
ODROID
Magazine

Pokémon
How to hack the hit game
using GPS spoofing

Gotta catch ém all!

Kodibuntu • ODROID-C2 IoT • Hadoop and Spark on ODROID XU4

• Securing WPA
networks from
dictionary
attacks

• REDTOP, an
amazing project with

an ODROID-C1
and 3D-printed case

Pokémon
How to hack the hit game
using GPS spoofing

Gotta catch ém all!

Year Three
Issue #33
Sep 2016

What we stand for.
We strive to symbolize the edge of technology,
future, youth, humanity, and engineering.

Our philosophy is based on Developers.
And our efforts to keep close relationships with
developers around the world.

For that, you can always count on having the quality
and sophistication that is the hallmark of our products.

Simple, modern and distinctive.
So you can have the best to accomplish
everything you can dream of.

We are now shipping the ODROID-U3
device to EU countries! Come and visit
our online store to shop!

Address: Max-Pollin-Straße 1
85104 Pförring Germany

Telephone & Fax
phone: +49 (0) 8403 / 920-920
email: service@pollin.de

Our ODROID products can be found at
http://bit.ly/1tXPXwe

mailto:service@pollin.de
http://bit.ly/1tXPXwe

EDITORIAL

ODROID Magazine, published monthly at http://magazine.odroid.com, is your source for all things ODROIDian.
Hard Kernel, Ltd. • 704 Anyang K-Center, Gwanyang, Dongan, Anyang, Gyeonggi, South Korea, 431-815
Hardkernel manufactures the ODROID family of quad-core development boards and the world’s first ARM big.LITTLE single board computer.
For information on submitting articles, contact odroidmagazine@gmail.com, or visit http://bit.ly/1ypImXs.
You can join the growing ODROID community with members from over 135 countries at http://forum.odroid.com.
Explore the new technologies offered by Hardkernel at http://www.hardkernel.com.

Pokemon Go, the most popular mobile game in history,
entertains over 20 million daily users. Part of the game
involves hatching Pokemon eggs, which depends on how

many kilometers are walked by the player. Although we recom-
mend playing the game as intended, since getting exercise and

being outside is part of the game,
there is an interesting hack that
can be done with an ODROID that
allows eggs to be hatched by replay-

ing a typical route on an ODROID and
spoofing the GPS location to Pokemon

Go. It’s a proof-of-concept project, so we don’t
recommend trying it with your own account!

We also present a unique 3D-printed laptop
project called Redtop, along with an inexpensive XU4 case that

you can print on a standard inkjet or laser printer. Michael continues
his high-performance computing tutorial with a guide to installing Hadoop, Adrian con-
cludes his network security series on WPA networks and shares some useful backup
scripts, Bo chronicles his adventures in creating a modern car computer, and @withro-
bot clarifies the difference in camera shutter mechanisms. For gaming enthusiasts, To-
bias features Sega Saturn emulation, and we take a look at Pac-Man 256 for Android.

mailto:odroidmagazine@gmail.com
http://bit.ly/1ypImXs
http://forum.odroid.com
http://www.hardkernel.com

Manuel Adamuz, Spanish Editor
I am 31 years old and live in Seville, Spain, and was born in Granada. I am married to a wonderful woman and have
a child. A few years ago I worked as a computer technician and programmer, but my current job is related to quality
management and information technology: ISO 9001, ISO 27001, and ISO 20000. I am passionate about computer
science, especially microcomputers such as the ODROID and Raspberry Pi. I love experimenting with these com-

puters. My wife says I’m crazy because I just think of ODROIDs! My other great hobby is mountain biking, and I
occasionally participate in semi-professional competitions.

Andrew Ruggeri, Assistant Editor
I am a Biomedical Systems engineer located in New England currently working in the Aerospace industry. An 8-bit
68HC11 microcontroller and assembly code are what got me interested in embedded systems. Nowadays, most proj-
ects I do are in C and C++, or high-level languages such as C# and Java. For many projects, I use ODROID boards,
but I still try to use 8bit controllers whenever I can (I’m an ATMEL fan). Apart from electronics, I’m an analog
analogue photography and film development geek who enjoys trying to speak foreign languages.

Venkat Bommakanti, Assistant Editor
I’m a computer enthusiast from the San Francisco Bay Area in California. I try to incorporate many of my interests
into single board computer projects, such as hardware tinkering, metal and woodworking, reusing salvaged materials,
software development, and creating audiophile music recordings. I enjoy learning something new all the time, and
try to share my joy and enthusiasm with the community.

Josh Sherman, Assistant Editor
I’m from the New York area, and volunteer my time as a writer and editor for ODROID Magazine. I tinker with
computers of all shapes and sizes: tearing apart tablets, turning Raspberry Pis into PlayStations, and experimenting
with ODROIDs and other SoCs. I love getting into the nitty gritty in order to learn more, and enjoy teaching oth-
ers by writing stories and guides about Linux, ARM, and other fun experimental projects.

Nicole Scott, Art Editor
Nicole is a Digital Strategist and Transmedia Producer specializing in online optimization and inbound marketing
strategies, social media management, and media production for print, web, video, and film. Managing multiple ac-
counts with agencies and filmmakers, from web design and programming, Analytics and Adwords, to video editing
and DVD authoring, Nicole helps clients with the all aspects of online visibility. Nicole owns anODROID-U2,
and a number of ODROID-U3’s and looks forward to using the latest technologies for both personal and business

endeavors. Nicole’s web site can be found at http://www.nicolecscott.com.

James LeFevour, Art Editor
I’m a Digital Media Specialist who is also enjoying freelance work in social network marketing and website administra-
tion. The more I learn about ODROID capabilities, the more excited I am to try new things I’m learning about. Being
a transplant to San Diego from the Midwest, I am still quite enamored with many aspects that I think most West Coast
people take for granted. I live with my lovely wife and our adorable pet rabbit; the latter keeps my books and computer

equipment in constant peril, the former consoles me when said peril manifests.

Bruno Doiche, Senior Art Editor
Bruno loves his job, but his job love him even more! That’s why it keeps calling him every day and every night, with a

special capacity to predict when he is about to cook, do the laundry, or wash dishes. But, he doesn’t mind too much, since on
the other end of the phone is always someone that just screwed the world up a little bit and needs him to fix it for them for
their world to keep spinning.

OUR AMAZING ODROIDIAN STAFF:

Rob Roy, Chief Editor
I’m a computer programmer in San Francisco, CA, designing and building web applications for local clients on my
network cluster of ODROIDs. My primary languages are jQuery, Angular JS and HTML5/CSS3. I also develop pre-
built operating systems, custom kernels and optimized applications for the ODROID platform based on Hardkernel’s
official releases, for which I have won several Monthly Forum Awards. I use my ODROIDs for a variety of purposes,

including media center, web server, application development, workstation, and gaming console. You can check out my
100GB collection of ODROID software, prebuilt kernels and OS images at http://bit.ly/1fsaXQs.

http://
http://

INDEX

KODIBUNTU - 31

odroid-c1 laptop - 14

android gaming: pac-man 256 - 17

IOT DEVICE - 27

BACKUP SCRIPTS - 22

LINUX GAMING: SEGA & cdemu - 35

CAR COMPUTER - 32

wpa security - 10

CAMERA SHUTTER - 41

hadoop file system - 18

hacking pokemon go - 6

XU4 CASE - 39

Meet an ODROIDian - 43

VU7 Plus - 42

Hacking Pokemon Go
with an ODROID
How to Perform GPS Spoofing
by Andrew Ruggeri

POKÉMON GO

Pokemon Go is an immensely popular cell phone game, which has been
downloaded over 100 million times by gamers all over the world. It uses
augmented reality to make you explore the real world in order to capture

pokemon, and go to actual landmarks where in-game goodies are placed. The more
you walk, capture pokemon, and train at poke gyms, the more points you get.

The game uses the cell phone’s GPS in order to track the gamers movement and
distance walked. This is where the “hack” comes into play. I want to apologize for the
clickbait-esque title, as this is not a hack on the actual game but, rather a way to spoof
the geolocation features of the game. We will be focusing on sending simulated or
recorded GPS data to Android. The nice thing about ODROIDs is that not only do
they run Android, but they are highly configurable. From a hardware point of view, the
main GPIO header has several forms of serial interfaces. Additionally, the software is
easily configurable and, if need be, we have full access to the Android source.

So, what makes this ODROID and GPS “hack” so appealing? Well, there are
two main benefits to this approach. Recently, Niantic Inc, the company behind
Pokemon Go, has begun aggressively going after “bots” by checking API usage.
Any account caught using a bot will result in a permanent ban. The GPS method
outlined here uses the official Android app, which means that all API calls to the
Niantic server will not be flagged. There are several “cracked” Android version of
Pokemon Go which exist which allow the user to cheat and move around in-game
without moving in the real world. However, some of these “cracked” version have
been shown to run malicious code and, even worse, require root to be installed, so
the potential for problems is at a maximum.

GPS on Android
ODROIDs by default have all the drivers need to operate a typical NMEA

GPS. NMEA is the protocol standard used to communicate GPS data. Luckily,
the NMEA protocol used is both text-based and serial, this makes it extremely
work with because it’s easy to debug and emulate. NMEA is very versatile because
info such as satellites in view and satellites used, speed, waypoints, position error,
and more can be transmitted.

ODROIDs themselves do not have an embedded GPS unit on them, but a
common interface for many external GPS units is via USB, such as the GPS mod-
ule from Hardkernel. Once connected, the module will typically connect on the
serial interface available at /dev/ttyUSB0 or /dev/ttyACM0. Android contains a
file in its root system partition known as build.prop, which holds the settings for
many different aspects of Android. Two of these settings are pertinent to the func-
tioning of the GPS.

ro.kernel.android.gps=/dev/ttyACM0

ro.kernel.android.gps.speed=9600

ODROID MAGAZINE	 6

The first value, “ro.ker-
nel.android.gps”, is the loca-
tion to the of the NMEA se-
rial stream, which is normally
tty*. The second value is the
serial stream speed. This is
where things get fun. If we
set the GPS location to some-
thing, we can feed our own
GPS NMEA data too, which
allows us to spoof the GPS.
For the bulk of my tests, I had
my ODROID-C2 connected
via UART to my laptop. This
meant a quick change to the
build.prop file to have GPS
tty set to “/dev/ttyS1”, the
TTY port for UART1 on the
C2.

Spoofing
I’ve rewritten this section

a few times in light of recent
events and actions which Ni-
antic has had toward “cheaters”. In place of writing about posting code that
I have made, I’m going to focus on several techniques and tools which accom-
plish the same basic principle. The easiest method is to record and playback a
log of NMEA data. In the context of Pokemon Go, go for a walk in an area
with a good amount of pokestops, gyms, and pokemon. There are several An-
droid apps that you can install on your phone, assuming you have an Android
phone, which will allow you to save
the GPS NMEA data to a log. Move
the log file to the laptop attached to
the ODROID. Send one line of text
from the NMEA log file to serial at
a rate of about 1 line every 100ms to
200ms. A simple Python script can
do this easily. This method might
have the least amount of “wow” fac-
tor to it, but it’s very simple and gets
the job done. The fact that these logs
represent real data is also a big ben-
efit.

The second option is to use a GPS
simulator, which runs on the laptop
and pumps the artificial GPS data
over to the ODROID. There are
several GPS simulation tools which
already exist and have nice interfaces
to them. I have noticed that many
of them typically will send out the

POKÉMON GO

Serial stream of NMEA GPS data

ODROID USB-UART connection

ODROID MAGAZINE	 7

POKÉMON GO

simulated NMEA GPS data
over a TCP or UDP socket.
My fix for this was to simply write a program to read in from a local port and then
push the packet’s content to console or serial. One note of caution when artificially
creating GPS data: be very careful about distances and speed. Remember that you
are trying to mimic real world conditions, so if you jump from city to city or conti-
nent to continent, that’s gonna raise some flags for your account.

Once you have your source of the GPS data selected and ready to go, you can
move on. For quick and easy debugging of GPS info on Android, there are some
great programs listed at the end of this guide. I highly recommend that you install
one of them, as they really will help a lot for debugging and error checking before
you launch Pokemon Go.

Android and ODROID Setup
As mentioned, before the setup is fairly simple and involves having a laptop, or

even another ODROID, acting as the source of the GPS data. This is the device
which will send out or fake or pre-recorded GPS data to the ODROID running
Android. The laptop is connected to the ODROID’s UART port, or any other serial
port. For my setup, which is shown in Figure 2, I have a USB to UART converter
connected to the ODROID C2’s UART1 port.

The software on the Android side of things is very minimal and only requires a
few quick change to settings and the build.prop file which was talked about before.
Assuming that you have the Google Playstore installed, installing Pokemon Go is
very simple and requires only a few clicks. If you do not have it installed, it can be in-
stalled by following Hardkernel’s easy to follow directions at http://bit.ly/2aWS696.
One thing to note is that I was having some difficulties interacting with the actual
Pokemon Go app through the use of a keyboard and mouse. I noticed some buttons
would not register as being pressed. I ended up switching to using a touch screen and
didn’t have any problems after that.

Pokemon Go running on the spoofing system

ODROID MAGAZINE	 8

http://bit.ly/2aWS696

POKÉMON GO

There are a few things you might want to change in your Android’s settings. The
first thing you will want to do is go into Settings->Developer Options and uncheck
“Allow mock locations”, which is in the “Debugging” section. If this is still set, you
will notice that Pokemon Go will show an GPS location error. Once “Allow mock
locations” is unchecked, this message will go away. The second thing you will want
to change is in the Location page of the settings. Then, click the top “Mode” option
this will bring up three choices, from which you should select “Device Only”. This
will use only the location information from the GPS and not from any other source.

