,

the open source, Linux-based operating system has countless
versions designed and modified by smartphone manufacturers,
each with their own unique take on the OS. CyanogenMod is
one such version, designed by a community of more than 50
million people, and is available for your ODROID.

What is
CyanogenMod?

Since Android is an open source operating system, versions
are available for anyone to compile and use through the An-
droid Open Source Project (AOSP). Thousands of devices are
compatible, including most ODROIDs with versions com-
piled by Hardkernel. While many enjoy the clean, lightweight
experience of AOSP, it varies from device to device and can lack
some features and fine tuning you may want.

This is where CyanogenMod comes in. CyanogenMod is
a third party version of Android designed and compiled by a
community of over 50 million users all over the world. At its
core, CyanogenMod is the same, bare bones AOSP that’s avail-
able to everyone. The CyanogenMod community then fine
tunes it, adds some useful features, and packages it all into a
clean, enhanced UI.

Best of all, CyanogenMod stays true to Android’s core phi-
losophy by remaining an open source project under the Apache
license. This makes CyanogenMod available for anyone to
compile and build for new devices, like an ODROID, while
giving each device the same experience. This is in contrast to
most versions of Android, which often come included with li-
censed, third party software. For example, Samsung’s Touch-
Wiz UI is licensed to Samsung devices only, and can’t be shared
to new devices without their permission.

Some of the features that CyanogenMod adds to AOSP

Android include a fresh UI, improved performance, USB
tethering, VPN connectivity, FLAC audio support, native
theme support, and a host of other benefits. CyanogenMod
is also pre-rooted for access to advanced Android functionality.
Check out the full details at http://bit.ly/1nk2aKz.

What CyanogenMod versions
exist?

Community member @voodik helps maintain versions of
CyanogenMod for use on ODROIDs. There are currently two
major versions of CyanogenMod that are up to date and avail-
able for ODROIDs:

CyanogenMod 13 is the latest and greatest version avail-
able, which is based on Android 6.0.1 Marshmallow, the most
recent Android OS available. It has all the latest features that
come with Android 6.0.1, such as advanced power and permis-
sion controls. The CM13 builds for ODROIDs do not yet
support USB 3G modems or Bluetooth adapters, so it would
be better for those those who require that type of connectivity
in their projects to use CM12 instead.

CyanogenMod 12.1 is the tried-and-true version based on
Android 5.1 Lollipop. Similar to Lollipop, It’s about a year
old, which means that it’s had some more time to go through
bug fixes and optimization. It supports most peripherals, in-
cluding Bluetooth and 3G modems, and is a good choice for
applications that have compatibility issues with Android 6.0.1.
You will, however, miss out on some of the new permissions
and power features in CM13.

CyanogenMod 11 also exists on some ODROIDs, but you
will probably prefer CyanogenMod 12 or 13 unless there is
a specific reason you need to stay on CM11. There are also
some flavored builds of CyanogenMod designed for Android
TV, which offer a slightly different user experience.

Remember, there’s no “best version”, since it comes down

A look at
CyanogenMod
Getting Started With a Clean,
Lightweight Flavor of Android
by Joshua Sherman

CYANOGENMOD

ODROID MAGAZINE	 8

http://bit.ly/1nk2aKz

to using what suits your needs. In the
end, they’re all designed around the
same core experience: giving users a
fast, clean, open source version of An-
droid.

Getting started
with CyanogenMod

Once you pick whichever version
of CyanogenMod you’re interested in,
you can go ahead and check them out
in the respective forums where they’re
available. Version availability can vary
from device to device, so keep that in
mind when seeing what’s available for
your device:

ODROID-XU3/XU4:
http://bit.ly/1niFjiA

ODROID-U3:
http://bit.ly/1WIQYn8

ODROID-XU:
http://bit.ly/1KyX4Q5

Just like installing Android or
Ubuntu, CM12 and CM13 follow
more or less the same procedure to get
up and running. Then all you need
to do is explore the operating system
to see if it’s what you’re looking for in
an OS.

Notes
CyanogenMod is 100% open

source, which means it won’t include
any Google applications by default,
since they’re considered closed source.
This includes the Google Play Store,
which you’ve probably used to for
downloading applications. Don’t
worry, you can install the Play Store
on your own through a GApps pack-
age in each CyanogenMod forum
topic, or use the Universal One-Click
Installer available from Hardkernel at
http://bit.ly/1nL6ymp. It includes all
of the usual Google apps so that you
can use the Play Store if you wish, or
stick to the core open source experi-
ence if that’s what works for you.

CYANOGENMOD

If the display used on your
ODROID-C1/C1+ shows a slight
cropping of the visible image on

the screen, you may be experiencing
overscan. This is not an uncommon
problem, and especially so for LCD TV
monitors. The fix is usually a simple
one, and the underlying issue is most
likely due to a setting with the LCD
monitor. Some PC Monitors with
HDMI inputs will also apply overscan
to the HDMI input, assuming that a
broadcast TV signal is being used.
Monitors that are used for broadcast
television usually have overscan en-
abled by default. This is a normal
feature of TV monitors and has been
present from the very beginning of
television. Overscan is used to crop
the edges of the video frame in or-
der to remove any erratic or distorted
edges that often exist with broadcast
video. To the viewer, this results in
a cleaner picture, and the overscan
simply isn’t noticed. For a computer
display however, this can be an issue.
For this reason, computer LCD mon-
itors usually do not provide overscan,
and if they do have this feature, it is
disabled by default.
In order to accommodate moni-
tors that may not have an overscan
option built into the hardware, the
steps below will allow you to enable
software overscan in Ubuntu for the
ODROID-C1/C1+.

1. Get and Set the overscan values
of left, top, right and bottom using
trial and error method, by typing the

following commands into a Terminal
window:

$ su

cat /sys/class/graphics/fb0/win-

dow_axis window axis is [100 100

1919 1079]

echo 100 100 1919 1079 > /sys/

class/graphics-/fb0/window_axis

echo 0x10001 > /sys/class/graph-

ics/fb0/free_scale

2. Create a BASH script called over-
scan.sh, as shown below, that in-
cludes your left, top, right and bot-
tom values:

cat overscan.sh

#!/bin/bash

echo 100 100 1919 1079 > /sys/

class/graphics/fb0/window_axis

echo 0x10001 > /sys/class/graph-

ics/fb0/free_scale

3. Save the script to the /etc/init.d
directory so that it automatically
starts on boot:

cp overscan.sh /etc/init.d/

update-rc.d overscan.sh defaults

If you have questions, comments, or
suggestions, please visit the original
article at http://bit.ly/236QKum.

Overscan Fix in
Ubuntu for ODROID-C1/C1+
Synchronize your ODROID
with your monitor
edited by Rob Roy

OVERSCAN

ODROID MAGAZINE	 9

http://bit.ly/1niFjiA%20
http://bit.ly/1WIQYn8%20
http://bit.ly/1KyX4Q5
http://bit.ly/1nL6ymp
http://bit.ly/236QKum

The hardware
You will need an ODROID such as

the XU4 or C1+, a USB webcam, and
an Internet connection to your board.
For my setup, I used an ODROID-C1,
a Logitech C525 camera, and a generic
WiFi module.

The software
This tutorial will go over a program

written in Python 2. The Python pro-
gram requires three modules: the cv2
OpenCV module which is used for com-
puter vision, NumPy which is required
by cv2 and handles large matrices and
arrays, and the envelopes module, which
assists with email handling. There are
several excellent guides on the ODROID
forums at http://bit.ly/1E66Tm6 that
detail how to install OpenCV. You can
also download a customized version of
ROS that already includes OpenCV at
http://bit.ly/1JvIxK1 (XU3/XU4) and
http://bit.ly/1ZLMpID (C1/C1+). An
installation guide for NumPy is avail-
able on their official site at http://bit.
ly/1KpXV5B. You can install the enve-
lopes module with the steps shown below.

First, if pip is not installed, it can be
installed with the following apt-get com-
mand:

Our ancestors tamed fire’s power
hundreds of thousands of years
ago. However, fire is one of

our most dangerous tools, and can be-
come lethal when it’s out of control.
Today fires can be caused by appliance
malfunctions, electrical failure, or even
a lightning strike. In 2014, there were
almost 500,000 structure fires in the US
alone, which caused thousands of civil-
ians injury and deaths.

I hope those facts warmed you up,
because today we will protect our homes
from a fire. In this tutorial, we will cre-
ate a surveillance application which will
detect a fire and notify us. Just imagine
you are in the middle of a boring meet-
ing and no one is home. Instead of get-
ting a call from the fire department tell-
ing you your house is gone, this program
will notify you when the fire initially
starts, thus giving you time to save your
house!

To do all of that, we will write a
simple Python script using the OpenCV
module. OpenCV is a popular image
processing library that packages many
image processing algorithms into an
easy-to-use interface. This tutorial will
show you how an ODROID board can
be much more than a daily computing
device.

Fire Detection
for Surveillance
Cameras
Taming Fire With a Webcam and an ODROID
by Ilham Imaduddin

FIRE DETECTION

$ sudo apt-get install python-pip

Then, install envelopes:

$ pip install envelopes

Finally, in the Python code, import
the three modules into the application
with the following lines:

import cv2

import numpy as np

from envelopes import Envelope

Taming fire
Before we can detect a fire and flames

with our camera, we need to know the
specific properties of a fire that make it
distinct from other objects the camera
sees. A flame has at least two proper-
ties that make it unique and easy to work
with which are intensity and color. The
plan is to filter by both intensity and col-
or in each frame, then merge both filters
to make a new “fire mask”. To make sure
you understand the code, you should be
familiar with OpenCV.

Intensity filter
Fire is bright, and often it is often the

brightest object in the image frame. This

ODROID MAGAZINE	 10

http://bit.ly/1E66Tm6
http://bit.ly/1JvIxK1
http://bit.ly/1ZLMpID
http://bit.ly/1KpXV5B
http://bit.ly/1KpXV5B

FIRE DETECTION

np.array([threshold_r-20,

threshold_r-10, 255])

 return cv2.inRange(frame,

threshold_low, threshold_high)

The threshold_high is set to make the
blue and green components smaller than
the red component. Just like with the
intensity filter, the color filter process is
done with cv2.inRange method, which
take the frame and thresholds as param-
eters and returns a filtered mask.

Extract the fire
Now that we have both the intensity

and color filtering done, we can start to
extract fire from a frame. First, we will
make an intensity mask and then a color
mask by calling the filter_intensity and
filter_color functions respectively. Then,
we do some processing to improve the
quality of both masks. After that, we
merge both masks together to create a
new “fire” mask.

def extract(frame, threshold_y,

threshold_r):

 intensity_mask = filter_

intensity(frame, threshold_y)

 color_mask = filter_

color(frame, threshold_r)

 kernel = np.ones((5, 5),

np.uint8)

 intensity_mask = cv2.

dilate(intensity_mask, kernel,

iterations=1)

 kernel = np.ones((10, 10),

np.uint8)

 color_mask = cv2.

dilate(color_mask, kernel, itera-

tions=1)

 return cv2.bitwise_and(color_

mask, color_mask, mask=intensity_

mask)

The problem with the filter_intensity

means that we can identify fire by select-
ing pixels with highest intensity levels.
To do that, we will convert the cap-
tured webcam frame from BGR color
space, which OpenCV uses as default, to
YCrCb. Once the image is in the YCrCb
space, we can filter by the Y component,
which is the luminance value.

def filter_intensity(frame,

threshold_y):

 ycrcb = cv2.cvtColor(frame,

cv2.COLOR_BGR2YCrCb)

 threshold_low =

np.array([threshold_y, 0, 0])

 threshold_high =

np.array([255, 240, 240])

 return cv2.inRange(ycrcb,

threshold_low, threshold_high)

The cv2.cvtColor method is used to
convert a frame from one color space to
another. In OpenCV, an image is repre-
sented as a NumPy array, and so we cre-
ate the threshold arrays using np.array.
After creating the threshold arrays, the
filtering process is done with the cv2.in-
Range method, which takes the frame as
the first parameter and thresholds as the
second and third parameters. The meth-
od then returns a filtered mask based on
the parameters.

Color filter
Fire is not necessarily always pure

red. Sometimes it’s a mix of orange or
even white. Regardless of the mixture,
the primary color component of fire is
red-based. This means that we can fil-
ter the frame by selecting pixels with a
high red value as a way to identify any
flames. Filtering for red given a frame in
the BGR color space is easy and is shown
in the following code:

def filter_color(frame,

threshold_r):

 threshold_low = np.array([0,

0, threshold_r])

 threshold_high =

and filter_color function is that some-
times they may return a broken mask.
We can apply the cv2.dilate method to
fix this. Dilate increases the area of the
mask, filling the gap between the broken
masks.

Wrapping up
Let’s start by initializing the camera

in code, then make a loop to continually
get new frames from the camera. With-
in this loop, we will not only be getting a
new frame from the camera, but will be
processing that frame as well. The first
this thing we will do after receiving a
new frame is to call the extract function
that we previously created:

cam = cv2.VideoCapture(0)

counter = 0

while (True):

 frame = cam.read()[1]

 fire_mask = extract(frame,

250, 230)

 # Fire handling

 if cv2.waitKey(1) & 0xFF ==

ord(‘q’):

 break

cam.release()

We attach the camera by creating a
VideoCapture object. Its argument is
the camera index, which will be 0 if only
one camera is connected. You can select
the second camera by passing 1, and so
on for additional cameras. In the loop,
we read a frame from camera, then filter
it for any flames. Finally, we apply some
additional code to help minimize false
positives.

Fire handling

contours = cv2.findContours(fire_

mask.copy(), cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)[1]

if len(contours) > 0:

ODROID MAGAZINE	 11

ing Envelope.

Burn
Now, it’s time to put our program

to test. Since I’m not crazy enough to
light my house on fire just for the sake
of testing, we will not see my house be-
ing burned today. Instead, we will use
a lighter for our flame source. Figure 1
shows the alert email that I receive when
I test the program.

If you decide to test it yourself, you
might need to change the threshold val-
ues. They are set to an ideal threshold
best suited for my house. The values
may need to be changed due to lighting
differences in the areas being monitored.

Expansion
There are a lot of possibilities for ex-

tending this basic application. For ex-
ample, we can record the fire, send SMS
instead of email, or even call emergency
services automatically. We could also
create another algorithm for our surveil-
lance camera, such as movement detec-
tion or face detection.

a rectangle around it in the frame. An
example of a detected flame is shown in
Figure 1.

The counter feature is also used to
help minimize false positives. Instead
of sending an alert immediately after the
camera’s first frame which detects fire,
the program will wait for several frames
to positively identify a fire before send-
ing an alert. If the detected fire lasts long
enough, we will save that image, and
send it along with the email alert.

Send Notification

cv2.imwrite(‘fire.png’, frame)

mail = Envelope(

 from_addr=(u’from@email.com’,

u’Name’),

 to_addr=(u’to@email.com’,

u’Name’),

 subject=u’Your House is On

Fire!’,

 text_body=u”Call emergency

number immediately!”

)

mail.add_attachment(‘fire.png’)

mail.send(

 ‘your.smtpserver.com’,

 login=’your@email.com’,

 password=’your password’,

 port=587,

)

print “Email sent”

break

The image is saved to disk with the
cv2.imwrite method, which takes the
filename and the frame as parameters.
Using an Envelope object, we send an
email notification that a fire was de-
tected, and include the saved image. For
the sake of simplicity, after we send our
email alert, we break from the loop in
order to end the application.

If you are sending from a Gmail ad-
dress, there is a setting which prevents
logins that don’t meet certain security
requirements. You will need to disable
this setting in order to send an email us-

 for i, c in

enumerate(contours):

 if cv2.

contourArea(contours[i]) > 100:

 x, y, w, h = cv2.

boundingRect(contours[i])

 cv2.rectangle(frame,

(x, y), (x+w, y+h), (0, 255, 0),

2)

 counter = counter + 1

 if counter == 100:

 # Send Notification

else:

 counter = 0

The first method being used, cv2.
findContrours, finds any contours, as
the name implies. Contours can be sim-
ply defined as “an outline, especially one
representing or bounding the shape or
form of something.” The cv2.findCon-
trours takes a frame, as well as a few
parameters for adjustments, and returns
an array of all the contours found within
that frame. When we pass the cv2.find-
Contrours function our fire mask, we
expect the mask to be empty, meaning
no there will be no shapes or contours.
If there happens to be a flame or some
fire, the mask would not be empty and
we would get a returned array with the
flame contour.

If a contour is returned, we check
whether the contour is large enough to
be considered fire. This is important
because it helps to minimize false posi-
tives of the application reporting a fire
when there is none. Finally, if the de-
tected contour is large enough, we draw

Figure 1 - Demonstration of fire that will
be detected by the camera

Figure 2 - Notification email from fire
detection program

FIRE DETECTION

ODROID MAGAZINE	 12

Requirements
Since ARM CPUs are not x86 CPUs,

running an x86 operating system on
ODROID will require some prepara-
tion, so we need to install a few programs
on our system and set them up before we
can try to install Windows and any Win-
dows programs:

•	 QEMU Emulator for emulat-
ing an x86-compatible PC on our
ODROID. QEMU comes in many
different versions and is constantly
being improved. I use the version
of QEMU from my own repository,
which is currently at version 2.5.0.

•	 The ODROID-XU4 offers the fast-
est CPU at the moment, and is re-
quired to get the best possible ex-
perience. An ODROID-U3 would
probably work as well, but will defi-
nitely be slower. An ODROID-C1
can not be used for this, as it simply
lacks the CPU speed and adequate
RAM required for Windows 2000
emulation.

•	 At least 4 GB of free space on SD,
eMMC, or an external storage.

•	 Windows 2000 install CD/ISO.
Generally all Windows versions
would work, but in previous tests I
found that Windows 95, while still
working, lacks good DirectX sup-
port, which prevents most games
from starting. Windows 98, which

Currently, we are able to play thou-
sands of games on the ODROID
through emulation, including

many console games such as SNES,
PS1, N64, and more. If we are playing a
game originally published for the PC, we
still have a few options. A large number
of DOS-based games may be run on the
ODROID using the DOSBox emula-
tor. Besides that, there are native ports
for Linux from older Windows DOS
games such as Arx Fatalis, Homeworld,
Jedi Knight 2 and 3, Quake 3, and many
others.

Still, if we want to play our old Win-
dows games, the number of games we
can play is somewhat scarce since only a
few of them have actually been ported to
Linux. In this article, I want to outline
what other options are available, as well
as find out if we can get a Windows sys-
tem to work on our ODROID.

This guide is mostly for “trying
things out”, and it will not give you a
full-featured fast Windows machine on
your ODROID. The performance of
this setup, which is a Windows 2000 vir-
tual machine (VM) running in QEMU,
is very low, and certain tasks will take
a long time. If you read this in the
hope to run Battlefield 3 directly on an
ODROID, this guide is not for you. It’s
only a study on what’s possible and how
far we can go.

Linux Gaming
Running Windows 2000 Games on an ODROID
by Tobias Schaaf

LINUX GAMING

does have DirectX, lacks sound sup-
port and won’t be able to run prop-
erly because of this limitation. The
QEMU project website states they
no longer support any Windows
OS below Windows 2000.

•	 Some Windows games and pro-
grams for testing.

•	 A lot of time, since the installation
process can take several hours.