Notes
Once you have your GPS data being sent to your ODROID and your build.

prop properly set to watch the correct serial port, you can now go ahead and open
Pokemon Go. Assuming that you have your data emulating movement, you should
see your pokemon “trainer” begin to walk in the game. Before I wrap things up, I
want to emphasize two important points. The first, and most important, you are
violating the terms of the game by doing this. If you are caught, Niantic has every
right to permanently ban your account. The second point I want to make is that it’s
just a game. If it has come to a point where the game needs to be automated for you
to enjoy it, it’s probably not worth playing. Like all things, you get what you put
in, and I’m hoping that through this guide, you will be able to gain a lot of helpful
knowledge about Android and GPS systems.

Useful Links

Android GPS Info Apps
http://bit.ly/2bBdoXs This is the one I use
http://bit.ly/2br7DNK Equally good, very clean interface

NMEA Generator and Parser
http://bit.ly/1FjZRPk One of the best generators, which is simple to use

and has a few basic examples. It’s missing a GPGLL message, but it’s trivial to
add. This is the one I personally used for my simulator. The simplest method
of setting two way points is to have the program auto-increment at a deter-
mined speed.

There are a few simulators for Linux available, and more for Windows. A
quick Google search for “GPS Simulator” or “GPS NMEA Simulator” will
display them. I could not find one that was free and open source, but a free
precompiled, one that was very simple was available at http://it.ly/2bBfXcm

Further GPS NMEA Information
http://aprs.gids.nl/nmea/
http://bit.ly/1g91wIE

ODROID MAGAZINE	 9

http://bit.ly/2bBdoXs
http://bit.ly/2br7DNK
http://bit.ly/1FjZRPk
http://it.ly/2bBfXcm
http://aprs.gids.nl/nmea
http://bit.ly/1g91wIE

Webster’s English Dictionary. They are simply collections of
words that have some meaning for humans or that have been
used as passwords before, as see in previous security breaches.
Dictionaries for password cracking usually include a lot more
terms than a standard dictionary, because they have to include
also slang words (like yolo) or commonly mistyped words (such
as aprentice). They also include proper names (like Andrew),
names of fictional places or characters (like Pellenor Fields) or
technical terms (like desoxyribonucleic acid). A good source of
such words is Wikipedia (and it comes in different languages),
or even movie subtitles, which you can get in bulk at http://
bit.ly/2a1g42j.

Kali Linux comes with some default dictionaries that you
can use, or you could search the internet for useful wordlists:

RockYou (134M) http://bit.ly/1wtmeYA
Darkc0de (18M) http://bit.ly/1pwlvJJ
List of dictionaries http://bit.ly/2ayDRaP
WPA-PSK wordlist Torrent(13GB!) http://bit.ly/2azrOqN
WPA-Tables 170k words http://bit.ly/2as46gm
1 milion words http://bit.ly/2a1geH4

In our previous articles, we attacked WEP and WPS enabled
networks, but now it’s time to attack the most secure wire-
less network technology out there: WPA encryption. As

always, ask for the network owner’s consent before attempting
to break their network in order to save you from legal trouble
afterwards. Better to be safe than sorry when testing things out!

Dictionary attacks - making
wordlists

Since humans are notorious for being poor at choosing
strong passwords, the best approach to cracking most pass-
words is to run a dictionary attack against them.

The complexity of dictionary attacks is to get the right
words that are relevant for your target. For example, if you are
attacking a German WiFi network, you might want to try with
German words (and they have some very long ones!) If you
are attacking an access-point in a medical office, you could try
with medical terms. There is no “best” dictionary - it depends
on your needs. You can find a comprehensive discussion on
dictionaries for attack purposes here: http://bit.ly/2aLS6Fx.

Do not confuse the term “dictionary” with something like

Taking a crack at
breaking WPA
networks - Part 2
by Adrian Popa

WPA SECURITY

Serial stream of NMEA GPS data

Dictionary attack! It’s super effective!

ODROID MAGAZINE	 10

http://bit.ly/2a1g42j
http://bit.ly/2a1g42j
http://bit.ly/1wtmeYA
http://bit.ly/1pwlvJJ
http://bit.ly/2ayDRaP
http://bit.ly/2azrOqN
http://bit.ly/2as46gm
http://bit.ly/2a1geH4
http://bit.ly/2aLS6Fx

for sort, you can split the input into multiple smaller files and
run sort on then, concatenate the results and run sort again on
the result.

$ iconv -f UTF-8 -t US-ASCII//TRANSLIT \

wiki_en_full.txt | tr -cs “[:alpha:]” “\n” >>

 wordlist_en_full.txt

$ sort -u wordlist_en_full.txt > \

 wordlist_en_unique.txt

The dictionaries above are not necessarily designed for
WPA’s restrictions, so you will find smaller passwords as well.
You can remove smaller words or you can use a combinatorics
approach and combine them to create longer passphrases. To
remove unsuitable words, you can run grep (smaller than 8
characters):

$ grep -P ‘.{8,}’ wordlist_en_unique.txt > wordlist_

en_wpa.txt

So far, your dictionary consists of single words. If you want
to generate dictionaries of word pairs (or multiple words), you
can do so with something like this (this generates every two
word permutation in the dictionary):

$ cat wordlist_en_unique.txt wordlist_en_unique.txt

| perl -lne ‘BEGIN{@a}{push @a,$_}END{foreach $x(@a)

{foreach $y(@a){print $x.$y}}}’ > every2words.txt

For your convenience, you can find English and Romanian
Wikipedia wordlists on my own github page for your testing
(http://bit.ly/2ayE1yW).

Running dictionary attacks
with Pyrit

We will use Pyrit again to run a dictionary attack, but this
time, instead of doing a passthrough run, we will import the
dictionary inside Pyrit and run from there. This has the advan-
tage of precalculating the hashes based on the dictionary so the
actual cracking is mostly reduced to a table lookup later. The
data is stored in ~/.pyrit.

$ pyrit -e ‘NASA-HQ-WPA’ create_essid

$ pyrit -i wordlist_en_wpa.txt import_passwords

$ pyrit batch

The Pyrit batch command will take a lot of time and will
heat up your CPU considerably while building the database.
If heat is an issue, you can use a tool like cpuctrl (http://bit.
ly/2aon1dA) to limit the maximum CPU frequency with an
appropriate governor such as conservative.

You can also create your own dictionary from a text dump.
For example you can get an offline copy of Wikipedia (in many
languages) from the Kiwix Project (http://bit.ly/2awalku).
You’re going to need to download the non-indexed zim file
for your language of choice, making sure to select the “nopic”
variant so that you won’t download any images. The English
Wikipedia is about 16GB, while other languages are substan-
tially less. In order to convert it to a unique wordlist, you need
to have a lot of free space. For example, the uncompressed size
of the English Wikipedia was about 130GB. Note that the
zimdump command took a couple of days to complete on my
C1 with NFS storage.

$ wget http://www.openzim.org/\

download/zimlib-1.2.tar.gz

$ tar zxvf zimlib-1.2.tar.gz

$ cd zimlib-1.2/

$ sudo apt-get install liblzma-dev

$./configure --prefix=/usr

$ make

$ sudo make install

$ cd ..

$ echo ‘Dumping all articles as html into the zimdump

directory. Please wait’

$ zimdump -D zimdump wikipedia_en_all_nopic.zim

Next, we need to convert the HTML to text and concat-
enate all of the files into a single text file. We will create a
wrapper around html2text so that if it crashes, it won’t stop the
whole pipeline. The process will take between several hours to
several days depending on how many HTML files you have to
process, and which ODROID device you own:

$ sudo apt-get install html2text

$ cat <<EOF >html2textwrapper.sh

#!/bin/bash

html2text -utf8 “\$@”

exit 0

EOF

$ chmod a+x html2textwrapper.sh

$ find zimdump/A -print0 | xargs -0 -P 4 -n 30 \

 ./html2textwrapper.sh >> wiki_en_full.txt

The next step transliterates non-ASCII characters to their
ASCII counterparts (e.g. î -> i) and splits the resulting file into
a list of words. Iconv depends on your locale, so make sure you
have one supporting UTF-8 (instead of “C”, for example). The
“tr” command replaces all non-alphanumerical characters with
new lines (effectively inserting an Enter after each word). We
then run sort to make the words unique, which is a CPU and
memory intensive operation. If you don’t have enough RAM

WPA SECURITY

ODROID MAGAZINE	 11

http://bit.ly/2ayE1yW
http://bit.ly/2aon1dA
http://bit.ly/2aon1dA
http://bit.ly/2awalku

$ cd ..

$ cowpatty -d linksys2.hash -r \

 linksys2-insidious-handshake.pcap -s linksys2 -2

You can specify the hash file to check with the -d option
(select the hash with the same name as the target AP). The -r
option specifies the capture file with the 4-way handshake, -s
specifies the SSID (since it can’t extract it from the capture)
and -2 means not to be too strict when parsing the capture file.
With this setup, I was able to get the password in just under
3 seconds on the ODROID-C1 with a rate of 25000 PMK/s
(compared to ~300 PMK/s when calculating the PMKs). So,
it’s 83 times faster at the expense of ~7GB of disk space used
up for the attack process. It’s up to you to decide if it’s worth
the trade-offs.

Social engineering
The evil twin

You may have thrown everything you’ve got into cracking a
particular WiFi hotspot, yet still yielded no results. You prob-
ably have to wait about 3 million years for the brute force at-
tack to reach 1%, so what do you do? Well, you simply attack
the lowest security point in the chain: the human!

One project that aims to simply “ask” for the password is
WifiPhisher (http://bit.ly/1wPdPPQ). The program sets up an
evil twin open access-point that clones the SSID from the le-
gitimate target. It then de-authenticates all clients from the

To get the network key, you have to supply the capture file,
and the results, if any, should appear quickly. Here is the ex-
ample pcap for reference: http://bit.ly/2agcRug. Next, run
this command:

$ pyrit -r nasa-supercalifragilistic-handshake.pcap

attack_db

As you can see, even what appears as a strong and long pass-
word can be broken if it appears in an article somewhere on the
Internet.

Rainbow table attacks
Once you have a dictionary loaded up in Pyrit, what’s stop-

ping you from cracking every handshake you capture? Well,
the SSID acts like a “salt”, making sure that the same password
combined with a different SSID will generate a different PMK.
Having a pre-calculated list of passwords is called a rainbow
table and allows you to break passwords more quickly at the
cost of disk space for storing these lists.

There is a project that creates rainbow tables for WPA for the
most common 1000 SSIDs in the wild at http://bit.ly/2azsBIh.
If your target has a SSID which is on the list (http://bit.
ly/2adkjtd), you could potentially break the password much faster
than with other methods. Let’s put this to the test.

For this experiment, I prepared an access point called
linksys2 with a dictionary word password (http://bit.
ly/2ayEXmI). You’ll need to download the set tarball that the
site is providing (the bigger it is, the more chances to find
the key). Unzip it into a directory and you will get 1000
hash files with each file named according to the access-point
SSID. We will also need to install Cowpatty (http://bit.
ly/2awaJ2A) in order to process the tables.

$ wget http://www.willhackforsushi.com/code/\

cowpatty/4.6/cowpatty-4.6.tgz

$ tar xvf cowpatty-4.6.tgz

$ cd cowpatty-4.6

$ sudo apt-get install libpcap-dev libssl-dev

$ make

$ sudo make install

WPA SECURITY

A WPA dictionary attack with Pyrit

WPA rainbow table attack

Obligatory XKCD https://xkcd.com/538/

ODROID MAGAZINE	 12

http://bit.ly/1wPdPPQ
http://bit.ly/2agcRug
http://bit.ly/2azsBIh
http://bit.ly/2adkjtd
http://bit.ly/2adkjtd
http://bit.ly/2ayEXmI
http://bit.ly/2ayEXmI
http://bit.ly/2awaJ2A
http://bit.ly/2awaJ2A
https://xkcd.com/538

Keeping your WiFi safe
This concludes our exploration into wireless security. Here

are some takeaways:

• Do not use obsolete encryption technology such as WEP
• Do not rely on features like hidden network or MAC ac-
cess lists, as they’re very weak and essentially broken
• Disable WPS technology in networks where physically
possible
• Use long passwords not based on dictionary words. If you
must use dictionary words to make it easier to remember
(you are a human, after all), then combine them in random
ways. One option is xkcd’s horse-battery-staple approach
(https://xkcd.com/936/), and the tool at http://
bit.ly/1cubp1J can do it for you automatically.
• Adding characters to a password increases its security
much faster than using special punctuation with shorter
passwords
• If possible, consider using WPA2-Enterprise for your
home network
• Don’t use common names for the network SSID
• Lowering the signal strength will not help you much, since
the attacker can always get a better antenna.

As always, feel free to share your own best practices, ask
questions, or share problems in the support thread at http://
bit.ly/2azoM5N.

target and waits for them to reconnect. By chance (or by ensur-
ing you have a higher signal) clients will connect automatically
to your open access point instead. When they try to access
Internet resources, they will be redirected to a captive portal
posing as their router and asking them for their WPA password
(to enhance security, of course). Once you have the password,
the access-point disconnects and the client seamlessly connects
to their original network. See - that was easy. To pull this off,
you’ll need two wireless adapters - one that supports injection
(to continually disconnect users from the target AP) and one
to pose as the fake AP. For this test, I used two Hardkernel
Module 4 WiFi adapters.