Installation
First, we need to install the required

software, set it up, and then install Win-
dows 2000 in a emulated x86 environ-
ment provided by QEMU.

apt-get install qemu-ODROID

We start by creating a folder in which
we will work. I decided to create a fold-
er called Windows in the home folder
of the user ODROID and place every-
thing I need there, so I copied over the
ISO of my Windows 2000 installation
CD to that directory. Then, I created a
new disk image for our Windows 2000
installation:

qemu-img create -f qcow2 win2k.

img 10G

A qcow2 image slowly grows in size
and does not allocate 10GB right from
the start like the RAW format does. It

ODROID MAGAZINE	 13

Windows 2000 ISO. The Windows
2000 ISO should be a self-booting im-
age. With earlier versions of Windows,
such as Windows 95, you often needed
a floppy disk to boot and load a CD-
ROM driver in order to access the CD
and install from it. With later versions
of Windows, this was no longer neces-
sary, which is why we can boot directly
from CD instead. Once installed, it will
also skip the CD and boot from the hard
drive unless you press a key.

-m 512
This parameter gives the virtual ma-

chine 512MB of RAM for use. You can
use 768MB or 1024MB, but you might
have to activate swap or zRAM for this,
since it uses more than 1024 MB of ac-
tual RAM. You can also probably only
use 128 or 256MB instead, since Win-
dows 2000 will work just fine with less
RAM too.

-localtime
This tells the virtual machine to use

the time from the host system.

-soundhw ac97
This uses the virtual Intel 82801AA

AC97 audio sound card. There are other
models as well, but AC97 should work
fine.

-monitor stdio
This tells the virtual machine to in-

clude a command line console, which
may be used for changing virtual ma-
chine parameters such as mounting oth-
er CDs or disk images.

-net nic,model=ne2k_pci -net user
This is the network configuration,

which I did not actually test.

-vga std
Use the standard VGA with Bochs

VBE extension, which is an advanced
graphics cards offering more features
than the default option. Alternatively,
for optimum compatibility, albeit with

LINUX GAMING

Figure 1 - Selecting the install partition
of our Windows 2000 installation

less features, you could use the “-vga cir-
rius” option, which uses a virtual Cirrius
Logic GD5446 SVGA graphics adapter.

-cpu pentium
This specifies the CPU that should be

used. There are different types available,
like pentium, pentium2, pentium3, and
486. We use pentium2 for installation,
but later you might want to switch to
qemu32, which was developed as a 32-
bit CPU directly for QEMU, in order
to use advanced settings such as “-smp
2”, which creates a PC with 2 CPUs.
You can also more specific with options
such as “-smp 2,cores=2,threads=1,soc
kets=1”. By using “qemu-system-i386
-cpu ?”, you can get a list of all available
CPU models.

-no-acp
This option disables ACPI (Advanced

Configuration and Power Interface) sup-
port, since this can cause issues during
hardware detection

Installing Windows
2000

After you have copied your win2k.
iso to the same folder as the start script
and created the win2k.img in the same
folder, you can start QEMU with the
following command after navigating to
its folder:

$./start_qemu

A new window will pop open, and
you will see the Windows 2000 setup
manager.

The partitioning and copying of the
installation files for Windows will go

also offers advanced features such as snap-
shots. Windows itself only needs about
1-2GB of space. Anything between 3-4
GB should be enough. After that, I cre-
ated a launch script that allowed me to
start the QEMU virtual machine more
easily. I made it executable and placed it
in the Windows folder:

/home/ODROID/Windows/start_qemu

#!/bin/bash

export QEMU_AUDIO_DRV=pa

qemu-system-i386 -hda ./win2k.img

-cdrom ./win2k.iso -boot d -m 512

-localtime -soundhw ac97 -moni-

tor stdio -net nic,model=ne2k_pci

-net user -vga std -cpu pentium

-no-ahci

The parameters are explained below:

QEMU_AUDIO_DRV=pa
This parameter specifies using pul-

seaudio as the default sound driver. It
works with ALSA as well, but PulseAu-
dio seems to be faster with QEMU than
ALSA. Other available options are “sdl”
and “alsa”.

qemu-system-i386
This tells the system that this is an

entire i386 compatible system with ev-
erything that belongs to it such as BIOS
and hardware. There’s also a qemu-i386
binary, which can be used to start a sin-
gle i386 binary instead of emulating an
entire PC, but we won’t be using this.

-hda ./win2k.img
This specifies that our hard drive im-

age is the win2k.img file that we created
earlier.

-cdrom ./win2k.iso
Similar to the hard drive image pa-

rameter, this specifies the ISO file of the
Windows 2000 install CD.

-boot d
This tells the system to boot from

drive D:, which in this case is our

ODROID MAGAZINE	 14

tion will be completed, and the system
will ask a couple of questions about key-
board layout, network settings, adminis-
trator password, and so on. Follow the
prompts and wait for it to be completed,
which can take over an hour. Be patient,
and after another reboot, you will finally
be presented with the login screen fol-
lowed by the lovely Windows 2000 intro
sound and desktop.

At this point, we have a Windows
Desktop running Windows 2000, but if
you look closely, you will notice that the
current screen is only in 640x480 and 16

relatively quickly, and will be done in a
couple of minutes. Afterwards, the sys-
tem will reboot and setup the system.

This part will take rather long, so sit
back and let the ODROID do what-
ever it needs to do. You can probably
go watch a movie or a couple episodes
of your favorite TV show. The CPU of
the ODROID will not be used much
during this process, so you can use your
ODROID for other tasks such as watch-
ing a movie, playing music, or browsing
the web. Keep in mind that if you have
chosen a high value of RAM for the vir-
tual machine, you might not have a lot
of RAM to spare, so browsing websites
like YouTube or other sites could use up
what’s left of the RAM very quickly. I’m
still not sure what causes this long delay,
but you can see the same behavior on all
x86 emulators like DOSBox, QEMU,
and ExaGear. They all seem to be re-
ally slow at reading and writing while
the CPU doesn’t seem to be 100% uti-
lized. After a while, the system will start
installing drivers and try to auto-detect
the hardware of the QEMU system.

After a while, the hardware detec-

Figure 2 - Copying the setup files

Figure 3 - The Windows 2000 boot screen
brings back good memories of a very fast
and stable OS which I used for many years

Figure 4 - Auto detecting hardware
in QEMU environment can be a really
long process

Figure 5 - Windows 2000 Login Screen

Figure 6 - Windows 2000 Desktop
on first boot

colors, so let’s try to fix that by copying
additional drivers into the system. I use
7zip and Universal VESA/VBE Video
Display Drivers for Windows NT ar-
chitecture from http://bit.ly/200rAyC.
Both programs can be found in my re-
pository under http://bit.ly/20pYup0.
There are a couple of different ways that
we can get these files into the system. I
want to discuss two of them, since they
work on nearly every system and can be
useful for other purposes as well. The
first is to create your own ISO file and
put the files you need into an ISO, then
mount the ISO in QEMU. The second
is to mount the QEMU hard disk file
directly into your Linux environment
in order to perform file operations on it
directly.

Creating an ISO file
If we want to change the ISO file

that’s in the CD drive of our QEMU
virtual machine, we first need to create a
new .ISO file with the files that we want
to see in our system. To accomplish this,
we’re going to install a program called
“genisoimage”, which may already be in-
clude in your Linux distribution.

apt-get install genisoimage

Create a new folder such as “myfiles”
on your hard drive, then copy all of the
necessary files into that folder. You can
also put the games and programs you
want to install later into the same folder.
Then, use the following command line
to create an ISO file out of that folder:

$ Genisoimage -o myiso.iso \

 -V MYISO -r -J myfiles/

This command will generate files
called myiso.iso with the files and folders
included in your “myfiles” folder, mak-
ing sure to replace the name “myfiles”
with the name of the folder you created.
Next, we need to mount that ISO file
into our QEMU virtual machine. We
already know that we can define what

LINUX GAMING

ODROID MAGAZINE	 15

http://bit.ly/200rAyC
http://bit.ly/20pYup0

img

partprobe /dev/nbd0

mount /dev/nbd0p1 /mnt

After that, you can also perform disk
operations on /mnt, which will hold the
contents of your hard drive image. After
you’re done, remember to unmount the
device and also close the connection to
the hard drive image:

mount /mnt

qemu-nbd -d /dev/nbd0

Fixing the graphics
No matter how you have copied the

files into your system, you should end up
with the 7zip installer available, as well
as the vbempj.zip file on your Windows
2000 virtual machine. The next step is to
install 7zip, then extract the zip file. Af-
ter that has been completed, right-click
on “My Computer” and choose Proper-
ties. In the new window that opens, we
can select the Hardware tab and then
click the Device Manager button.

You should see a question mark of
a standard VGA adapter, as shown in
Figure 7. Double-click it to open the
properties window, then click the Rein-
stall Driver button. When asked, select
“Search for a suitable driver for my device
(recommended)”, followed by the Next
button. Check the “Specify a location”
option and select Next again. A window
will pop up, asking where to search for
the driver. Click the Browse button and
navigate to the folder where you extract-

Figure 7 - Missing VGA drivers for
“std” graphics card of QEMU

image.

Mounting the hard
disk file

Creating an ISO file is very flexible
and allows you to quickly change pro-
grams on the ISO file. It is also rather
fast, so in general it’s a good thing to do.
However, a downside of the ISO option
is that a CD is always write protected,
which means that the files that are on the
CD cannot be extracted directly on the
CD, and you always have to copy your
stuff over to the hard drive first. Since it’s
coming from a CD, everything that you
copy over will automatically be flagged
as write-protected or read-only since it
was the same on the CD, so you have
to update the permissions before using
the files.

Another approach is to copy the files
directly on the hard drive image of your
QEMU system. Although this can be
done while the system is running, it’s
better to do this when the system is
turned off, so shutdown your Windows
system, or close the window directly, and
open a root terminal.

If you created a harddrive image in
RAW format, you can probably directly
mount the image using a command like
this:

mount -o loop,offset=32256

win2k.img /mnt

After that, you should be able to ac-
cess the disk image under the /mnt di-
rectory and perform file operations on
it like creating folders and copying files.
Don’t forget to unmount the image after
you’re done:

umount /mnt

If you created a qcow2 image, or the
previous attempt did not work for you,
there’s a different approach you can try:

modprobe nbd max_part=16

qemu-nbd -c /dev/nbd0 ./win2k.

ISO file to use with the command line
script that we created, and would only
need to replace the the ISO file in that
command line, but I want to demon-
strate a different method. When we
created that command line, we added a
“monitor stdio” parameter, which allows
us to input commands from the terminal
to control the QEMU virtual machine.

If you haven’t noticed this yet, you
should be able to navigate to the termi-
nal window that you used to start your
QEMU virtual machine, which should
display a “(qemu)” prompt that indicates
that it is waiting for a command. Click
in that terminal window, then press EN-
TER once or twice to see if it’s working.
If your mouse is hooked into your Win-
dows virtual machine, just press “CTRL
+ ALT + G”, and you well get your mouse
cursor back and can go to that terminal.
If you type “help” here, you will get a list
of different options for interacting with
the virtual machine. We only want to
mount a new ISO, which can be done
with the following command:

(qemu)change ide1-cd0 /home/

ODROID/Windows/myiso.iso

Replace the path of the ISO file with
the file you created in the steps above.
Check that the ISO file is correctly in
place with the following command:

(qemu)info block

You can even be a little bit more gen-
tle on the system, and rather than just
switching the CDs directly, you can eject
the CD first:

(qemu)eject ide1-cd0

(qemu)change ide1-cd0 /home/

ODROID/Windows/myiso.iso

(qemu)info block

After you’ve done that opened “My
Computer” on your Windows 2000 vir-
tual machine, you should see the CD
you created and can interact with the

LINUX GAMING

ODROID MAGAZINE	 16

256 colors.
So what can you do with this Win-

dows 2000 virtual machine? Check out
Figures 11 and 12!

Don’t expect too much performance
from your VM, because it’s rather slow.
In fact, in my previous test, I was run-
ning it on Windows 98, which was faster
than what I experienced here in Win-
dows 2000. However, as mentioned
previously, Windows 98 was unable to
use audio at all. You can probably speed
up things a little bit by using a differ-
ent CPU or more RAM. Now that you
know the basics, you can experiment
with different settings.

You can now also install other pro-
grams such as Microsoft Office, Wi-
nAmp or any Windows applications that
you want to try. If you are adventurous,
you can use the same methods to install
Windows 95, Windows 98, Windows
ME, or even Windows XP, and try to
find the best option for you.

Although nothing prevents you from
choosing choose 16, 24, or 32 bits of
color for your Windows 2000 machine,
I found that everything besides 256 col-
ors will corrupt the Start menu and make
it unusable. While this is probably not
an issue, since you still can run programs
and games directly from the hard drive,
it makes it nearly impossible to turn off
or restart the machine properly, so I tend
to use 256 colors instead. This has one
downside: only 4:3 screen ratio supports

ed the vbempj.zip file. You should see a
couple folders, so go to VBE30/W2K/
PNP/ and select the vbemppnp.ini file.
Confirm the selection, then let Win-
dows search for the driver. After a short
while, you should see that it has found
the drivers and is ready to install them.

Let the setup finish the installation
of the drivers. The Window will flicker
a couple of times while initializing the
new graphics drivers. Although the sys-
tem doesn’t tell you to do so, restart the
system at this point in order to properly
load the new VGA drivers. Once the re-
boot has completed, you will see a noti-
fication telling you that this driver is for
non-commercial use only.

Although it says to press any button,
just keep waiting, and the notification
will go away on its own. Immediately
after login, you should notice the dif-
ference in video quality. You can now
modify the screen settings even more by
simply pressing the right mouse button
on an empty space of the desktop and
selecting Properties. Switch to the Set-
tings tab and configure your screen reso-
lution.

Figure 8 - Windows found the new VGA
drivers for the QEMU graphics adapter

Figure 9 - New VGA drivers notification

Figure 10 - Thanks to the new VGA driver you can run Windows 2000 in
720p, 1080p and above

Figures 11 and 12 - Age of Empires 1
running via a Windows 2000 QEMU
virtual machine on an ODROID

LINUX GAMING

ODROID MAGAZINE	 17

ODROID-C0 are Ubuntu, Android,
Arch Linux, Debian, and OpenELEC,
with thousands of free open-source
software packages available. There are
also plenty of custom operating systems
available for using the ODROID-C0 as
a multimedia center, Kodi, gaming sta-
tion, headless server, and much more
in the ODROID forums at http://bit.
ly/1SEUP5p.

Technical
specifications

The key features and improvements
over the original ODROID-C1 are
shown below:

•	 Amlogic ARM® Cortex®-
A5(ARMv7) 1.5Ghz quad core
CPUs

•	 Mali™-450 MP2 GPU (OpenGL
ES 2.0/1.1 enabled for Linux and
Android)

•	 1Gbyte DDR3 SDRAM

The ODROID-C0 is a computer
intended for those who wish to
make more flexible and portable

applications. It is a minimized hardware
version of the popular ODROID-C1,
and may be purchased from the Hard-
kernel store at http://bit.ly/1WFYKOL
for USD$25. It is highly suitable for
IoT projects, wearables, and other appli-
cations that require a lightweight device
such as drones, as shown in Figure 2.

All of the ODROID-C1/C1+ OS
images are fully compatible with the
ODROID-C0. Some of the mod-
ern operating systems that run on the

•	 eMMC4.5 HS200 Flash Storage
slot / UHS-1 SDR50 MicroSD
Card slot

•	 40pin + 7-pin GPIOs (unpopu-
lated)

•	 USB 2.0 Host x 2 (unpopulated)
•	 Infrared(IR) Receiver (unpopulated)
•	 Li+ rechargeable battery charger for

wearable and robots application
•	 Battery voltage level is accessible via

ADC in the SoC
•	 DC/DC step-down converters for

higher power efficiency
•	 DC/DC step-up converter for 5Volt

rails (USB host and HDMI) from a
Li-Polymer battery

•	 DIY friendly C0 Connector Pack is
available for handy prototyping (de-
scribed below)

•	 Fully integrated battery power cir-
cuit, so the unit can be made mobile
by attaching a 3.7V Li+ battery

For more information, please refer to

ODROID-C0
A compact board for
portable and lightweight
applications
by Justin Lee

ODROID-C0

Figure 2 - example drone project using
an ODROID-C0

Figure 1 - ODROID-C0 with battery

Figure 3 - Board detail

ODROID MAGAZINE	 18

http://bit.ly/1SEUP5p
http://bit.ly/1SEUP5p
http://bit.ly/1WFYKOL%20

Micro Secure Digital (MicroSD)
Card slot

The ODROID-C0 can utilize the
newer UHS-1 SD model, which is about
2 times faster than a normal class 10
card.

5V2A DC input
The DC input is designed for 5V

power, with an inner diameter of 0.8mm,
and an outer diameter of 2.5mm. The
ODROID-C0 consumes less than 0.5A
in most cases, but it can climb to 2A if
many passive USB peripherals are at-
tached directly to the main board.

Rechargeable Battery connection
This is for 3.7V Li-ion or Li-Polymer

battery connection. There is a charging
indicator LED which turns on when the
battery is being charged or unattached.
A slide switch is used to turn on/off
the board, and the charging circuit still
works even you turn the board off.

Battery connector
Molex 53398-0271 1.25mm pitch

Header, Surface Mount, Vertical type
(Mate with Molex 51021-0200)

USB host ports
There are two USB 2.0 host ports.

You can plug a keyboard, mouse, WiFi
adapter, storage and many other devices
into these ports. You can also charge
your smartphone with it! If you need
more than 2 ports, you can use a pow-

the technical details page at http://bit.
ly/1RGqrrl.

Documentation
The ODROID-C0/C1/C1+ Wiki at

http://bit.ly/1KRKoGV contains infor-
mation about operating systems, soft-
ware, and peripherals available for the
device. The full schematics may be down-
loaded from http://bit.ly/1KxguEX, the
mechanical drawings are at http://bit.
ly/1QlLP1F, and the datasheet is avail-
able at http://bit.ly/1dFEHhX.

Specifications
Processor
Amlogic S805 Quad Core

Cortex™-A5 processor with Dual Core
Mali™-450 GPU

RAM
Samsung K4B4G1646D 1GByte

DDR3 32bit RAM (512MByte x 2pcs)

eMMC module socket
8GB/64GB: Toshiba eMMC
16GB/32GB: Sandisk iNAND Ex-

treme
The eMMC storage access time is 2-3

times faster than the SD card. There
are 4 storage size options: 8GB, 16GB,
32GB and 64GB. Using an eMMC
module will greatly increase speed and
responsiveness, similar to the way in
which upgrading to a Solid State Drive
(SSD) in a typical PC also improves per-
formance over a mechanical hard drive
(HDD).

ODROID-C0

ered external USB hub to reduce the
power load on the main device.

HDMI port
Type-A standard HDMI connector

for video/audio output.

Status / Power LEDs
The ODROID-C0 has three indica-

tor LEDs that provide visual feedback:

1.	 The red LED indicates whether the
board is attached to 5V power.

2.	 The blue LED, when it is lit solid,
shows that the U-boot program is
running. When it is flashing like a
heartbeat, the kernel is running.

3.	 The green LED, when it is lit solid,
shows that the battery is charging.
When the light turns off, the battery
has been fully charged. If there is a
fast flashing of the green LED, the
battery is not connected or is not
functioning properly.

Infrared (IR) receiver
This is a remote control receiver mod-

ule that can accept standard 37.9Khz
wireless data in NEC format.

General Purpose Input and Output
(GPIO) ports

These 40-pin GPIO ports can be
used as GPIO/I2C/SPI/UART/ADC for
electronics and robotics. The 40 GPIO
pins on an ODROID-C0 are a great way
to interface with physical devices like
buttons and LEDs using a lightweight
Linux controller. If you’re a C/C++ or
Python developer, there’s a useful library
called WiringPi that handles interfacing
with the pins. We’ve already ported the
WiringPi v2 library to ODROID-C0.
Please note that pins #37, #38 and #40
are not compatible with Raspberry Pi
B+ 40pin header, and are dedicated to
analog input function. All of the GPIO
ports are 3.3Volt, but the ADC inputs
are limited to 1.8Volt.