$ git clone https://github.com/sophron/wifiphisher.git

$ sudo apt-get install tcpdump hostapd

$ cd wifiphisher

$ sudo python setup.py install

If you get an error that setuptools is not found, install it and
rerun the install command:

$ wget https://bootstrap.pypa.io/ez_setup.py -O - |

sudo python

Note that for this to work, you’ll need to configure hostapd
to work with your wireless card. There are more details avail-
able at http://bit.ly/2aLTF6w and http://bit.ly/2aLTlnX.

When ready, start WifiPhisher by specifying the monitor
interface and the hostapd interface:

$ sudo airmon-ng start wlan0

$ sudo wifiphisher -jI mon0 -aI wlan1

If all goes well, WifiPhisher will present you a list of access-
points to spoof and will set up DHCP and iptables rules and
ask you what kind of fake webpage to present. It will then pro-
ceed to disconnect clients and have them connect to the fake
access point and present them with something similar to Figure
5. You will then see the password in the shell. Keep in mind
this is especially devious, as you’re not just tricking computers
anymore, but real people.

WPA SECURITY

Unsuspecting users
will type their WPA
password into your
phishing environment

ODROID MAGAZINE	 13

https://xkcd.com/936
http://bit.ly/1cubp1J
http://bit.ly/1cubp1J
http://bit.ly/2azoM5N
http://bit.ly/2azoM5N
https://bootstrap.pypa.io/ez_setup.py
http://bit.ly/2aLTF6w
http://bit.ly/2aLTlnX

In the past few years, the topics of big data and data
science have grown into mainstream prominence
across countless industries. No longer are high

tech companies in Silicon Valley the sole purveyors of
topics like Hadoop, logistic regression, and machine
learning. Being familiar with big data technologies
is becoming an increasingly necessary requirement
for tech jobs everywhere. Unfortunately, getting real,
hands-on experience with big data technologies typi-
cally means having access to an expensive computer
cluster to run your queries. However, the recent single board
computer revolution has made true distributed computing ac-
cessible for personal use and education for tasks such as these
and more.

I teach network and digital systems design and maintenance
in a French high school. Over the past 4 years, I have been
replacing all of the desktop computers of my classroom with
SBC computers, mainly for space reasons because the school is
close to the city of Paris, so space is very expensive. Using SBC
computers leaves more room on the student’s workbench!

I started with a Raspberry Pi, but soon switched over to the

ODROID-C1 as soon as it was available, since the Pi was re-
ally not fast enough for making labs (GNS3 labs, various bus
protocols analysis, and network equipment setup) or simply
searching the Internet. For the upcoming school year, I have
already switched half of the classroom over to the ODROID-
C2, for a total of 10 ODROID-C1s and 8 ODROID-C2s.

When I am preparing the labs for students, I have to use the
same computer as they do, in order to ensure that everything
will go smoothly when the students will do the labs themselves.
This requires that I use an ODROID instead of an x86 laptop,

in order to eliminate any behav-
ioral differences between the two.

For efficiency in preparing the
labs, part of them are prepared at
home, and not at school. I tried to
find out some solutions for creat-
ing a laptop using an ODROID,
so that I can being my ODROID
laptop back and forth from school
to home without any hassle. I ride
5km to school by bicycle, so the
solution needed to be light and
not a big beast to carry!

ODROID-C1
Laptop
A CUSTOM HOME PROJECT
CODENAMED “REDTOP”
by Fabien Thiriet

ODROID LAPTOP

RedTop laptop and it’s bottom view

ODROID MAGAZINE	 14

Requirements
At the beginning of the project, I enumerated a list of re-

quirements for the laptop:

• 12V powered by my solar battery bank at home and
with an external 230V-12V PSU at school
• Li-ion powered when I am moving around in order to
have around 2 hours of autonomy. Some school labs re-
quire monitoring of CAN buses onboard vehicles, so a
battery powered solution is required.
• 10” LCD screen minimum
• Keyboard and LCD screen assembled together in order
to have a robust laptop
• GPIOs and all ODROID connectors easily accessible
• Bluetooth master/slave available, because I have a lot
projects working in tandem with remote Arduino boards
• Onboard RTC, because I am not always connected to
the Internet

Build process
At first, I found a Motorola Lapdock 100 on eBay, and used

it for several months. After fixing the HDMI issues between
the ODROID and the Lapdock, because the Lapdock switched
off after 20 seconds if nothing was connected to its USB port,
everything worked nicely. It was a very light solution, but not
comfortable enough for daily use, since the LCD screen was
only 10”, and the keyboard was very tiny. I also had a look to
the PiTop, but the price was higher than what I was looking to
spend. What I really needed was just a large LCD panel and a
good keyboard assembled together.

I searched on eBay for a larger LCD screen, and find an
inexpensive 13.3” model around 85€, with shipping and tax
included. The screen has a good resolution of 1900x600, and
the colors are beautiful. However, the LCD panel was sold
without any frame, so I needed to figure out something to over-
come this issue.

ODROID LAPTOP

At the same time, my son got what he dreamed for a long
time for his 15th birthday: a personal 3D printer, so that he
no longer had to use the ones that I have at the school. He
is very good when using CAD software like Solidworks, and
proposed to design a laptop chassis for me. Unfortunately,
the 3D printer plate, with a 200mm maximum size, was too
small to print a 13.3” LCD frame and the keyboard frame.
After some thought, we decided to split the LCD and keyboard
frames into four parts, and reassemble them together with 3D
printed mounted clips and glue. All of the individual parts are
smaller than 200mm. If you look closely at the LCD frame,
clips and keyboard frame pictures, you will see the separation
between the assembled parts. CAD design required around 2
weeks of hard work in order to make sure that everything fit
well together.

During the design, the main issue we overcame concerned
the LCD panel hinge, which needed to be strong enough and
allow me to easily open and close the laptop. This was done
with an extra large bevel in the LCD frame and the hinge of
the keyboard frame. In order to be able to fit the keyboard
properly into its frame, we disassembled it in order to remove
the top and bottom covers.

RedTop laptop top view

Initial laptop version using a Motorola Lapdock 100 computer

The 3D model for the LCD frame

ODROID MAGAZINE	 15

We chose a red color for the 3D printer filament, in order
to have a fun and flashy laptop. 30 hours of printing later, we
had all of the parts of the chassis. We stuck them together and
screwed the LCD panel and keyboard inside their respective
frame. The next steps were to place all boards and modules
inside the chassis, then firmly screw them onto the Plexiglass.

The Plexiglass was cut to fit into the footprint made avail-
able during the CAD design stage for each frame. That way,
everyone can appreciate the laptop machinery, which is a big
advantage when teaching computer sciences. The final step was
to wire everything together, following the block diagram.

We ended up with a powerful and reliable laptop. My stu-
dents at school were really surprised when they saw this uncon-
ventional laptop for the first time!

Battery
I now had a brand new laptop, but without any recharge-

able battery, it is more or less useless. First of all, I needed to
estimate the necessary battery capacity. For that purpose, we
did a few amperage measurement tests in differents condition
of use. The maximum amperage is reached when the C2 is
powering on, with a peak of 1.1A. During normal operation,
it is just below 1A with a WIFI USB dongle, RTC module,
wireless mouse adapter and the bluetooth module attached.
The total power consumption of the laptop is around 12W.

My son salvaged an old Lithium-Ion rechargeable battery
from a Lenovo laptop (L412), and he succeeded in extracting
the nine cells available inside the battery pack. Most of the
time, these types of battery packs are no longer working, not
because of the battery, but because of a defective embedded
battery controler. We used 3 of them, and connected them
serially. This provided 3 x 3.7V for a total of 11.1V when the
battery is nearly discharged, and more than 12V when fully
charged. The LCD board controller works without any issue
at 11V. Each cell has 2200mAh of capacity, so the laptop au-
tonomy is close to 2 hours. That was enough to achieve what
we set as our goal at the beginning of this project.

To reload the 3 cells, we use a 12V solar battery bank, con-
nected through a step up/down boost module, which is tuned to
12.6V and 1A current limit. With our particular battery bank
model, we can adjust both output voltage and current. At the

ODROID LAPTOP

LCD clips

Keyboard frame

Fully assembled chassis

ODROID MAGAZINE	 16

time of this article, the battery are not yet placed inside the Red-
Top, but remain outside for deep testing. Once the tests are
completed, we will place the 3 cells underneath the keyboard
inside an empty space that was reserved for that purpose.

Materials
Here’s what I used in order to build my ODROID-C1 laptop:

13,3” HDMI-VGA audio LCD Panel:
http://r.ebay.com/AYZ5JU

Zalman mechanical keyboard:
http://www.amazon.fr/dp/B00LHSPCS4

USB OTG cable:
http://www.amazon.fr/dp/B007MNZ8VY

Step down 12V-5V 3A converter:
http://www.amazon.fr/dp/B00JGFEQLE

Bluetooth HC05 master/slave module:
https://www.amazon.fr/dp/B013STJSES

RTC PCF8563 module:
http://www.amazon.fr/dp/B01DB8JECC

Mini speaker:
http://r.ebay.com/bwOCZv

3D printer:
http://www.dagoma.fr/produit/imprimante-dis-

covery200/

3D printer filament PLA:
http://www.amazon.fr/dp/B00UMV7ANM

5.5mm DC power jack:
http://www.amazon.fr/dp/B00O1Y1X70

Power switch:
http://www.amazon.fr/dp/B00HUHBS1Q

Laptop battery pack like this one:
http://www.amazon.fr/dp/B00TVOC55Y

Lipo boost converter (4V-12V):
http://r.ebay.com/w3FgNH

Various screws, washers and wires
0.5m of Plexiglass
Super glue

ODROID LAPTOP

The LCD controller

ANDROID GAMING

PAC-MAN
256
A classic game? a new
twist on the endless
runner genre? find out!
by Bruno Doiche

There is a saying that classics
never die, but some classics
can get pretty dated. When

I was a kid, playing Pac-Man was a
game whose graphics and gameplay
were totally acceptable by the stan-
dards of the early 1980s. Although you can still enjoy playing
the original Pac-Man today, you may agree with me that it
comes up short in replayability, even if you challenge yourself
to play the arcade game far enough to encounter the fabled
glitch at level 256, which only the best Pac-Man players were
able to see.

However, in the game Pac-Man 256, the glitch is the main
feature, which comes after you as a relentless wave at the bot-
tom of the screen. It makes for a refreshing return to what it
means to run for your survival in a maze filled with ghosts,
each with their own personalities. It demands precise control
and some quick thinking to get yourself out of trouble and stay
one step ahead of your ghostly enemies. Now you don’t have
to play through 255 levels of Pac-Man to reach one of the most
elite levels in gaming history. Install it from the Play Store at:

http://bit.ly/2cLaD5q

A great game, and as addictive as it was in the early days of arcade

ODROID MAGAZINE	 17

http://r.ebay.com/AYZ5JU
http://www.amazon.fr/dp/B00LHSPCS4
http://www.amazon.fr/dp/B007MNZ8VY
http://www.amazon.fr/dp/B00JGFEQLE
https://www.amazon.fr/dp/B013STJSES
http://www.amazon.fr/dp/B01DB8JECC
http://r.ebay.com/bwOCZv
http://www.dagoma.fr/produit/imprimante
http://www.amazon.fr/dp/B00UMV7ANM
http://www.amazon.fr/dp/B00O1Y1X70
http://www.amazon.fr/dp/B00HUHBS1Q
http://www.amazon.fr/dp/B00TVOC55Y
http://r.ebay.com/w3FgNH

manages the creation and submission of Spark applications to
the cluster. Jupyter notebooks are a very popular way to use
Apache Spark, as it allows the user to strictly focus on the data
analysis rather than the underlying infrastructure or tools.

Installing Hadoop File System
Our first task is to install Java onto each node in the clus-

ter. We will be installing Oracle’s latest Java 8 software, which
require a license acceptance during installation. Due to that,
you will need to log into each node independently and run the
installer. While there, we will create a new user account from
which everything will run.

$ sudo add-apt-repository ppa:webupd8team/java

$ sudo apt-get update

$ sudo apt-get install oracle-java8-installer

$ sudo apt-get install rsync

$ sudo addgroup hadoop

$ sudo adduser --ingroup hadoop hduser

$ sudo usermod -aG sudo hduser

Now, we need to install Hadoop. Technically, you could
use the Hadoop distribution available at the Apache website,
but it isn’t compiled for the ARM v7.1 CPU inside our XU4s.
Since it is mostly Java, that’s OK, because it will run on the
JVM that we just installed onto each node. However, there
are parts of Hadoop that were written in C in order to ex-

In the previous article that I wrote for the ODROID Maga-
zine at http://bit.ly/2bHFij7, I discussed building a self-
contained compute cluster with ODROID XU4 compute

nodes. This article will explain how to put that cluster to good
use by installing Apache Spark and the Hadoop File System,
as well as how to access your cluster through the Jupyter web
notebook application.

The Hadoop File System (HDFS) is one of the most popu-
lar and widely-used distributed file systems available today. A
distributed file system (DFS) is a cluster application that will
combine together all of the hard drives within a cluster so that
they can be treated as a single storage drive to your outside
clients. There are two main benefits to using a DFS. First,
and most notable, this allows you to save and work with data
sets that are larger than any one hard drive in your cluster can
store. Second, a well designed DFS will provide data resiliency
to node or drive failures by replicating blocks of data onto mul-
tiple drives across the cluster. On our XU4 cluster, the hard
drives are the MicroSD cards that were installed and designed
within our previous guide.

Apache Spark is a modern Big Data analysis platform that
is widely used in the industry for Big Data analysis. It provides
simple, high level tools to manipulate and analyze data through
either SQL or mapreduce, as well as by using common pro-
gramming languages, such as Python, Scala, and Java. Apache
Spark’s most distinguishing feature is its use of a cluster’s RAM
pool to cache intermediate data artifacts, which significantly
speeds up data processing. While the XU4’s 2GB of onboard
RAM might be a bit spartan as compared to the large amounts
of memory in an industrial cluster node, it does afford suffi-
cient space to do some interesting things with Apache Spark.