Serial console port

Figure 4 - Block diagram

ODROID MAGAZINE	 19

http://bit.ly/1RGqrrl
http://bit.ly/1RGqrrl
http://bit.ly/1KRKoGV
http://bit.ly/1KxguEX
http://bit.ly/1QlLP1F
http://bit.ly/1QlLP1F
http://bit.ly/1dFEHhX

The official user manual for the
ODROID-XU4 was recently
released on the Hardkernel web-

site, and is available for direct down-
load at http://bit.ly/1U9Q8yg, via the
forums at http://bit.ly/1RykBrT, and
on the Google Play Store at http://bit.
ly/1WrIeSd.
The ODROID-XU4 is one of the most
powerful low-cost Single Board com-
puters available, as well as being an ex-
tremely versatile device. Featuring an
octa-core Exynos 5422 big.LITTLE
processor, advanced Mali GPU, and
Gigabit ethernet, it can function as a
home theater set-top box, a general pur-
pose computer for web browsing, gam-
ing and socializing, a compact tool for
college or office work, a prototyping de-
vice for hardware tinkering, a controller
for home automation, a workstation for
software development, and much more.
Some of the modern operating sys-
tems that run on the ODROID-
XU4 are Ubuntu, Android, Fedora,
ARCHLinux, Debian, and OpenEL-
EC, with thousands of free open-
source software packages available.
The ODROID-XU4 is an ARM de-
vice, which is the most widely used
architecture for mobile devices and
embedded 32-bit computing.

ODROID-XU4
User Manual
A Guide for All
Expertise Levels
edited by Rob Roy

soldering skills in order to use the pack,
and the cost is USD$1.80. Most of the
connectors are identical to the ones that
are built into the ODROID-C1+.

There are two different USB host con-
nectors in this package. If you want to
create a lower profile board, use a single
layer connector. If you want to have full
connectivity, use a dual layer connector.

A. Double Layer USB Type-A 8-Pin
DIP Jack Connector

B. Single Layer USB Type-A 4-Pin
DIP Jack Connector

C. IR(InfraRed) Receiver Sensor
This is a remote control receiver mod-

ule that can accept standard 37.9Khz
carrier frequency based wireless data.

D. UART Console Connector
A Molex 5268-04a (2.5mm pitch) is

mounted on the PCB. Its mate is Mo-
lex 50-37-5043 Wire-to-Board Crimp
Housing.

E. 7-pin Strip Male Header
Add pins to the audio I2S interface

holes in the ODROID-C0.
2.54mm (0.1inch) pitch

F. 20x2-pin Strip Male Header
Add pins to the 40-pin GPIO port.
2.54mm (0.1inch) pitch

Connecting the serial console port to
a PC gives access to the Linux console.
You can see the log of the boot, or login
to the C0 to change the video or net-
work settings. The serial UART uses a
3.3 volt interface, so we recommend the
USB-UART module kit from Hardker-
nel, available at http://bit.ly/1nhQuIm,
which is 100% compatible with the in-
terface.

RTC (Real Time Clock)
There is a backup battery connector

if you want to add RTC functions for
logging or keeping time when offline
by connecting a Lithium coin backup
battery (CR2032 or equivalent). All
of the RTC circuits are included on the
ODROID-C0 by default. It is a Molex
53398-0271

1.25mm pitch Header, Surface
Mount, Vertical type (Mate with Molex
51021-0200).

USB VBUS controller
NCP380 Protection IC for USB

power supply from OnSemi.

Boot media selector
If this port is opened, the first boot

media is always eMMC. If this port is
closed, the first boot media is always SD-
card.

Power on/off switch
You can turn on/off the system power

of the ODROID-C0 using this switch.
The charging circuit works regardless of
the switch state.

Power supply circuit
Discrete DC-DC converters and

LDOs are used for the CPU/DRAM/
IO power supply. MP2637 IC is used
to implement the charging function and
5V step-up booster.

Connector Pack
The ODROID-C0 connector pack

is perfect for various DIY projects with
the ODROID-C0. You will need some

Figure 5 - Connector Pack detail

ODROID-C0ODROID-XU4 MANUAL

ODROID MAGAZINE	 20

http://bit.ly/1U9Q8yg
http://bit.ly/1RykBrT
http://bit.ly/1WrIeSd
http://bit.ly/1WrIeSd
http://bit.ly/1nhQuIm

ODROID MAGAZINE	 21

I recently released my customized entertainment and gam-
ing operating system called Odrobian RetroGaming Arcade
(ORGA). It uses the Direct Frame Buffer GPU drivers that

I compiled specifically for retro-emulation and multimedia.
It is based on the Kodi media center using EmulationStation
as the main front end, along with some aspects of RetroPie.
ORGA is built on the following formula:

ORGA = (Mali-GPU-Fbdev + SDL2-Fbdev) * (Emulation-
Station-Fbdev + RetroArch-Fbdev + Kodi-Fbdev) / (Handy
X11 GUI)

The features of ORGA
include:

Fully themed entertainment system with pre-configured
EmulationStation V2

Compiled for Mali-Fbdev assuring maximum FPS perfor-
mance possible with best CPU efficiency

Fully hardware-accelerated RetroArch configured with
SDL2 video drivers as output device for Mali-Fbdev

EmulationStation and RetroArch working through SDL2 on
32bpp color-depth without alpha blending issues

Pre-compiled RetroArch emulation cores pre-installed
Kodi 15.2 Isengard compiled and optimized for AMlogic VPU

with OpenGLESv2, configured to use EmulationStation
Increases logical-RAM from 1GB, up from 2GB
All entertainment applications can be launched directly

from TTY consoles
You can run the X11 GUI from console anytime employing

the Mali X Video drivers
Updates are available directly from the Odrobian Reposi-

tory at http://bit.ly/1OTGdck
All software is compiled specifically on Odrobian Jessie

(Debian 8.2) with optimization flags

Please note that this project is still a work-in-progress effort,

OS Spotlight:
Odrobian RetroGaming Arcade
(ORGA) for ODROID-C1+
by @Xeosal

and so feedback and enhancements are welcome.

Getting Started
This software is based on the main Odrobian Jessie MATE

distribution, which can be converted to an ORGA entertain-
ment system with a single command. To do so, visit the fo-
rum thread titled “Odrobian Jessie for ODROID-C1/C1+”
at http://bit.ly/1ZVzERa in order to download the latest sup-
ported MATE edition. Then, flash the image to your boot me-
dia and boot the system with it. Start a terminal session (Ctrl
+ Alt + T) and run the following commands to install ORGA:

$ sudo -s

apt-get update && apt-get install \

 odrobian-platform-s805

insta-ORGA

Wait until the ODROID-C1+ reboots automatically to a TTY1
console. The X11 desktop will be disabled, and zRam will be acti-
vated automatically. Next, upgrade the kernel with the command:

$ sudo apt-get dist-upgrade

A complete gaminig emulation solution, ORGA will keep you gaming

Odrobian EmulationStation screenshot

RETROGAMING ARCADE

http://bit.ly/1OTGdck
http://bit.ly/1ZVzERa

ODROID MAGAZINE	 22

RETROGAMING ARCADE

Note that you may already have had the latest regular soft-
ware and packages updated during the previous “insta-ORGA”
command.

Tips
Always log into the system as the “odroid” user and not as

“root”. When required, use “sudo” for enhanced permission
needs. The “odroid” user password is also “odroid”.

Always start EmulationStation from TTY1 (Ctrl + Alt +
F1), which is the default console on boot. If you want the X11
GUI, it is preferable to start it via TTY3 (Ctrl + Alt + F3). You
can utilize the X11 GUI in order to browse the Internet using
the Chromium browser, or to configure your ROMs. Emu-
lators and BIOS files can be accessed through the Odrobian
MATE desktop environment with the “Caja” File Manager.

You can make Odrobian auto-start EmulationStation di-
rectly after the boot process by editing the “/etc/rc.local” file
and include the following command just above (before) the
“exit 0” statement:

runuser -l odroid -c ‘emulationstation’

Direct FrameBuffer device drivers will display text when
opening multimedia files and while performing some video
functions. If you do not wish to see the text, you can launch
Kodi as a GUI application through the X-server using the fol-
lowing command:

$ startx /usr/local/bin/kodi

You can also bypass the EmulationStation mechanism if
you plan to use the system solely as a media center by mak-
ing Odrobian auto-start Kodi directly after the boot process
has completed. To do so, include the following command just
above (before) the “exit 0” statement of the “/etc/rc.local” file:

runuser -l odroid -c ‘kodi’

Retro gaming
You can switch to TTY3 (Ctrl + Alt + F3) so you can use

the X11 GUI to configure the system. To initiate X11, run the
following command:

$ startx

As shown in Figure 2, you should see your emulation sys-
tem directory at your main home folder in /home/odroid/Ret-
roGaming, which is where you will place your files. For ex-
ample, if you have a BIOS file for PCSX (PS1) emulation, you
can place it directly inside the ~/RetroGaming/BIOS folder,

and it will be automatically detected. Emulator game ROMs
currently run as RetroArch cores by default. Additional ROMs
will be added in the future as they become available.

When you wish to start your EmulationStation front end,
you can switch back to the TTY1 console. Press the shortcut
key for TTY1 (Ctrl + Alt + F1), then run the following com-
mand:

$ emulationstation

Home folder for ROMs

ROMs

ODROID MAGAZINE	 23

RETROGAMING ARCADE

Emulators
I have successfully tested the following games and emulators:

Crash Bandicoot (Play Station 1) - Maximum (60 FPS)
Super Mario 64 (Nintendo 64) - Maximum (60 FPS)
Sega MasterSystem - Maximum (60 FPS)
Sega MegaDrive - Maximum (60 FPS)
Sega Genesis - Maximum (60 FPS)
GameBoy - Maximum (60 FPS)
Atari2600 - Maximum (60 FPS)
Atari7800 - Maximum (60 FPS)
Atari Jaguar - Maximum (60 FPS)
Atari Lynx - Maximum (60 FPS)
NES - Maximum (60 FPS)
SNES - Maximum (60 FPS)

After adding the ROMs to the default folder of your desired
emulator, they should automatically show up in the Kodi me-
dia center. You may be asked to by EmulationStation to con-
figure your joypad or attached keyboard for multimedia usage.

Feature Development
If you wish to contribute new features and functionality to

this project, you can find source code and configuration details
at the following locations:

EmulationStation Systems:
/etc/emulationstation/es_systems.cfg

EmulationStation Themes:
/etc/emulationstation/themes/

RetroArch Cores:
/usr/local/share/retrogaming/cores/

RetroArch Configurations:
/etc/retroarch/retroarch.cfg

Game ROMs:
/home/odroid/RetroGaming/roms

Game System Configurations and BIOS:
/home/odroid/RetroGaming/BIOS

Other:
/home/odroid/.config/*

Here is the list of default RetroArch Cores provided by the
“retroarch-default-cores” package:

fb_alpha_libretro, fb_alpha_neo_libretro

fceumm_libretro, fmsx_libretro

gambatte_libretro, genesis_plus_gx_libretro

handy_libretro, mednafen_ngp_libretro

mednafen_pce_fast_libretro, mednafen_vb_libretro

mednafen_wswan_libretro, mgba_libretro

mupen64plus_libretro, o2em_libretro

pcsx_rearmed_libretro, picodrive_libretro,

prosystem_libretro

snes9x_next_libretro, stella_libretro

vecx_libretro, virtualjaguar_libretro

The ORGA packages tree is organized as follows:

odrobian-retrogaming-arcade

libsdl2-fbdev

libsdl2-2.0-0

libsdl2-dev

es2-fbdev

retroarch-fbdev

retrogaming-default-cores

retrogaming-mame-core

kodi-odrobian-fbdev

mali-fbdev

xboxdrv-odrobian

Acknowledgements
Special thanks go the the following forum members and the

HardKernel team:

@RetroPie (for ES2 themes and the basic idea)
@memeka (for his SDL2 Mali-Fbdev patch)
@mdrjr (for hosting Odrobian repository)
@owersun (for kodi 15.2 isengard source code)
@meveric (for technical support and references)
@robroy (for community support)

References
If you have questions, comments, or suggestions, please visit

the original thread at http://bit.ly/1KjJKif. The original Odro-
bian Jessie image is also available at http://bit.ly/1ZVzERa.

http://bit.ly/1KjJKif
http://bit.ly/1ZVzERa

MUNIN

Munin is an open source application capable of re-
cording system and network performance data. It
is written in Perl, and uses RRD databases to create

graphs which are viewable over a web interface. In addition to
creating usage graphs, Munin can generate email alerts when
certain thresholds are reached. Its purpose is to give the user a
baseline of normal system status to help them understand what
went wrong.

Munin can be used in a master or node architecture with
multiple nodes reporting performance data to the master. The
master node stores the data in RRD database files and generates
the graphs for easy viewing. Currently, Munin has over 500
plugins which are available at bit.ly/1P6YW7T. The plugins
allow you to monitor things from basics like CPU/memory us-
age, IO performance, system temperature and network inter-
face throughput, to more the complex things such as MySql
slow queries or Transmission’s download queue. The simple
API, which may be downloaded from bit.ly/1OH7COA, can
be used for creating new plugins, and allows any user with basic
shell experience to create new graph types.

Installation
To install Munin on an ODROID running Linux, type the

following command:

$ sudo apt-get install munin

If you just want to configure your system as a node, without
a web interface, you can execute this instead:

$ sudo apt-get install munin-node

Web interface configuration
Once you’ve installed the Munin package, there is some

configuration required. Munin’s default configuration is stored

Munin
An Open source
Performance Analyzer
By Adrian Popa

in /etc/munin. Initially, Munin allows access to the web inter-
face only from localhost, so if you want to access it from your
LAN, you’ll need to make some changes.

If you’re running Ubuntu 14.04, Munin’s configuration
file for apache is /etc/munin/apache.conf. Unfortunately,
its syntax is for Apache 2.2, but Ubuntu 14.04 comes with
Apache 2.4. This means you will need to add a “Require ip
192.168.1.0/24” entry under the “Directory” directive to al-
low access from 192.168.1.0/24, replace it with your desired
address or subnet, and also comment out the line with “Order
allow,deny”, or you can run these one-liner commands in ter-
minal:

$ sudo sed -i -r ‘s:^\s+Allow \

 from localhost.*:&\n Require \

 ip 192.168.1.0/24:g’ \

 /etc/munin/apache.conf

$ sudo sed -i -e ‘/Order \

 allow,deny/ s/^#*/#/’ \

 /etc/munin/apache.conf

$ sudo service apache2 reload

If you’re on Ubuntu 15.04 instead, you can edit /etc/
munin/apache24.conf and add your ip/subnet as needed:

$ sudo sed -i ‘s:Require \

 local:&\n Require ip \

 192.168.1.0/24:g’ \

 /etc/munin/apache24.conf

To enable the web interface in apache, you can create a sym-
link between Munin’s config and the web server configuration:

$ sudo ln -s /etc/munin/apache24.conf \

 /etc/apache2/sites-enabled/010-munin.conf

ODROID MAGAZINE	 24

bit.ly/1P6YW7T
bit.ly/1OH7COA

MUNIN

$ sudo service apache2 reload

If you browse to http://<your-odroid-ip>/munin, you
should be presented with a default page where you can view
performance data.

Node configuration
By default, Munin starts monitoring the local system (local-

host), and enables a default set of plugins. You should take the
time to review the configuration file and tweak settings such as
the path to the rrd database or the list of managed nodes. The
configuration resides in /etc/munin/munin.conf.

The dbdir, htmldir and logdir entries point to paths in your
file system where data will be written frequently, about every
5 minutes. Readings are stored in Round-Robin Databases
(RRD), which is a file format with a fixed length where oldest
readings are overwritten by new data. This means that write
operations will keep writing data to the same sectors on disk,
possibly reducing the disk’s lifespan. If your system runs from
eMMC, then you should be OK, since Hardkernel’s eMMCs
have internal controllers that provide wear-leveling. However
if you’re running from an SD card, you risk damaging it over
time. An alternate solution might be to keep the data on a
USB drive, or on a mounted network share if available. Also,
you might want to store the data in RAM, using either /tmp
or a dedicated ramdisk, and write it to disk periodically, such
as every hour, to reduce wear. Keep this in mind when editing
the configuration.

Another important configuration section is the hosts sec-
tion, which is where you can define which node or nodes you
want to monitor. By default, only localhost is listed. You can
change the hostname and add additional hosts by running
munin-node. Communication between the master instance,
which is the one running the web interface, and all other nodes
is done over TCP port 4949. You can find detailed instruc-
tions on how to setup multiple nodes at http://it.ly/1Noa0YJ.
An example section looks like this:

a simple host tree

[procyon]

 address 127.0.0.1

 use_node_name yes

Once you are satisfied with the changes, don’t forget to re-
load the munin-node service with the following command:

$ sudo service munin-node restart

By default, Munin updates the graphs and the web interface
files after every 5 minute polling interval. This guarantees that
you always see the latest data with the minimum delay. How-
ever, unless you monitor the web interface 24/7, it is wasteful
to keep generating all the graphs. An improvement you could
do is to generate the graphs only on demand when accessing
the web interface. This will mean less writing to your storage
medium and a slightly increased wait time when browsing. To
do this, follow the instructions at http://it.ly/1Noan5w:

$ sudo apt-get install libapache2-mod-fcgid

Make sure to set the following options in your Munin con-
figuration file:

graph_strategy cgi

html_strategy cgi

Graph management
At this point, you should be getting graphs from your sys-

tem or systems, but you haven’t yet selected which items to
graph. When first installed, Munin scans your system and acti-
vates all the plugins that seem suitable. If you install a new ser-
vice afterwards that has a corresponding plugin, such as mysql-
server, Munin will not automatically generate graphs for it. To
correct this problem, you should run the following command:

$ sudo munin-node-configure --suggest

This command will suggest which plugins you can en-
able based on your current system settings. You can also see

Munin overview - network page

ODROID MAGAZINE	 25

http://it.ly/1Noa0YJ
http://it.ly/1Noan5w

MUNIN

why other plugins haven’t been enabled,
which may happen if they have missing
dependencies. To actually enable the
plugins you can run the following com-
mand:

$ sudo munin-node-configure --shell

This command will print out some
commands that you will need to run in
order to enable a specific plugin. You
should copy and paste the commands in
order to create symlinks in /etc/munin/
plugins that point to the actual plugins
under /usr/share/munin/plugins. Once
the symlinks are in place, the new pl-
ugins will be used in the next polling cycle.

Since you’re using Munin on an ODROID, you might want
to graph ODROID-specific data such as system temperature
or fan power percentages. You can get the those plugins, with
more coming soon, from my GitHub repository at http://
it.ly/1PrTKY8. To enable these extra plugins and fix their de-
pendencies, type the following commands:

$ sudo apt-get install bc

$ sudo wget http://bit.ly/1PI0Gkr

 -O /usr/share/munin/\

 plugins/odroid-temp

$ sudo wget http://bit.ly/1OJWYa6 \

 -O /usr/share/munin/\

 plugins/odroid-fan

$ sudo chmod a+x \

 /usr/share/munin/\

 plugins/odroid*

$ sudo munin-node-configure --shell

The last command should suggest what plugins are appro-
priate for your system, so that you can enable the temperature
plugin for C1+ and XU3/4 and both the temperature and fan
for XU3/4:

$ sudo ln -s \

 ‘/usr/share/munin/plugins/odroid-temp’ \

 ‘/etc/munin/plugins/odroid-temp’

$ sudo ln -s \

 ‘/usr/share/munin/plugins/odroid-fan’ \

 ‘/etc/munin/plugins/odroid-fan’

Please report any issues with these pl-
ugins via Github’s issue tracker or on the
Munin support thread on the ODROID
forums at http://bit.ly/1K0rRu9.