Jupyter Notebook is a web application that allows you to
conveniently leverage various languages and compute platforms
with your cluster through a web UI. The notebook can be eas-
ily shared, allows easy inline visualizations, and, in our case,

Installing Hadoop
and Spark onto an
ODROID-XU4 Cluster
By Michael Kamprath

HADOOP FILE SYSTEM

ODROID MAGAZINE	 18

http://bit.ly/2bHFij7

$ sudo rsync -avxP /opt/hadoop-2.7.2/ \

 root@slave1:/opt/

$ sudo rsync -avxP /opt/hadoop-2.7.2/ \

 root@slave2:/opt/

$ sudo rsync -avxP /opt/hadoop-2.7.2/ \

 root@slave3:/opt/

$ parallel-ssh -i -H “slave1 slave2 slave3” \

 -l root \

 “chown -R hduser:hadoop /opt/hadoop-2.7.2/”

$ parallel-ssh -i -H “slave1 slave2 slave3” \

 -l root \

 “ln -s /opt/hadoop-2.7.2 /usr/local/hadoop”

$ parallel-ssh -i -H “master slave1 slave2 slave3”\

 -l root \

“mkdir -p /data/hdfs/tmp”

$ parallel-ssh -i -H “master slave1 slave2 slave3”\

 -l root \

“chown -R hduser:hadoop /data/hdfs”

The final step in installing Hadoop is to format the node as
a HDFS:

$ /usr/local/hadoop/bin/hdfs namenode -format

Installing Apache Spark
We will use a similar approach as before to install Apache

Spark. First, we will be using Python 3 to access Spark and
some key Python libraries, so you will need to log into each
node and run:

$ sudo apt-get install python3 python3-pip

$ sudo pip3 install numpy

$ sudo pip3 install urlparse

Then on the master node, install Apache Spark:

$ cd /opt

$ sudo wget http://apache.claz.org/spark/\

spark-1.6.2/spark-1.6.2-bin-hadoop2.6.tgz

$ sudo tar xvzf spark-1.6.2-bin-hadoop2.6.tgz

$ sudo chown -R hduser:hadoop \

 spark-1.6.2-bin-hadoop2.6

$ sudo ln -s /opt/spark-1.6.2-bin-hadoop2.6 \

 /usr/local/spark

Similar to our Hadoop install, you will need to add some
configuration files to the /usr/local/spark/conf directory. You
may find the needed configuration files in my Github reposi-
tory (http://bit.ly/2b4GnDU).

Once Spark is set up on the master node, copy it out to the
slaves in your cluster:

ecute more quickly. If a Hadoop installation doesn’t have these
libraries compiled for the platform it is on, it will automati-
cally use the Java equivalent, so in short it will still work, but
more slowly. For this project, I built a distribution of the latest
version of Hadoop for the ARM v7.1 processor, and we will
download and install my distribution. On the master node,
login as the newly created “hduser” account and perform the
following commands to install Hadoop and set up the cluster
nodes to use passwordless SSH. Please note that you will need
to login into each slave node from the master node in order to
fully set up the passwordless login support.

$ cd

$ ssh-keygen -t rsa -P “”

$ cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_

keys

$ ssh hduser@localhost

$ exit

$ ssh hduser@master

$ exit

$ ssh-copy-id hduser@slave1

$ ssh hduser@slave1

$ exit

$ ssh-copy-id hduser@slave2

$ ssh hduser@slave2

$ exit

$ ssh-copy-id hduser@slave3

$ ssh hduser@slave3

$ exit

$ cd /opt

$ sudo wget http://diybigdata.net/downloads/\

hadoop/hadoop-2.7.2.armhf.tar.gz

$ sudo tar xzf hadoop-2.7.2.armhf.tar.gz

$ sudo chown -R hduser:hadoop hadoop-2.7.2

$ cd /usr/local

$ sudo ln -s /opt/hadoop-2.7.2 hadoop

$ cd /usr/local/hadoop

Now we need to to set up the configuration files for Ha-
doop. For expediency and convenience, I have created the
configuration files that should be installed into the /usr/local/
hadoop/etc/hadoop directory and posted them to my Github
repository at http://bit.ly/2bBehj4.

These configuration files assume a cluster setup as described
in my previous article. You may need to adjust them if you
have built your cluster differently. Now that the Hadoop soft-
ware is set up on the master node, let’s copy it out to the slave
nodes:

$ parallel-ssh -i -H “slave1 slave2 slave3” \

 -l root “mkdir -p /opt/hadoop-2.7.2/”

HADOOP FILE SYSTEM

ODROID MAGAZINE	 19

http://bit.ly/2b4GnDU
http://diybigdata.net/downloads
http://bit.ly/2bBehj4

$ parallel-ssh -i -H “slave1 slave2 slave3” -l root \

“mkdir -p /opt/spark-1.6.2-bin-hadoop2.6”

$ sudo rsync -avxP /opt/spark-1.6.2-bin-hadoop2.6 \

 root@slave1:/opt/

$ sudo rsync -avxP /opt/spark-1.6.2-bin-hadoop2.6 \

 root@slave2:/opt/

$ sudo rsync -avxP /opt/spark-1.6.2-bin-hadoop2.6 \

 root@slave3:/opt/

$ parallel-ssh -i -H “slave1 slave2 slave3” \

 -l root “chown -R hduser:hadoop \

 /opt/spark-1.6.2-bin-hadoop2.6”

$ parallel-ssh -i -H “slave1 slave2 slave3” \

 -l root “ln -s /opt/spark-1.6.2-bin-hadoop2.6 \

 /usr/local/spark”

$ parallel-ssh -i -H “master slave1 slave2 slave3” \

 -l root “mkdir -p /data/spark”

$ parallel-ssh -i -H “master slave1 slave2 slave3” \

 -l root “chown hduser:hadoop /data/spark”

Installing Jupyter Notebook
Installing Jupyter Notebook is relatively simple compared

to the tasks we just completed. Only on the master node, run
the following commands:

$ sudo mkdir /data/jupyter

$ sudo chown -R hduser:hadoop /data/jupyter/

$ mkdir ~/notebooks

$ sudo pip3 install jupyter

In order to make visualizations in a notebook, we need mat-
plotlib built and installed. It is also useful to have numpy in-
stalled for easier scientific computing through Python. Please
note that this will take a while to install:

$ sudo apt-get build-dep matplotlib

$ sudo pip3 install matplotlib

$ sudo pip3 install numpy

Running Hadoop, Spark, and
Jupyter

To get everything running, use the following commands:

$ /usr/local/hadoop/sbin/start-dfs.sh

$ /usr/local/spark/sbin/start-all.sh

$ XDG_RUNTIME_DIR=”/data/jupyter” PYSPARK_DRIVER_

PYTHON=jupyter PYSPARK_DRIVER_PYTHON_OPTS=”notebook

--no-browser --port=7777 --notebook-dir=/home/hduser/

notebooks” /usr/local/spark/bin/pyspark --packages

com.databricks:spark-csv_2.10:1.1.0 --master spark://

master:7077

You may choose to turn this sequence of commands into a
standalone launch script in bash, or you can simply make an
alias for that last command. I leave choosing either of these
options as an exercise for the reader. Once it is running, point
your computer’s browser to http://<cluster IP address>:7777/,
and you should see the Jupyter interface.

Let’s run the wordcount job on our XU4 big data system.
Create a new Python 3 notebook by clicking on the New but-
ton in the upper right of the web page. You will now see an
empty notebook, as shown in Figure 2.

Open a new SSH session into the master node and add a
large to HDFS:

$ wget http://norvig.com/big.txt

$ hdfs dfs -mkdir /user/michael

$ hdfs dfs -put ./big.txt /user/michael/big.txt

$ hdfs dfs -ls /user/michael

Back in the newly created notebook, add the following Py-

HADOOP FILE SYSTEM

Jupyter main web page

Jupyter notepad

ODROID MAGAZINE	 20

thon code into the first cell:

from operator import add

blog_data = sc.textFile(‘hdfs://master:9000/user/\

michael/big.txt’).cache()

counts = blog_data.flatMap(lambda x: x.split(‘ ‘)).\

map(lambda x: (x, 1)).reduceByKey(add)

Next, press Shift-Enter to start the cell processing. A new
cell will appear in the Jupyter notebook. Technically, nothing
has happened yet within Spark except for establishing a query
plan for executing word count against the blog data set we have
already placed into HDFS. Spark does no calculations until
there is a need to materialize results. The most common way
for doing that is to display a portion of the results. Into the
next cell of the notebook, enter this code and press Shift-Enter:

counts.take(100)

You will notice an asterisk next to the cell the above code
was entered into. This asterisk will remain in place while Spark
is doing its calculations. If you look back at the terminal ses-
sion in which you launched the Jupyter software, you will see
the log of Spark performing its calculations. Furthermore, if
you point your web browser to the URL http:<cluster IP ad-
dress>:4040/, you can inspect Spark’s internal state using its
application interface. You will also likely hear the CPU cooling
fan on the XU4 run during the calculations.

When the calculations are done, the first 100 values in the
results will be displayed in the Jupyter notebook.

Rename the notebook by clicking the “Untitled” string next
to the Jupyter logo in the upper left of the notebook. You can
continue to work with the data by adding more cells containing
more Spark python code. There are many great resources on
the web to learn more about Apache Spark, including http://

spark.apache.org.
To save and close the notebook, click on the “File” menu

in the page and select “Close and Halt”. To terminate Jupyter,
press Control-C twice in the terminal window from which you
launched it. Once the Juypter software has stopped, you can
shutdown Spark and HDFS with:

$ /usr/local/spark/sbin/stop-all.sh

$ /usr/local/hadoop/sbin/stop-dfs.sh

Further Reading
If you want to learn more about the topics discussed in this

article, you may use the following resources to get more infor-
mation about the software, as well as my insights on Big Data.

My blog: http://diybigdata.net
Apache Hadoop: http://hadoop.apache.org
Apache Spark: http://spark.apache.org
Jupyter Notebook: http://jupyter.org

HADOOP FILE SYSTEM

Wordcount calculations have been completed

ODROID MAGAZINE	 21

http://diybigdata.net
http://hadoop.apache.org
http://spark.apache.org
http://jupyter.org

Backup
Scripts
Keep your data safe
for your peace of mind
by Adrian Popa

BACKUP SCRIPTS

You’ve worked hard to get your system in shape and
worked out all of the bugs, but you know that things
are not going to last, and you may be an update away

from a broken browser, or you might want to experiment with
a new kernel or beta package. To save yourself from future
trouble, it’s always a good idea to make a backup! However,
backups are usually a source of confusion on the forums, and
lots of new users struggle with them. In this article, we’ll learn
what needs to be done to keep your system safe.

Disks, partitions and file systems
Seasoned computer users have no problem distinguishing

between disks, partitions and filesystems, but let’s analyze them
to have a common starting point. A disk is generally a physi-
cal device that stores data into randomly-accessible blocks. In
more complex setups, multiple physical disks can be combined
as RAID arrays using either hardware or software, and exposing
them to the operating system as virtual disks. Partitions are sec-
tions on disks that usually hold a filesystem. Filesystems man-
age how files and data are stored in order to be found later on.
In order to make a backup of your ODROID system, you will
need to preserve the partition information and the contents of
the partitions.

All disks start off with a 512 byte block of data that typically

holds the bootloader (for x86 systems, 446 bytes) and the 64B
Master Boot Record (MBR), which is explained at http://bit.
ly/2bMCTUh. The MBR is a table with the start offset, length
and partition type of your 4 primary partitions. These are the
partitions mapped as 1-4 in the Linux kernel (e.g., sda1-sda4
for a disk called sda). The MBR is an old data structure, in-
troduced in 1983, so it has some limitations. The need to use
ever-larger disks (>2TB) led to the introduction of the GUID
Partition Table (GPT) which replaces the MBR in newer sys-
tems and is detailed at http://bit.ly/2bvb4oL. ODROIDs can
use both MBR and GPT, but the boot media is designed as a
MBR volume because of its relatively small size and simplicity.

But, as shown in Figure 1, a disk may have more than 4 par-
titions. This is achieved by using a trick - one primary parti-
tion is marked as “extended” and it can contain any number of
logical partitions. Linux represents them with numbers from
5 upwards (i.e., sda5, sda6 and so on). The partition informa-
tion for the logical partitions is stored in structures similar to
the MBR called Extended Boot Record (EBR) as explained at
http://bit.ly/2bw47Re, which looks like a linked list as shown
in Figure 2, but preceeds the actual partition on disk.

The partitions you’ll usually see on ODROIDs are FAT16/
FAT32 (seen as
VFAT under the
mount command)
and Ext2/3/4.
There are other
partition types sup-
ported by Linux,
such as NTFS,
XFS, and ZFS, but
they are usually not
critical to the boot

Partition layout of an Odroid C1 triple-boot image EBR position on disk

ODROID MAGAZINE	 22

http://bit.ly/2bMCTUh
http://bit.ly/2bMCTUh
http://bit.ly/2bvb4oL
http://bit.ly/2bw47Re

BACKUP SCRIPTS

process, so they will be out of our scope. There are backup
tools such as BackupPC (http://bit.ly/2bx3J6R) or Clonezilla
(http://bit.ly/1Iq2mN7), which support more partition types
or do backup on file level. These same tools should be used to
backup your personal data, such as files, pictures or music. It’s
also a good idea before starting a backup to do some “spring
cleaning” and delete things you no longer need, such as tem-
porary files or downloads, in order to reduce the time it takes
to do the backup and the size of the backup file. For instance,
you can delete the cache of downloaded apt packages with the
following command:

$ sudo apt-get clean

Backup strategies
There are a few ways of making a backup of your eMMC/

SD card. The simplest to implement is to make a 1:1 binary
copy of your data to an image file. For this task, you can use
a tool such as dd or Win32DiskImager. Note that all of the
commands that follow expect to have the variable $backupDir
replaced by the path to your desired backup directory, which
can’t be on the same partition you’re trying to backup for obvi-
ous reasons.

$ sudo dd if=/dev/mmcblk0 \

 of=$backupDir/backup.img bs=1M

In the command above, “if ” represents “input file” and
should point to the block device representing your disk, such
as /dev/mmcblk0, and “of” represents the “output file” where
data should be written to. The parameter “bs” represents
“block size”, which signifies how much data is read and written
at once. A variation of the dd command that shows progress
uses the “pv” command (pipe viewer):

apt-get install pv

dd if=/dev/mmcblk0 bs=1M |\

 pv | dd of=$backupDir/backup.img

Restoring the data is equally easy - just replace the values of
“if ” and “of”:

$ sudo dd if=$backupDir/backup.img \

 of=/dev/mmcblk0 bs=1M

Note that dd makes a binary copy of your disk. This means
that it will copy also the free space on your disk. The default
output file will be as large as your disk, which means that copy-
ing a 64GB SD card of mostly empty space will take a long
time and take up a lot of room. The advantage is that you can
later run tools like PhotoRec (http://bit.ly/1jwXElB) on the

free space and possibly recover deleted files, which is useful
when doing data forensics or recovering from bad media. The
disadvantage is that the image will be big and slow to copy.
You can use dd together with gzip to shrink the image before
writing it to reduce size a bit, but you won’t save time:

dd if=/dev/mmcblk0 bs=1M | gzip -c > $backupDir/

backup.img.gz

gunzip -c $backupDir/backup.img.gz | dd of=/dev/

mmcblk0 bs=1M

Also note that, in theory, you can do a backup with dd on
a live system by copying it while the partitions are mounted,
but there is a risk of inconsistencies if files are changed while
doing the backup. It’s best to do an offline backup by pulling
the eMMC/SD card, plug it into a different system, and do
the backup without having mounted partitions. There’s also a
disadvantage when copying between media of slightly different
sizes. Since not all 16GB cards are exactly the same size, you
might end up with a truncated partition on your destination.

The “dd” utility has the advantage that it is easy to use, but
to gain backup/restore speed and minimize necessary backup
space, you need to break up the backup operation into several
steps and avoid backing up free space. For this, you’ll need to
backup the MBR + EBR, bootloader, and individual partitions.

You can still cheat and use dd if you use gparted in order to
shrink your largest/last partition to only the used size, dd up to
that size, then resize the partition back to the original size after
you restore it, but it involves some manual work.

MBR backup and restore
The MBR and EBR are small data structures and can be eas-

ily backed up with dd. But because the EBR’s position on disk
can vary, you should rely on a partitioning tool to extract and
restore the MBR/EBR data. Such a tool is sfdisk:

$ sudo apt-get install sfdisk

$ sudo sfdisk -d /dev/mmcblk0 > \

 $backupDir/partition_table.txt

To restore it later, you need to supply the saved file to sfdisk
like this:

$ sudo sfdisk /dev/mmcblk0 < \

 $backupDir/partition_table.txt

Note that overwriting the MBR on a disk with existing par-
titions is equivalent to deleting the partitions since the operat-
ing system will not be able to find the offsets to the old parti-
tions anymore, so use the restore step with extreme care! This
backup can be performed on a live system without risks since

ODROID MAGAZINE	 23

http://bit.ly/2bx3J6R
http://bit.ly/1Iq2mN7
http://bit.ly/1jwXElB

BACKUP SCRIPTS

partition tables are not usually changed during runtime.

Bootloader backup and restore
ODROIDs use U-Boot as a bootloader, as detailed in the

November 2015 issue of ODROID Magazine November 2015
(http://bit.ly/2bA3P9g). U-Boot stores its code and data in
the unallocated space after the MBR and at the beginning of the
first partition. There is also some bootstrap code in the first 446
bytes in the first sector, before the partition table. Since the size
and structure of U-Boot may differ between ODROID models,
it’s safest to do a binary backup of this unallocated space with
dd. First, you need to find out the start sector of the first parti-
tion with sfdisk:

$ sudo sfdisk -l /dev/mmcblk0

As indicated in Figure 3, the first partition (loop0p1) starts
at offset 49152, so we’ll need to copy everything up to and
including sector 49151. The bs (block size) parameter must
match what sfdisk reported in the “Units” line:

$ sudo dd if=/dev/mmcblk0 \

 of=$backupDir/bootloader.bin bs=512 count=49151

Note that the dd command will also copy over the MBR,
which is sector 0). To restore the bootloader and skip restoring
the partition table as well, you can use the following command:

$ sudo dd if=$backupDir/bootloader.bin \

 of=/dev/mmcblk0 bs=512 skip=1 seek=1

You should also restore the bootstrap code from the first sec-
tor:

$ sudo dd if=$backupDir/bootloader.bin \

 of=/dev/mmcblk0 bs=446 count=1

To restore the partition table as well, do not add the skip and
seek parameters. This too can be done on a live system since the
data is mostly read-only.

FAT partitions backup
and restore

By default, Hardkernel’s images come with a FAT16/32
partition mounted under /media/boot that contains the ker-
nel, initrd, device tree and boot.ini files. All of these are crucial
to system startup. Android systems expose this partition as
“sdcard” storage.

There are several tools for linux that backup FAT partitions.
I used to use partimage, but it fails to verify the checksum of
the partitions on C2, so I switched to partclone. Partclone
can do a block backup of FAT partitions preserving data at the
same offsets, but can skip empty space.

$ sudo apt-get install partclone

$ sudo partclone.vfat -c -s \

 /dev/mmcblk0p1 \

 -O $backupDir/partition_1.img

The “-c” specifies “clone”, “-s” is the source partition, which
is the first partition in our case, and “-O” is the output file,
which will get overwritten if it exists. Note that partclone can-
not operate on mounted filesystems and will exit with an error.
In order to back up from a running ODROID, you will need
to unmount /media/boot, perform the backup and mount it
back again.

To restore a FAT partition, you can run the following com-
mand:

$ sudo partclone.restore -s \

 $backupDir/partition_1.img -o /dev/mmcblk0p1

Unfortunately, PartClone will not allow you to restore a
partition to a smaller or larger target partition, so any size ad-
justment you will need to make after the restore is done. You
can actually restore to a larger partition, but you will need to
manually grow it in order to use the extra space.

Ext2/3/4 partitions backup and
restore

Identify the start sector of the first partition with sfdisk and sector size

Partclone backup with prior unmounting of /media/boot

ODROID MAGAZINE	 24

http://bit.ly/2bA3P9g

BACKUP SCRIPTS

In order to backup and restore Ext2/3/4 filesystems, we’ll
need to use a different tool called FSArchiver. Unlike Part-
Clone, FSArchiver creates a file level backup and reconstructs
the filesystem upon restore. Unfortunately, because of certain
particularities of FAT systems where Windows boot files need
to be at specific offsets, the author of fsarchiver does not sup-
port backing up FAT filesystems as well, so we’re stuck to using
two tools for the job. But with the help of external packages
fsarchiver can support other filesystems as well, such as XFS,
ReiserFS, JFS, BTRFS and NTFS. It usually backs up un-
mounted filesystems, but can be used on live filesystems as well
with the “-A” flag, which may not always work. FSArchiver
has the advantage that it can restore a filesystem in a bigger or
smaller target partition while preserving UUIDs. In order to
back up the second partition, you can run the following com-
mands:

$ sudo apt-get install fsarchiver

$ sudo fsarchiver -o -v -A -j 4 \

 savefs $backupDir/partition_2.fsa \

 /dev/mmcblk0p2

The “-o” flag means overwrite the destination file if it exists,
“-v” is verbose output, “-A” allows you to backup a mounted
partition and “-j 4” allows it to use 4 cores for compression.

In order to restore a fsa backup you can run the following
command:

$ sudo fsarchiver restfs \

 $backupDir/partition_2.fsa \

 id=0,dest=/dev/mmcblk0p2

Note that since FSArchiver supports multiple partitions

inside an archive, it needs you to specify which partition id
to restore. In our example, we store only one partition in an
archive, so you’ll always specify id=0 when restoring.

ODROID backup tool
Now that you know how to do things manually, you may

question why backup and restore operations are not simpler,
using point and click operations. I agree that nobody has the
time to remember all the command line arguments from vari-
ous commands, so I hacked together a rudimentary GUI that
can walk you through your backup and restore process.

The tool is descriptively called “odroid-backup”. It’s written
in Perl and uses zenity and dialog to build a rudimentary GUI,
because I’m too old to learn Python. To install the tool, you
can download it from my GitHub repository:

$ sudo wget -O /usr/local/bin/odroid-backup.pl \

https://raw.githubusercontent.com/\

mad-ady/odroid-backup/master/odroid-backup.pl

$ sudo chmod a+x \

 /usr/local/bin/odroid-backup.pl

The script depends on a bunch of non-standard Perl mod-
ules as well as some Linux utilities, and will display a list of
missing dependencies and ways of fixing it when you first run
it. To install all dependencies at once, run the following:

$ sudo apt-get install \

 libui-dialog-perl zenity \

 dialog libnumber-bytes-human-perl \

 libjson-perl sfdisk fsarchiver \

 udev util-linux coreutils \

 partclone parted

The script is designed to run on Linux systems, such as a
PC to which you’ve hooked up a SD card or eMMC module
via a USB adapter, or directly on the ODROID (sorry Win-
dows fans). Also, the script will create graphical windows if it
detects that you’re running an X11 session, or will fall back to
ncurses (display) if you’re connected via ssh or terminal. You
can manually force this with the --text switch.

To perform a backup, start the tool in a terminal and select
“Backup partitions”, then select OK (1):

$ sudo odroid-backup.pl

You will be presented with a list of removable drives in your
system. You can start the program with the -a flag in order
to display all drives, which is the case when running directly
on the ODROID, since eMMC and SD are shown as non-
removable. Select the desired one and click OK (2). You will
then be presented with a list of partitions on that drive. Select
the ones you wish to backup (3). Next, you will have to select a
directory to which to save the backups. It’s best to have a clean
directory (4). Press OK, and backup will start with a rudimen-
tary progress bar to keep you company (5). When the backup
is done, you will be presented with a status window with the
backup results and possible errors (6). The backup files have
the same naming convention used in this article.

Zenity vs display rendering

ODROID MAGAZINE	 25

To perform a restore, start the tool in a terminal, select “Re-
store partitions”, then select OK (1):

$ sudo odroid-backup.pl

You will have to select the directory holding your valuable
backups and select OK (2). In the resulting window, select
which partitions you wish to restore from the backup and select
OK (3). Note that the partitions are restored in the same order
as they were on the original disk, which means that partition 1
will be the first partition, and so on. In the last window, you

will be asked on which drive to restore the data (4). Enjoy
watching the progress bar progressing (5), and in the end you
will have a status window with the restore results (6). The log
file is also saved in /var/log/odroid-backup.log.

As you might suspect, no piece of software is free of bugs,
but hopefully this six step script will have its uses. This script
has some shortcomings, such as the zenity windows not always
displaying the instruction text, which is why I added the title
bar. There is also no validation of the backups or restores.
You will have to review the log to verify that the backup or
restore operation completed successfully. One other limitation
is that FAT partitions need to be manually unmounted before
backup, although Ext2/3/4 can be backed-up live. Finally, the
sfdisk utility on Ubuntu 14.04 doesn’t support JSON output,
so it will not work there, although I can add support if needed.
The program was tested by backing up and restoring several of-
ficial Hardkernel Linux and Android images, as well as triple-
boot images, and so far everything seems to work. Ideas for
improvement and patches are welcome on the support thread
at http://bit.ly/2bEyFzl.

Backup steps

Restore steps

BACKUP SCRIPTS

ODROID MAGAZINE	 26

http://bit.ly/2bEyFzl

ly/2aOjCnT), explaining the role and
scope of its use in the construction of a
relevant application.

The second part is about Python cod-
ing and how to search for a particular
string in our stream on Twitter account
using a specific Twython class. Finally,
in the third part we will connect an LED
to ODROID-C2, and in response to a
successful search, we will drive the state
of that LED. We will also explain the use
of the GPIOs and how to control them
through the WiringPi Library. We as-
sume that you have ODROID-C2 with
Hardkernel’s latest Ubuntu v2.0 release
[http://bit.ly/2b58GEe] and Python
installed. All code is written in Python
version 2.7.12.

Role of Twython
To access Twitter services (through

their API), you can use different SDKs.
There are a variety of different librar-
ies available, but we will use Twython.
Twython provides good online docu-
mentation for its use. By using Twython
with an ODROID-C2, we can send
tweets, but you can also look through
tweets and respond with the blink of an
LED if a tweet occurs with a specific tag,
text, or a phrase.

Let’s first install Twython on
ODROID-C2. From the Mate desktop,
open a terminal window and type the
following commands one by one:

$ sudo apt-get update

$ sudo apt-get install python-pip

$ sudo pip install twython

In this article, we will see how to use
an ODROID-C2 as an IoT (Internet
of Things) device from a developer’s

perspective rather than a desktop user.
In particular, we will use an ODROID-
C2 in order to connect online with a so-
phisticated web-based service like Twit-
ter, establish a connection, search for
some data and finally respond to that
data. We will also take the opportunity
to explain the use of ODROID-C2’s
GPIO connections by controlling and
manipulating them programmatically
via the Python programming language.