Troubleshooting
You might notice that from time to

time things may break. Graphs may not
update anymore, or they may hold the
wrong values, or you may want to un-
derstand why a specific plugin reports
a particular value. Here are some basic
troubleshooting steps:

1. Make sure cron still runs. Polling for
data, and graph generation are dependent
on cron. You can check that Munin is exe-
cuted every 5 minutes with this command:

System temperature graph - weekly

Odroid Fan power percent - weekly

ODROID MAGAZINE	 26

http://it.ly/1PrTKY8
http://it.ly/1PrTKY8
http://bit.ly/1K0rRu9

MUNIN

$ sudo tail -300 /var/log/syslog |\

 grep munin-cron

2. Check when the rrd files were last updated, what kind of data
they hold, and what permissions they have. You can do this man-
ually, or by running munin-check:

$ sudo munin-check

…

/var/lib/munin/datafile : Wrong permissions (664 !=

644)

/var/lib/munin/limits : Wrong permissions (664 !=

644)

/var/lib/munin/munin-graph.stats : Wrong permis-

sions (664 != 644)

/var/lib/munin/munin-update.stats : Wrong permis-

sions (664 != 644)

/var/lib/munin-node/plugin-state : Wrong owner

(root != nobody)

/var/lib/munin-node/plugin-state : Wrong permis-

sions (755 != 775)

/etc/munin/plugin-conf.d : Wrong permissions (750

!= 755)

Check done. Please note that this script only checks most
things, not all things.

Note that munin-check checks the issues, but doesn’t fix
them, so you’ll need to update permissions yourself wherever
indicated. If you are investigating actual rrd files, check the
file’s last change date, and also peek inside to see when it was
last updated and what values were written:

$ cd /var/lib/munin/procyon

$ sudo ls -l

procyon-uptime-uptime-g.rrd

-rw-rw-r-- 1 munin munin 50664 Jan 16 17:05 procyon-

uptime-uptime-g.rrd

$ sudo rrdtool info \

 procyon-uptime-uptime-g.rrd | \

 egrep ‘last_update|value’ | head -2

last_update = 1452956716

ds[42].value = 5.6960000000e+01

3. Read the logs in /var/log/munin/. Take the time to explore
them and see if you can pinpoint the source of the problem.

4. If you’re troubleshooting a specific plugin, you can directly in-
teract with the munin-node process and ask for feedback (user
input is in bold):

$ telnet 127.0.0.1 4949

Trying 127.0.0.1...

Connected to 127.0.0.1.

Escape character is ‘^]’.

munin node at procyon

nodes

procyon

.

list procyon

cpu df df_inode if_eth0 load memory munin_stats

odroid-fan odroid-temp proc_pri processes uptime us-

ers vmstat

fetch odroid-temp

temperature.value 53

.

quit

Connection closed by foreign host.

If the steps above don’t fix the issue, you can consult the
Munin FAQ for additional assistance at http://bit.ly/1P9tMwT.

Conclusion
Why would you want to use Munin? Once you have

your system running the way you want, you can use the
information recorded by Munin to spot what changes over
time. For example, maybe your cloudshell has slow per-
formance when playing videos, in which case you could
add graphs to keep an eye on your network, IO status or
NFS to identify the problem. Also, you could create your
own graphs based on custom parameters such as the state
of the GPIO ports. Please note that the RRD databases
only holds one reading for every 5 minutes, so if your data
changes frequently you will only be able to capture snap-
shots of its state, so it’s not suitable for graphing data that
changes state several times a second. The API for adding
new graphs is easy to follow, and having historical data
that you can correlate with other parameters is very helpful
in the debugging process.

ODROID MAGAZINE	 27

http://bit.ly/1P9tMwT

OWEN ROBOT KIT

The OWEN project started out about a year ago when we
finally got a break from the high volume of ODROID-
C1 sales that started in mid-December of 2014. At

that time, the entire ameriDroid staff, plus about 6 tem-
porary workers, were putting in 12 to 14 hour days
shipping C1 orders, 6 days a week, for well over a
month!

OWEN stands for ODROID Walking Edu-
cational uNit, and was coincidentally named
after one of our technical interns at the
time, also named Owen. The inspira-
tion for the robot was an Arduino-con-
trolled smart phone walking platform called
“MobBob”. We wanted to see if we could do the
same thing with an ODROID-C1, but without the re-
quirement of harnessing an expensive smart phone in order
to use the robot.

We designed the pelvis, feet and ankles using Autodesk’s
great (and free) 123D Design program, and printed the parts
on our Solidoodle 3D printer in ABS plastic. It took many
attempts to work out all the details, and we continue to make
minor tweaks to the designs. Once the C1+ was released in the
Summer of 2015, we made a few changes and we were able to
use it instead of the C1.

Because we wanted to make use of the C1 3.2” Touchscreen,
this ruled out Android as an operating system. Therefore, we
utilized Hardkernel’s standard Ubuntu distribution. In order
to make it easier to install the screen, Owen and I wrote the au-
tomated ameriDroid installer for the touchscreen and released
it to http://bit.ly/1NtDk09 so that others could use it for their
own projects as well.

We needed a servo controller, so we looked around the web
for a nice one. We were able to secure distribution of the C1
Chroma Servo module, so we purchased a large quantity of
them and started offering them on the ameriDroid.com web-

The OWEN
Robot Kit
A sample project
for the new ODROID-C0
 by Bo Lechnowsky

site. It’s a great 8-channel servo controller, but one minor issue
is that the 2x13 pin pass-through is offset to the side slightly,
causing the screen to be off to the robot’s left side by about
6mm. This affects OWEN’s balance a little bit, but most of its
effects are negated by tweaks in the control software.

The next hurdle was providing battery power, but by the time
we were faced with the challenge, Hardkernel had already re-
leased the UPS2-C1 kit. One great thing about the UPS2 is
that it has an on/off switch, making it easy to shut down the
robot. A challenge with the UPS2 is that the servos can draw a
lot of momentary current, and the UPS2 is designed to protect
the C1 from this type of situation. This caused the robot not to
be able to boot up unless it was connected to a wall charger. The
solution of removing the power protection IC chip was quickly
provided by Justin Lee, and we were up and running. Early tests
allowed us to run the robot off the UPS2 for well over an hour!

The rise of the machines will come in form of the cutest robot
ovelords, you have been warned. Get yours now!

ODROID MAGAZINE	 28

http://bit.ly/1NtDk09
ameriDroid.com

OWEN ROBOT KIT

We wanted to be able to control the robot, including pro-
gramming it, using a web browser alone. One challenge in
having control software running from inside a web server is the
restrictive permissions needed to keep web-launched software
from causing damage to the OS. We had to write intermedi-
ate software in order to allow the control software to do things
like launch and kill processes. I had used Lighttpd web server
on other ARM projects before, so it was an easy choice for this
project as well.

The robot’s control software is mainly written in Rebol3,
including the SVG graphics of the face – a built-in feature of
Rebol/View. Rebol is a great language because it does not dif-
ferentiate between data and code. This allows code entered
in a web form to be executed without issues. Rebol also has
great dialecting capabilities, known as DSL (Domain-Specific
Language). So we wrote a DSL to allow the end user to easily
program the robot through the web interface.

As a result, the robot can be controlled using any device
that has a web browser, including a smartphone, tablet, lap-
top, desktop computer or other single-board computer. If the
proper port is allowed through the network router/firewall, the
robot can even be controlled from anywhere in the world.

We brought a few prototypes to ARM TechCon in Silicon
Valley where we shared a booth with Hardkernel. Because we
knew the wireless network at the convention center would be
overtaxed, we brought our own VoCore OpenWRT micro-
router to allow the robots, a laptop, smartphones and some
ODROID-VU7’s to communicate with each other.

We started offering OWEN kits for sale on ameriDroid.
com shortly after the TechCon due to quite a few requests from
people wanting to know how they could get one. If you’d like
to take a video tour of the Hardkernel booth at ARM Techcon
2016, check out the following YouTube links:

ARMDevices.net http://bit.ly/1OGhQRw

Android Authority http://bit.ly/1PLSxLQ

Shortly after the TechCon, Hardkernel informed us that
they were coming out with the ODROID-C0, and wanted us
to modify OWEN to run off that. It was easy! Some minor
changes to the pelvis was all it took to help OWEN shed quite
a bit of weight and complexity. Because the C0 has an inte-
grated battery-charging circuit and on/off switch, we bypassed
the requirement of needing a UPS2 altogether, with no need
for the extra USB and Ethernet ports.

Now, we’re working on adding speakers to OWEN. It can
already talk with the help of Festival or Flite TTS software
for Ubuntu and can play MP3’s with mpg321, so dancing to
music is no longer a problem, but having good quality sound
is a challenge. It should also be possible to use a USB Blue-
tooth Module 2 to transmit sound from OWEN to a bluetooth
speaker, but we wanted to make it completely separate if pos-
sible.

In addition, we’re developing a smaller, lighter and less ex-
pensive servo controller in-house using an ATmega328 Pro

The OWEN assembled and in 2 configurations: wired and wireless,

ODROID MAGAZINE	 29

ameriDroid.com
ameriDroid.com
ARMDevices.net
http://bit.ly/1OGhQRw
http://bit.ly/1PLSxLQ

OWEN ROBOT KIT

Mini board with a custom sketch. This should go along
nicely with the smaller form factor of the C0. By the
time we’re done with the C0-inspired enhancements, we
expect OWEN’s overall cost to drop by at least 25%, and
the front-to-back dimensions of OWEN’s body should
drop from 60mm to 50mm while adding easy access to
the eMMC and microSD slots on the C0. The UPS2 on
the C1 version of OWEN blocked access to the eMMC
and microSD slots, so the UPS2 has to be removed in
order to access the modules. The availability of the WiFi
Module 0 will also greatly decrease OWEN’s height when
compared to the WiFi Modules 3 and 4, and the overall
center-of-gravity of the OWEN-C0 model will be signifi-
cantly lower than OWEN-C1+.

As Hardkernel continues to make new products with
great features, we expect to continue making enhance-
ments to OWEN and our other projects, like the VU7
tablet kit. You can keep up with what we’re doing by
subscribing to our ameriDroid YouTube channel
at http://bit.ly/1OGhQ4b. We try to post at least
one video every week ranging from tutorials to demos
to project videos.

The secret to good robot design? Prototyping often and refining at
each iteration.

ODROID MAGAZINE	 30

http://bit.ly/1OGhQ4b

Android has a plethora of sensors and wireless capabilities
for application developers to work with, and one of the
standard wireless connection that has been around for

a long time, besides WiFi, is Bluetooth. Almost all Android
devices support Bluetooth, and there are many Bluetooth prod-
ucts that can be used with Android devices. Android provides
a rich and easy-to-use API for working with Bluetooth. In this
article, we will take a look at the Bluetooth stack as well as a
sample application.

Primarily, there are two types of Bluetooth: Bluetooth Clas-
sic and Bluetooth Low Energy. These classifications also differ
in the way in which the API works in Android.

Bluetooth Classic
Classic emcompasses “old” Bluetooth v2.1/3.x. The major-

ity of the devices in the market fall into this category. This ver-
sion of bluetooth is targeted for high-bandwidth data transfer
that does not care about power consumption, such as speakers,
MIDI, and headphones.

Bluetooth Low Energy
Low Energy is the “new” Bluetooth v4.x, where it is targeted

mostly for devices that requires low bandwidth data transfer
and long-lasting power such as a beacon.

Android
Development
Accessing the
Bluetooth Stack
by Nanik Tolaram

ANDROID DEVELOPMENT

Bluetooth Stack
Figure 1 illustrates a high level diagram of the different lay-

ers in Android that work together to make your Bluetooth ap-
plication function.

Android Bluetooth Framework – This layer is the “bridge”
that closes the gap between your application and whatever lies
below it. Most of the time, Bluetooth applications will interact
with this layer via the API. For example, the following is the
most common code you will use to get a bluetooth adapter to
be enabled in your application

BluetoothAdapter mBluetoothAdapter = BluetoothAdapt-

er.getDefaultAdapter();

Bluetooth Stack – This is the “heart” of the whole stack,
since without this stack you can assume there will be no Blue-
tooth in Android. There are 2 different projects in the open
source community that are widely used – BlueZ and Bluedroid.
BlueZ is the defacto standard in Linux world for any kind of
Linux distribution, whereas the primary project used in An-
droid is Bluedroid. BlueZ has very rich support for Android,
and is plug-and-play when used inside different version of An-
droid. This software stack resides inside the external/bluetooth
directory of Android source code. Figure 3 details the different
BlueZ and Bluedroid source structures. The only open source
Android variant that uses BlueZ is the Android-x86 project.

Figure 1 - Bluetooth Stack

Figures 2a and 2b - BlueZ /
Bluedroid Source Directory

ODROID MAGAZINE	 31

ANDROID DEVELOPMENT

Linux Kernel + Firmware – This is the final software layer
that takes care of the communication between the upper soft-
ware stack and the hardware. Most Bluetooth devices contain
proprietary firmware that are used inside the Linux Kernel.

Bluetooth System Files
Both the Android Bluetooth Framework and Bluetooth

Stack produce a number of binary files that are loaded up by
Android during runtime. Table 1 outlines some of the files that
are generated and used by Android.

Switching ON
Programming Bluetooth is fun, but

have you ever wondered how the in-
ternals work? How does the app that
“communicates” with the lower level to
enable my application send and receive
data wirelessly? Figure 3 shows the high
level view of what happens internally
when you turn on Bluetooth in your de-
vice. Turning Bluetooth on manually is
done via the Settings application in your
Android device.

The only Java application that is used
internally is called Bluetooth.apk, which
resides in the Android source code under
packages/apps/Bluetooth folder.

Bluetooth Programming
As previously mentioned, there are two ways of Bluetooth

programming in Android, depending which devices you want
to support. Tables 2 and 3 outline some of the classes that are
normally used to program Bluetooth.

We will not go in-depth on how to program using Bluetooth
in Android, but you can visit Google’s Android website, which
contains comprehensive documentation along with sample appli-
cations for learning more. Visit http://bit.ly/19NYRE3 for classic
Bluetooth guidance, and http://bit.ly/1nj9p5Z for BLE tutorials.

Bluetooth Demo
As a demonstration of Android Bluetooth programming,

download the Bluetooth Chat sample application available at
http://bit.ly/1SuBe7R, which is a basic chat application that
provides 2-way chat communication between two Bluetooth
device using classic programming. The application is split into
3 main sections:

Scanning/Querying – The application scans nearby Blue-
tooth devices and displays them using a listview that includes
paired devices. If the device has not been paired, the framework
will automatically pop up a dialog box allowing the user to enter
the PIN number for pairing the device. The way the UI receives
result from the framework for a scanned Bluetooth devices is
by listening to a BluetoothDevice.ACTION_FOUND intent,
then using the method getBondedDevices() to get a list of de-
vices that have been paired. Upon completion of the scanning
operation, the app will stop the scanning process.

Connection – Once the user selects the device, the applica-
tion will spawn a new thread in order to connect to the device.
The way to connect to a classic device is by using the creat-
eRfcommSocketToServiceRecord (for secured connection) or
createInsecureRfcommSocketToServiceRecord (for unsecured
connection), and once the connection has been established,
the app will spawn another thread to listen for incoming pack-
et from the external device. The spawned thread will be in a
blocked state while it waits for an incoming packet from the
external device.

Data Transfer – Incoming messages and packets are pro-
cessed by the application via a message handler in the UI.

Table 1 - Bluetooth System Files

Figure 3 - Bluetooth Turn ON Process

Table 2 - Classic Bluetooth API

Table 3 -
Bluetooth Low
Energy API

ODROID MAGAZINE	 32

http://bit.ly/19NYRE3
http://bit.ly/1nj9p5Z
http://bit.ly/1SuBe7R

Please tell us a little about yourself.
My name is David Lima, and I am 24 years old, living in

São Paulo, Brazil. I graduated with a degree in Computing
with Software Development, and work as a SAN Disk Storage
Specialist dealing with enterprise storage devices and the infra-
structure behind them. I am not married but I intend to have
two children, then retire to a small peaceful town.

How did you get started with computers?
I remember having a computer at home since I was six,

but by the time I noticed that’s what I wanted to do for liv-
ing at about 10 years old, the computer was so outdated that
it stopped working all the time. I became curious about how
it functioned, and what I could do to fix it. Eventually I was
assembling and disassembling that computer like it was made
of LEGOs!

What attracted you to the ODROID platform?
I am actually new to ODROIDs. I have always been curi-

ous about development boards, and wanted one for myself,
but was kind of lazy when it came to learning more about
them. About a year ago, a friend of mine introduced me to his
ODROID boards and I thought, “Dude, that’s awesome. Why
didn’t I find this before?” I have tried many things on them so
far, but still I have a lot to learn and experiment everything this
great platform has to offer.

Meet An ODROIDian
David Lima: quintessential Enterprise storage
expert and system administratoR
edited by Rob Roy

How do you use your ODROIDs?
My ODROIDs are configured as torrent clients, media

servers, Samba servers, local DNS servers, and game stations,
with an extra one for experiments where if everything goes
wrong, I just flash the image on it again.

Which ODROID is your favorite?
I still think U3 is the most stable and has the perfect bal-

ance between price and processing capacity.

Your Logical Volume Management column is very informative.
How did you become an expert in server administration?

I think of myself more like an enthusiast than an expert. I
used to work as a Linux system administrator supporting large
environments, so that’s where most of my experience comes
from. I also have had Linux systems at home for quite a while,
and am curious when it comes to features for it.

What innovations would you like to see in future Hardkernel
products?

David decided to troll his photographer friend by giving all his
photos where he never LOOKS AT THE CAMERA!

MEET AN ODROIDIAN

All LVM articles were tested by David’s deceptible simple U3 x
XU4 setup, showing how far you can go on storage on ODROIDS

ODROID MAGAZINE	 33

Known by all his friends as a zen-life master, he sent this image that represents his philosophy of tranforming
bad vibes in positive energy. There is no task that he doesn’t tacke with calm and good humor

Wanna know the dark side of our zen-life master? Play Magic
against him and you will find an extremely agressive player, you
have been warned!

I am looking forward to having more RAM on the
ODROIDs, as well as a 64-bit CPU architecture. Then, I can
start creating production-quality virtual machines on it and
have a datacenter the size of a credit card. Also, having blue-
tooth and Wi-Fi embedded on the boards would save a few
USB ports.

What hobbies and interests do you have apart from computers?
I am kind of a complete geek, so apart from computers, I

enjoy playing a card game called Magic The Gathering. I also
love going to the movies and reading superhero comics. My
favorite sports are volleyball and swimming, but those are two
things I haven`t done in quite a while.

What advice do you have for someone want to learn more about pro-
gramming?

The secret to learning anything, which is no secret at all,
is to have fun. Do what you like and you won’t even notice
that you are learning from the experience. Having an ob-
jective also helps a lot. If you identify a problem, you will
learn a lot on your way to solving it. When you do, unless
you want to be Daniel-san from the Karate Kid movie and
do wax on/wax off repeatedly, write down how you did it,
as you will almost certainly forget after a while. This saves a
lot a of time in the future.

MEET AN ODROIDIAN

ODROID MAGAZINE	 34