In order to achieve our goals, we will
use the ODROID-C2 to connect to
our Twitter account, search our stream
for a particular string - say, for example,
“ODROID” or “Hardkernel”, and then
respond to that string with a blink of an
LED. This is a usage scenario that can be
expanded with the use of a servo or some
other kind of actuator, creating endless
possibilities. We can search for a par-
ticular string and count the number of
times that it appears in our stream, and
then respond (quantitative analysis), or
we can use some sentiment analysis tool
to make quality judgments and respond
to them accordingly (quality analysis).
Finally we can use other web-based ser-
vices like email to remotely control a ro-
botic arm (telemedicine) or accomplish
more simple tasks like the control of the
lights at home. The ODROID-C2 is
an excellent IoT controller/device for all
these cases and much more!

This article is divided into 3 parts:
The first part deals with the use of the
Python-based Twython SDK (http://bit.

ODROID-C2 as
an IoT device
Interfacing with
the real world
by Melissas Miltiadis

IOT DEVICE

We then have to register Twython
to the Twitter servers as an application
before we can use it programmatically.
For this step, we assume that you already
have a Twitter account and if not, go
ahead and create one. You just need a
valid email account for verification pur-
poses, and have to fill in some fields with
your username and password. Now we
will need to use 4 keys upon registration
for the authentication. The Twython li-
brary will use those keys to establish a
connection with the Twitter servers.

With your browser open, navigate
to: http://apps.twitter.com and start the
registration process. Since it’s a very sim-
ple procedure, I will cover this process
briefly, as all we need are those 4 keys for
authenticating our Python application.
The first thing to do is to go to the above
web address with your browser and click
the Create An Application butto.

Next, enter your information about
the application. Fill in all the fields, es-
pecially those with the asterisk (*) next
to them, as shown in Figure 1.

In this example, we used “Twython.
OdroidC2” as a name, and “Twython
for ODROID-C2 as a description. We

Figure 1 - Creating an application

ODROID MAGAZINE	 27

http://bit.ly/2aOjCnT
http://bit.ly/2b58GEe
http://bit.ly/2aOjCnT
http://apps.twitter.com

also filled in the web address for Hard-
kernel’s ODROID Magazine. Any valid
website with some useful content is fine.
Then, click the Create your Twitter ap-
plication button at the bottom of the
page. On the next screen, all you have
to do is to select the tab Keys and Access
Tokens tab, as shown in Figure 2.

There, you can see the already gener-
ated Consumer Key (API Key) and the

Consumer Secret (API Secret). We will
need 2 more keys. At the bottom of this
page, there is a button for creating those
access Token keys. Click it to obtain
those and you will end up with a screen
like the one shown in Figure 3.

We now have all 4 of the necessary
keys: Consumer Key, Consumer Secret,
Access Token and Access Token Secret.
As we will need them for our Python
programming code, copy all of them to
a separate file in your local computer.

Python programming
This section deals with programming

in Python to search for a string and use a
callback function. We will explain every

Python script with these 4 keys. It’s very
easy to create such a script with Python
programming language: with any text
editor for example nano, vi or gedit.
Usually the first two are already installed
with any Ubuntu release. Open a new
file and enter the 4 keys as follows:

#Twython Keys

Consumer_Key=’copy here the Con-

sumer Key’

Consumer_Secret=’copy here the

Consumer_Secret’

Access_Token=’copy here the Ac-

cess Token’

Access_Token Secret=’copy here

the Access_Token_Secret’

Finally, save and close that file. We
have created our own script under the
name Twython.Keys.py and saved it
to the odroid’s home default directory
(i.e., /home/odroid/). So with the ex-
ecfile(‘/home/odroid/Twython.Keys.py’)
statement, all we are doing is executing
that script. Our next step is to define a
new streamer class which broadens the
TwythonStreamer class. The reason we
define a new class from another class is
that we want to redefine some of the
functions that are already in that class:

class TwitterStreamer(TwythonStr

eamer):

Figure 4 - ODROID-C2 GPIO pin layout chart

line of code in order to clarify as many
questions as possible. Again, we assume
that you have already a Twitter account,
you have registered the Twitter app (ap-
plication) (i.e., Twython - step 1), and
you’ve got the 4 necessary keys. You’ll
also need an installation of the Twython
package using pip in order to have access
to Twython SDK (Software Develop-
ment Key). Open your Python editor
and type the following:

from twython import

TwythonStreamer

With this line of code, we import
the class TwythonStreamer from the
Twython library that we have already in-
stalled. This class (TwrythonStreamer)
will connect to the stream that we are re-
ceiving/sending tweets on, and allow us
to filter the stream by looking for some
text inside. We will be detecting tweets
with those criteria set. Here is the next
line of code:

execfile(‘/home/odroid/Twython.

Keys.py’)

Here we import the Twython keys
that we received when we registered our
app with the Twitter servers in step 1..
In order not to reveal our keys to any-
one, it is a good idea to create a simple

IOT DEVICE

Figure 2 - Application Setup

Figure 3 - Access tokens (blanked out)

ODROID MAGAZINE	 28

implementing various communication
protocols like I2CA_SDA. I2CA_SCL,
TXD_B, RXD_B and the General Pur-
pose Input/Output (GPIO) pins allow
us to interface with other devices, actua-
tors, like LEDs, servos, motors and even
some robotic components.

Usually we use a breadboard to wire
up our circuits. Then we write code that
sets them to HIGH or LOW levels, en-
abling us to control them programmati-
cally. For the purpose of this tutorial, we
will make use of GPIOX.BIT21, which
is a General Purpose Input/Output pin
to set the LED’s condition to HIGH
or LOW (3.3-0 Volts) and pin 20 as a
ground. If you look at the pin layout
in Figure 5, you can see that pin 20 can
be grounded. There are of course many
other pins for grounding (9,14,25,30
etc), and you can use any one of the
available pins you like. We will wire the
LED in series with an appropriate resis-
tor (1KΩ) in order to ensure that it will
not receive too much current acciden-
tally. Also, we will refer to pin7 as “Wir-
ingPI GPIO 7” even though that’s not
always the case. For example, GPIOX.
BIT11 (pin13) is addressed as “WiringPi
GPIO 0” according to the GPIO PIN-
map above. Refer to the schematic in
Figure 5.

Now that we have our hardware part
ready, let’s continue with the final part
of our program. We will use the Wir-
ing Pi library for controlling our LED.
WiringPi is actually a C library which
has Python bindings. It’s designed to
be familiar for developers who have
used the Arduino wiring system. Gor-
don Henderson is the author of the C
library, and Philip Howard is the author
of the Python bindings. There are two
major versions of this library (v1 and
v2). We will use v2 in our project, but
before that, we have to install it first. We
will follow Hardkernel’s excellent guide
at http://bit.ly/2ba6h8o. It’s actually a
straightforward procedure, and in the
end, we will be able to use this library
for achieving our goal.

Figure 5 - Simple LED circuit schematic

step we see how to control the GPIO’s
of ODROID-C2 with the blinkLED()
function. Note that indentation is im-
portant in software written in the Py-
thon language:

from twython import Twython-

Streamer

execfile(‘/home/odroid/Twython.

Keys.py’)

class TwitterStreamer(TwythonStr

eamer):

def on_success(self,data):

if ‘text’ in data:

 print(‘Odroid success!’)

 blinkLED()

myStream=TwitterStreamer(Consum

er_Key,Consumer_Secret,Access_

Token,Access_Token_Secret)

myStream.statuses.

filter(track=’Odroid IoT’)

Use GPIOs for IoT
connectivity

Figure 4 shows a layout of the
OROID-C2 40 pin layout that we ac-
cessed from Hardkernel’s excellent
technical detail page at (http://bit.
ly/2aXAlmt):

Note that there are 40 pins: 2 rows
with 20 pins in each row. We can gen-
erally group them to dedicated pins

With the above Python line of code,
our new class TwtiterStreamer inherits
everything from TwythonStreamer. We
will particularly use the TwythonStream-
er class method on_success() by redefin-
ing its scope of use. What we are saying
by redefining this function is that if the
data we are looking at is not empty (tag,
text, phrase), we invoke another func-
tion (callback function) in order to start
the blinking of an LED. The next line of
code then defines this function:

def on_success(self, data):

As the last step, we check it with an
“if ” statement:

if ‘text’ in data:

 print(‘ODROID-C2 success!’)

 blinkLED()

What we have achieved here is that
if the dictionary “text” in data has some
data that matches out given criteria, then
call the blinkLED() function. We can
actually print a message before doing
that and notify the user that the search
end it up with success, as we did on the
code above.

Next, let’s instantiate our new class
(TwitterStreamer):

myStream=TwtitterStreamer(Consum

er_Key, Consumer_Secret,

Access_Token, Access_Token_Se-

cret)

What we actually did is to call the
class constructor to create our object
myStream and we are passing the 4 keys
as arguments. Next, we set the filtering
method:

myStream.statuses.

filter(track=’Odroid IoT’)

As you can easily see, we passed the
track argument to the filtering method
for the phrase/text/tag we want to fil-
ter. That’ it. We did it. In the final

IOT DEVICE

ODROID MAGAZINE	 29

http://bit.ly/2ba6h8o
http://bit.ly/2aXAlmt
http://bit.ly/2aXAlmt

 import time

 #use ODROID-C2 pin numbers

 LED_PIN = 7

 wpi.wiringPiSetup()

 # setup pin as an output

 wpi.pinMode(LED_PIN, 1)

 while True:

 # enable LED

 wpi.digitalWrite(LED_PIN, 1)

 time.sleep(1)

 # disable LED

 wpi.digitalWrite(LED_PIN, 0)

 time.sleep(1)

 #cleanup

 wpi.pinMode(LED_PIN, 0)

class TwitterStreamer(TwythonStr

eamer):

 def on_success(self,data):

 if ‘text’ in data:

 print(‘Odroid success!’)

 blinkLED()

myStream=TwitterStreamer(Consum

er_Key,Consumer_Secret,Access_

Token,Access_Token_Secret)

myStream.statuses.

filter(track=’Odroid’)

With your browser open, login in to
your Twitter account and post any tweet
containing the word “ODROID”. Your
LED in the circuit should start blinking.
The ODROID-C2 will track your stream
for any relevant messages containing the
word “ODROID”. Enhancements to
this exercise are left to your imagination.

Additional Notes
The ODROID-C2 Ubuntu image

comes pre-installed with Python. If you
want to install IDLE (an integrated de-
velopment environment for Python),
you can simple type:

$ sudo apt-get install idle

You should note that any Python
code in IDLE must be executed with
root privileges in order for your code to
work properly.

wpi.pinMode(LED_PIN, 1)

Finally, inside a while loop, we set
pin7 first to HIGH (3.3 Volts), wait 1
second, and then set it to LOW (0 Volts)
and wait for another 1 second:

while True:

 wpi.digitalWrite(LED_PIN, 1)

 time.sleep(1)

 wpi.digitalWrite(LED_PIN, 0)

 time.sleep(1)

This is an endless loop leaving the
LED blinking until we stop the code
with a break or close the IDLE environ-
ment on ODROID-C2 from our Ubun-
tu desktop. The next line of code simply
cleans up the connection with pin7:

wpi.pinMode(LED_PIN, 0)

Below is the entire function which
can be copied and pasted into the file:

def blinkLED():

 import wiringpi2 as wpi

 import time

 #use ODROID-C2 pin numbers

 LED_PIN = 7

 wpi.wiringPiSetup()

 # setup pin as an output

 wpi.pinMode(LED_PIN, 1)

 while True:

 # enable LED

 wpi.digitalWrite(LED_PIN, 1)

 time.sleep(1)

 # disable LED

 wpi.digitalWrite(LED_PIN, 0)

 time.sleep(1)

 wpi.pinMode(LED_PIN, 0)

Save this to a file with a .py extension
and run the application:

from twython import

TwythonStreamer

execfile(‘/home/odroid/Twython.

Keys.py’)

def blinkLED():

 import wiringpi2 as wpi

As noted in the guide, you must have
python-dev and python-setuptools in-
stalled if you manually rebuild the bind-
ings with swig-python:

$ sudo apt-get install python-dev

python-setuptools

Install WiringPi 2
Download WiringPi 2 using these

commands:

$ git clone https://github.com/\

hardkernel/WiringPi2-Python.git

$ cd WiringPi2-Python

$ git submodule init

$ git submodule update

Build and install
Build the program using the follow-

ing command:

$ sudo python setup.py install

Now, in our code in the previous
step, we made a call to a blinkLED()
function when an event occurs success-
fully. In this section, we will define the
function blinkLED(). First, we have to
import the Wiring Pi v2.0 library:

def blinkLED():

	 import wiringpi2 as wpi

Since we need to control the blinking
frequency of the LED (frequency), we
need to import the time function as well:

import time

On the next line of code, we set up
the wiring of pin 7 on the ODROID-C2
GPIO’s, since this is the pin connected
to our LED.

LED_PIN = 7

wpi.wiringPiSetup()

Next, we define it as an OUTPUT
pin. Note that some of the GPIO pins
can be used for INPUT or OUTPUT:

IOT DEVICE

ODROID MAGAZINE	 30

LibreELEC is a great project for
people who want a lightweight
Kodi media center. However, for

people that want to run additional soft-
ware, such as a web server like Apache,
or a database like Mongodb or Post-
gresql, it’s useful to have a full Ubuntu
distribution. It’s also nice to keep the
resource utilization lightweight and load
only Kodi instead of the Mate desktop.
I am sure that this process can be done
by starting with an Ubuntu server instal-
lation, but I wanted to use the support-
ed Hardkernel Ubuntu desktop image.
This guide was largely inspired by the
the Kodi wiki at http://bit.ly/2bR6Zeb.

This guide was tested on an
ODROID-C2 with a stock Hardkernel
Ubuntu v2.0 installation containing
the most recent updates. Before get-
ting started, you might need to change
the resolution in the boot.ini in order to
have your monitor be recognized. Once
you have flashed and updated your
Ubuntu installation, follow these steps:

Kodibuntu
Auto-Starting
Kodi With A Full
Ubuntu Distribution
by @olingerc

KODIBUNTU

Figure 1 - Kodi start screen

1. Disable starting the display man-
ager at boot:

$ sudo systemctl disable display-

manager.service

2. Create a dedicated user for Kodi.
This user has its own home folder for the
.kodi configuration files and belongs to
certain groups to get necessary permis-
sions”

$ sudo adduser \

 --disabled-password

 --disabled-login\

 --gecos “” kodi

$ sudo usermod -a -G cdrom,\

audio,video,plugdev,users,\

dialout,dip,input,netdev kodi

3. Install the legacy xserver that al-
lows Kodi to run from the terminal
without a display manager:

$ sudo apt-get install \

 xserver-xorg-legacy

4. Configure xserver to give permis-
sions to normal non-root user by choos-
ing “Anybody” when prompted:

$ sudo dpkg-reconfigure \

 xserver-xorg-legacy

Additionally, in the file /etc/X11/

Xwrapper.config, add the following line
to the end:

needs_root_rights=yes

You can now test that it works by
manually starting Kodi:

$ sudo /usr/bin/xinit \

 /usr/bin/dbus-launch\

 --exit-with-session \

 /usr/bin/kodi-standalone\

 -- :0 -nolisten tcp vt7

5. To run at Kodi at boot, create the
systemd service file /etc/systemd/system/
kodi.service with the following content:

[Unit]

Description = Kodi Media Center

if you don’t need the MySQL DB

backend, this should be sufficient

After = systemd-user-sessions.

service network.target sound.

target

if you need the MySQL DB back-

end, use this block instead of

the previous

After = systemd-user-sessions.

service network.target sound.tar-

get mysql.service

Wants = mysql.service

ODROID MAGAZINE	 31

http://bit.ly/2bR6Zeb

KODIBUNTU

[Service]

User = kodi

Group = kodi

Type = simple

#PAMName = login # you might want

to try this one, did not work on

all systems

ExecStart = /usr/bin/xinit /usr/

bin/dbus-launch --exit-with-ses-

sion /usr/bin/kodi-standalone --

:0 -nolisten tcp vt7

Restart = on-abort

RestartSec = 5

[Install]

WantedBy = multi-user.target

6. Start Kodi as a service after boot-
ing:

$ sudo systemctl enable \

 kodi.service

7. Reboot and rejoice!

8. You can also add a shutdown/
reboot option to the power menu, as
described at http://bit.ly/2bpaALp,
by creating the file /etc/polkit-1/
localauthority/50-local.d/custom-ac-
tions.pkla with the following content:

[Actions for Kodi user]

Identity=unix-user:kodi

Action=org.freedesktop.

upower.*;org.freedesktop.console-

kit.system.*;org.freedesktop.

udisks.*;org.freedesktop.login1.*

ResultAny=yes

ResultInactive=yes

ResultActive=yes

I was happy that my remote worked
out of the box, along with NFS, so for
me this is a perfect setup. Note that the
process can be reversed by simply dis-
abling the Kodi service and enabling the
display-manager again. For questions,
comments and suggestions, please visit
the original forum post at http://bit.
ly/2beXfsF.

some inspirational world-domination
music. Nothing happens. You spend
the next 15 minutes troubleshooting the
system, and determine the likely prob-
lem is the head unit in the vehicle. “No
problem...I’ll just make my own! World
domination can wait a few hours,” you
think.

You remove the bezel and head unit
from the vehicle and disconnect the ca-
ble assembly and antenna from it. Then,
you open your box of random compo-
nents you ordered from ameriDroid.
com a few days ago to replenish your
depleted supplies. From it, you pull out
the parts you’ll need:

•	 ODROID-C2
•	 C-Series Case with Fan
•	 64GB eMMC with Android
•	 USB Audio Adapter
•	 DC-DC 12A Stepdown Voltage

Converter
•	 DC Plug and Cable Assembly

2.5mm (for ODROID-C2)
•	 USB GPS Module
•	 ODROID-VU7+
•	 USB 4-port Hub
•	 Wi-Fi Module 3

In addition, you pull out the follow-
ing components from your general elec-
tronics supplies:

•	 Volume knob
•	 Toggle switch (for power control,

even if the car isn’t on)

Every once in a great while, even a
mad scientist needs to leave their
secret laboratory. Back in your

younger life, you recall how your first
lab was in a closet inside of an office.
Even though you insisted it to be called
a “laboratory” — or even just a “lab” —
your associates found it amusing to call
it “the closet.” This led to unfortunate
phrases being tossed around, such as,
“have you looked for him in the closet?”,
“we expect him to be coming out of the
closet soon”, and “he’s in the closet with
the intern.”

Now that you have a real laboratory,
those sad quips are thankfully now just a
distant (troubled) memory.

Today, you need to leave the labo-
ratory in order to secure some supplies
from the technology surplus store for
your latest world-domination scheme.
You sit down in your vehicle and push
the power button on your stereo for

A Car Computer
For the Love of
Customization
Chronicles of a Mad Scientist
by Bo Lechnowsky

CAR COMPUTER

Figure 1 - The ODROID car computer
ready to do your bidding

KODIBUNTU

ODROID MAGAZINE	 32

http://bit.ly/2bpaALp
http://bit.ly/2beXfsF
http://bit.ly/2beXfsF
ameriDroid.com
ameriDroid.com

•	 Audio filter (to minimize electri-
cal noise in the speaker system)

You test fit the VU7+ screen and take
measurements so that you can design
and 3D-print a bezel to fit the screen in
the opening while you assemble all the
components. You spend about an hour
with the 3D software designing the be-
zel and starting the print on your 3D
printer. The software states an estimated
3 hours until print completion. “That’s
my target timeline for completion of this
project as well!” you exclaim, maybe even
with a maniacal laugh for good measure.

Next, you take the C2 and install it
into the case along with the cooling fan
(after all, it might get hot in the vehicle
sometimes.) You also remember that the
touchscreen’s touch functionality stops
working at temperatures above 65C, so
it’s also a good idea to run the air con-
ditioning if the car has been sitting in
the sun for some time before use. While
you’re still in your lab, you connect the
eMMC to the eMMC-to-microSD
adapter and plug that into your high-
quality microSD reader/writer on one of
your lab computers. You remember the
frustration you had using a cheap mi-
croSD reader/writer, and how it couldn’t
handle the speed of the eMMC module,
causing all sorts of weird problems —
which is why you now use a high-quality
microSD reader/writer to write an An-
droid image onto the eMMC module.

Now that the eMMC is mounted,
you find the boot.ini in the FAT par-
tition and change the resolution to
“1280x600” and change the “vout”
line from “HDMI” to “DVI” so that
your ODROID is compatible with the
VU7+. Then you connect the eMMC
to the C2, and the C2 to the VU7+ with
the included HDMI and USB cables. It
boots up beautifully and the touchscreen
works automatically. “On to the next
task,” you say to nobody in particular.

Next, you connect the USB Audio
Adapter to one of the USB ports so that
you can connect that to your vehicle’s

amperage for your project. You’ll have to
pull your power directly from the battery
by attaching a wire through the fuse box.

In this vehicle, the battery and main
fuse box is located under the back seat.
You take out the seat and connect the
positive wire from a spare cable in your
box to an open fuse in the fuse box, and
the negative wire to a spot on the vehicle
chassis where the main system ground is
connected. You take the mud sills off of
the door openings and run the wires un-
der that and underneath the dashboard
to the place where the head unit used
to be. Then you reinstall the mud sills.
You are pleased with your work so far.

You connect the power wires to the
input on the DC-DC step down con-
verter and test the output leads of your
wiring. They are measuring 10VDC, so
you turn the tiny screw on the output
potentiometer until it reads between 5
and 5.25VDC. Next, you connect the
DC Plug Assembly into the output posts
and connect that to your C2. It turns on
immediately. “Marvelous,” you think,
“but I don’t want the system to be on all
the time as it will drain my battery, so I’ll
connect a toggle switch between the step
down converter’s positive input and the

audio amplifier. You connect the audio
adapter to a set of desktop speakers and
play some test audio, which works right
away without any fuss.

Now, you take your box of com-
ponents and head for the elevator that
whisks you from your subterranean
laboratory to the surface, where your
vehicle is located. In the box, you’ve
thrown a few tools and items you may
need, such as spare wire and a portable
soldering iron.

One of the first steps necessary with
installing your new computer into your
car is to locate a suitable 12V DC con-
nection with enough amperage to power
your system. You know that in a vehicle,
there are two main power circuits. One
is connected to the “Accessory” circuit,
which is only active when the key is on
the “ACC” position, or when the vehicle
is running. The other circuit is active
all the time, as it is directly connected
directly to the battery, bypassing the
“ACC” switch. With your handy multi-
meter, you find two pins in the head unit
cable assembly that have 12VDC con-
nected to the “ACC” switch. However,
when testing the capacity in your mad
scientist sedan, it doesn’t have enough

Figure 2: The car computer can assist you with your world domination plans in
style via the Android desktop, PowerAmp, Car Dashdroid, and Google Maps

CAR COMPUTER

ODROID MAGAZINE	 33

wire going to the fuse box. That way, I
can turn the system on and off at will,
whether or not the engine is running!”

After this, you pull out the volume
potentiometer from your box and con-
nect it to the USB Audio Adapter. You
connect the other side of the potentiom-
eter to the amplifier. You turn the igni-
tion to the “ACC” position (in order to
turn on the amplifier) and flip the toggle
switch. The C2 comes on quickly and
you play test music through the speak-
ers! A cunning smile comes across your
face as you start to assemble your world-
domination playlist in your mind.

“Now,” you think, “it’s time to con-
nect the GPS unit!” You open the door,
place the GPS receiver where the dash-
board meets the windshield, and tuck
the cable under the trim and behind the
dashboard where it meets the door. “
unit has a long USB cable,” you realize
as you fish it behind your dashboard to-
ward the C2. You connect it to one of
the free USB ports, knowing you won’t
get a good signal until the GPS receiver
has a clear view of the sky.

You glance at your wrist computer
and see that 3 hours have passed since
you started your project. You hurry
back to the laboratory and find your 3D-

printed bezel glistening on the print bed.
In anticipation, you remove it from the
build platform and flip it around so you
can see the quality of the face. “It looks
amazing,” you conclude. You rush back
to your vehicle and start assembling the
screen into the bezel. In addition, you
mount the toggle switch and the volume

Figure 3 - The inner mad scientist workings
of the car computer before installation

control in a conveniently open area of
the bezel, and you insert the 4-port USB
hub into an opening you designed pre-
cisely for that purpose. You connect the
USB hub into one of the C2’s free USB
ports. “This will give me easy access to
connect all manner of USB devices to
my C2 without removing the unit!” you
exclaim.

You connect an ODROID Wi-Fi
Module 3 to one of the free ports, and
your USB flash drive, including the
beginnings of your world-domination
playlist, into another. You insert the
whole assembly into the dashboard and
start playing your playlist. “Most excel-
lent!” you muse to yourself. “Now, to
test the GPS!”

You turn the ignition to start the ve-
hicle, and you suddenly notice a high-
pitched sound coming through the
speaker. It’s in sync with the engine RPM
and resembles a mutant turbo booster.
“Of course!” you surmise. “I forgot to
install the audio filter!” You remember
that an audio filter is essential for remov-
ing the interference introduced into the
audio stream from the electrical system
of the vehicle. You install the audio filter
in between the volume control knob and
the amplifier. The music is now playing
through your speakers crystal clear!

Now that the hardware is in place,
all that is needed is the software. In the
back of your mind, you remember an
Android app that might work well in
this situation. You download and install
“Car Dashdroid” using the laboratory’s
secure Wi-Fi connection, and then in-
stall “PowerAmp” for the audio control
and music playlists. “Google Maps and
Navigation” is then downloaded for
plotting the fastest route to your various
secret locations.

As you drive to the technology sur-
plus store, you feel especially proud of
yourself as you thump your special selec-
tion of industrial space opera electronica
through your subwoofer, windows rolled
down, goggles resting on your forehead,
head bobbing in sync with the beat. “In

CAR COMPUTER

300 feet, turn left,” says a female voice
from the navigation software, temporar-
ily hushing the music playback.

After arriving back at the laboratory,
you start scribbling a needs-list for ad-
ditional features for your new vehicular
system on the back of your technology
surplus receipt:

•	 Bluetooth Receiver (for taking
calls from your genius-phone
and offering voice controls)

•	 Cellular modem or Cellular
hotspot module (for giving the
system Internet access while on
the move)

In addition, you can’t help but add a
few wishlist items too:

•	 Ejection Seat system control (for
getting rid of evil foes)

•	 Smoke Screen system control (to
aid in evading rivals)

•	 Road spike system control (to
disable antagonist vehicles)

•	 Rocket boost system control
(the most entertaining way to
outrun adversaries)

•	 Grappling hook control (better
to be prepared than sorry)

“World domination can wait another
day,” you convince yourself as you pon-
der over the list and all the ideas that it
inspires.

ODROID MAGAZINE	 34

Yabause quite some time back for the
OpenPandora device, adding several
speed optimizations for ARM to increase
the overall speed of the emulator as well
as its performance. On the OpenPando-
ra platform, this doesn’t help much due
to its own hardware limitations. How-
ever, on the ODROID-XU3 and XU4,
these changes help to run the emulator
at a very acceptable speed. Combined
with GLshim, the OpenGL to OpenGL
ES wrapper also from @ptitSeb, it’s pos-
sible to use the scaling capabilities of
OpenGL to play the games in fullscreen
1080p on a TV without losing the speed
of the emulation.

Unfortunately, there was another is-
sue after achieving this. Although full
screen mode worked as a result of the
improvements, the picture was always
stretched to fill the entire screen to
100%, resulting in a 16:9 resolution on

This month, I want to talk about
the Sega Saturn, a CD-based
gaming console from Sega, which

is different from the Sega CD system. It
was a 32-bit console released between
1994 and 1995, depending on where
you lived. The Sega Saturn was meant
to compete with the Sony Playstation,
but couldn’t meet high expectations
and became a commercial failure. Still,
it had some great games worth emulat-
ing on a single board computer like the
ODROID.

Sega Saturn on
ODROIDs

The Sega Saturn has a very unique
design for a console, featuring two
CPUs and a total of 8 different proces-
sors, make this console very difficult to
emulate. In the past, we were using ya-
bause_libretro for retroarch to get the
Sega Saturn working. However, this ap-
proach results in very slow emulation,
making the games not very fun to play.

To solve this issue, @cartridge from
the ODROID forums has built the Ya-
bause standalone emulator for the Sega
Saturn, and found that the ODROID-
XU3 and XU4 can support playing Sat-
urn games decently at a 320x240 reso-
lution. This resolution is good enough,
but only if you can sit very close to the
front of the TV.

Forum user @ptitSeb did a port of

1080p for a game originally designed for
4:3 resolutions. I didn’t like it, and after
a couple days of testing and hacking the
code, I was able to add some an aspect
ratio control into the emulator which al-
lows us to play the games closer to the
original look and feel of the Saturn itself.

In the end, getting the Sega Saturn
to emulate on an ODROID took a lot
of time and many optimizations, but the
results are hopefully worth the effort.
Here’s how to do it yourself.

Yabause standalone
emulator

To get started, you can install ya-
bause-odroid as usual from my reposi-
tory. The emulators comes with two dif-
ferent front ends. One based on Qt4,
and the other based on GTK. Either
can be started by selecting it from your
menu, or from the command line via ya-
bause-qt or yabause-gtk. Although these
emulators share the same core, they have
some key differences in performance. In
my experience, GTK is slightly faster
than Qt, but Qt is generally compat-
ible with more games, except for a few
like Megaman X4 where the controls
wouldn’t work on Qt, but do work on
GTK.

To run Saturn games, you’ll need a
BIOS file. I know of at least four BIOS
versions that exist: EU and US 1.00, and
JP 1.00 or 1.01. I couldn’t find any dif-

Linux Gaming
Sega Saturn
and CDEmu
by Tobias Schaaf

LINUX GAMING

Figure 1 - The Sega Saturn logo in
Europe, a lesser known image in the
console world

ODROID MAGAZINE	 35

LINUX GAMING

or burn the .iso, but this is less conve-
nient and requires physical media, even
if you have a digital copy of the game.
After doing some research, I was able to
find a digital solution to this problem:
The CDEMU project.

CDEMU project
CDEMU is a virtual CD drive solu-

tion, much like Daemon Tools, which
lets you create a virtual CD drive and
mount an .iso image, rather than load it
as a data file in the emulator. If you use a
virtual CD drive through CDEMU and
launch your Saturn games with the vir-
tual CD drive, the emulator will see it as
a virtualized CD with all the data and
audio tracks intact.

To use CDEMU, you’ll need to build
a kernel DKMS module that allows
the system to create a virtual CD drive.
Therefore, you’ll need working kernel
headers that match your kernel image,
or else the module can’t be built. The
kernel from my repository provide such
headers, but I’m not sure if other images,
such as HardKernel’s build, support this.
You’ll need to test this out to see if your
kernel is compatible.

You can either install cdemu-client
or gcdemu from my repository to get
cdemu to work for you. The former is
a command line client that allows you
to mount CDs from console, while the
latter is the same software, but with a
graphical interface if you prefer mount-
ing your files with a few clicks instead
of typing out the commands yourself.
Once you’re all set up, you can mount
all sorts of Sega Saturn CDs and enjoy
the classic games with all the high qual-
ity audio too.

Mounting CDs from
terminal

Mounting a CD is rather easy via
command line:

$ cdemu load 0 <my-image-file>

For example, if you wanted to load

ferences between them in matters of
compatibility, so any BIOS will suffice,
at least in my testing. It could be that
some games work better on one particu-
lar BIOS compared to another, so feel
free to let me know your own results.
You can use the settings in the frontend
to select your BIOS file, or refer to it
with the “-b” flag when launching ya-
bause via command line:

$ yabause-qt -b “/home/odroid/

ROMS/saturn_bios.bin”

Keep in mind that, in most countries,
you’ll need to legally own a physical Sega
Saturn in order to utilize the BIOS files
for emulation.

The emulator has two graphics op-
tions available: Software mode using
SDL, and OpenGL hardware emula-
tion. As I mentioned earlier, we use
GLshim, an OpenGL to OpenGL ES
wrapper, to improve the picture and
speed up graphics, but that does not
mean that we can use the OpenGL op-
tion of the emulator. Instead, it simply
helps the SDL software mode and uti-
lizes GLShim to improve performance,
but there’s no hardware support with
OpenGL at the moment for ODROIDs.
This also means that 3D games are ren-
dered in the slower SDL rendering and
don’t really look good compared to the
original Saturn experience, but they are
at least playable. Next, you can choose
to run your Saturn game, either directly
from the SD through a connected CD
drive, or via an .iso file stored on your
ODROID. Again, in most countries,
you’ll need original copies of any games
you play via emulation.

However, if you’re using an .iso file,
you’ll notice an issue with the audio.
The Sega Saturn supports high quality
music and audio, but these files were
stored as audio tracks on the CD, not
as data that you can find in the .iso file.
This unfortunately causes some games to
start without any audio or music tracks.
One solution is to use the original media

King of Fighters 95:

$ cdemu load 0 King_of_Fight-

ers_95.nrg

Before you can mount a new image,
you first have to unload the old one:

$ cdemu unload 0

After that, you can mount a new im-
age with the same command as before.
The “0” in the command refers to the ID
of your virtual CD drive. You can have
several, although it’s easier to stick to one
virtual CD drive for your emulator, and
just switch out image files as you want to
switch out your games.

Issues
While using CDEMU, I did encoun-

ter some issues, especially when trying
to mount images with special characters,
such as spaces. Loading these images
would fail, so you might want to rename
your image files before uploading them
so that they’re easier to type and don’t
cause issues when trying to mount them.
If you have .bin and .cue files as a com-
bined image, make sure that you edit the
.cue files using a text editor and alter the
name of the .bin file inside the .cue file
as well.

Some images that I found had audio
tracks as .cue .iso and .mp3 files, which
couldn’t be mounted correctly either. In
that case, you should try to mount the
image with your desktop and save it un-
der a new format. I used Nero Burning
ROM to convert .cue/.mp3/.iso image
to .nrg images, which worked fine on
CDEMU.

Game compatibility
I’ve tested more than 100 different

games for the Sega Saturn, and unfortu-
nately only half of all the games I tested
actually worked. I don’t mean that the
games are too slow to play, but that they
wouldn’t even load, or would constantly
freeze or crash beyond a certain point.

LINUX GAMING

ODROID MAGAZINE	 36

King of Fighters ‘96
I don’t think King of Fighters needs

any introduction. Let’s just say that this
seems to be a very good arcade port to
the Sega Saturn. The fighting is just the
way it should be, and the CD quality

Elevator Action
Returns

This game is very fun to play. You
can ride up and down different eleva-
tors to shoot enemies, or use bombs and
grenades to kill enemies as they spawn.
There are some special weapons that you
can pick up, and you can open doors
to find items and “secrets” inside. The
game allows for either one or two players
to play at the same time.

Magic Knight
Rayearth

Magic Knight Rayearth is a very cute
anime-styled action RPG. I really like
the art style of the game. It reminds a
little of Final Fantasy IX with its “chibi”
style characters. The interactive intro-
duction to the game is quite long (at
least 15 minutes), but is done using a
lot of voice acting as well as short an-
ime scenes which appear throughout the
story. The game is based on a Japanese
manga and anime series with the same
name. You play three young school girls
with magic powers who use these powers
to fight monsters.

Still, a 50% success rate leaves a fair
number of games to play. With a library
of about 600 games for the Sega Saturn,
there are quite a lot of games that might
actually work. Some games I tested only
work under Qt, such as Nights into
Dreams, while others only work prop-
erly under GTK, such as Megaman X4,
as previously mentioned.

To make things even more compli-
cated, some games also required one
of two different RAM add-on cards.
Some games, like King of Fighters ’96,
required an 8Mbit (1MB) add-on card,
while others required the 32Mbit (4MB)
add-on card. Most games will also have
glitches if you try using the larger add-
on card instead of the smaller 1MB add-
on card, which adds to the difficulty of
the compatibility process.

Games
You might be wondering, what

games are working? As I mentioned, I
tried many of them, and there are quite
a few games that work nicely on the
ODROID with the Sega Saturn, and in
fact there are many arcade ports for the
console, as well as some PC ports such
as Command and Conquer and “Z”. I
found that many 2D games are running
very good, while 3D games often require
frame skipping to make them work flu-
ently. Still, no matter what games I got
to work “properly,” they normally run in
a very playable speed either with or with-
out frame skipping. Below are some of
my favorite games that I want to share
with you, and I hope you like them as
well.

Figure 2 - Kodi showcasing Sega Saturn
Games via ODROID GameStation Turbo

Figure 3 and 4 - Elevator Action Returns
Figure 5 and 6 - Magic Knight Rayearth
is a very cute anime-style RPG with
great graphics and voice acting

Figure 7 and 8 - King of Fighters ’96
for the Sega Saturn is as good as it
gets, and I really enjoy playing this
game on the ODROID

LINUX GAMING

ODROID MAGAZINE	 37

Final thoughts
I really like the Sega Saturn emula-

tor, and I’m going to integrate it into
my OS images. Some of the gamest that
I found are really good, and I had lots
of fun playing them. However, many
games still do not work and that can be
a little bit frustrating, especially when
you’re looking to play certain games and
only four or five work out of the 10 you
wanted to play.

The emulator is also very demand-
ing. Running it on an XU3 or XU4 will
probably work fine, but using a Exynos
4 series ODROID will probably very
challenging for the hardware, and not
all games will work at a decent speed. I
wouldn’t even try to get it to work on
an ODROID-C1, and as usual, the 64-
bit ODROID-C2 misses the dynamic
recompiler for the CPU of the Saturn,
which makes the emulation even slower.

Sometimes the sound can be a little
bit glitchy as well. You also need to con-
figure a lot of things before you can ac-
tually use the emulator. Features such
as save state paths are required, or you
won’t be able to save at all. If you check
the config files under .config/yabause/,
you will find even more options than
the ones you can set on the menu, and
sometimes it’s required to fix settings in
the configuration files directly.

In the end, I know there’s room for
improvement, and newer versions of the
emulator are available, but have yet to be
ported to the ARM architecture. Still,
that’s always true when emulating con-
soles on ARM-based devices, and despite
all of this, I still really like the emulator,
and the Sega Saturn comes with some
great games. @ptitSeb is working on
OpenGL ES 2.0 support in the future,
which would be awesome, since then we
would have full 3D acceleration for this
emulator and which will bring support
for more 3D games. In the meantime,
enjoy your Sega Saturn games on your
ODROID.

Without OpenGL support, this might
look cheap, but still it works and does so
at a decent speed too.

Other games
The Sega Saturn has many many

more games that I liked playing, such
as Clock Knight 2, Crusader: No Re-
morse, Robo Pit, Bug Too!, and Castl-
evania: Symphony of the Night. Some
Sega fans might wonder why I didn’t talk
about Night into Dreams for the Saturn.
I really didn’t like the game very much,
probably cause I am not very good at it.
However, another reason is that it has
some issues with the emulator. It only
runs on the Qt emulator, not the GTK
one, and it seems to have some graphi-
cal glitches, and a few slow downs here
and there. It does work and people who
want to play it can do so if they want,
but remember, there is only a SDL soft-
ware renderer available on this version of
the emulator and this is a 3D game, so
the graphics won’t look as good as they
could be.

music just adds to the overall experience
of the game. I doubt any MAME ver-
sion of this action game could run any
better on the ODROID than this game.

Mega Man 8 –
Anniversary
Collector’s Edition

Normally, I’m not too much of a
Mega Man fan, but this game was ac-
tually fun to play. I really love the art
style, which give the impression that all
the graphics are hand drawn comic book
illustrations. The game works very well
on my ODROID-XU3, and is one of
the games you really should try to play
for the Sega Saturn. Thanks to the CD
format, it comes with some nice music
and some cool cutscenes from the anime
series.

Radiant Silvergun
Radiant Silvergun is one of several

fun shmup (shoot ‘em up) games for the
Sega Saturn. I chose this particular one
since it actually uses some 3D elements
when drawing ships and level bosses.

Figure 9 and 10 - Mega Man 8 with its
beautiful comic book-style graphics
and background images

Figure 11 and 12 - Radian Silvergun is a
space shoot ’em up that shows off 3D
elements and looks good, even without
graphics acceleration

LINUX GAMINGLINUX GAMING

ODROID MAGAZINE	 38

created a 3D model of the XU4. The
TinkerCAD site was simple enough
that I was able to figure out how to get
measurements off the 3D model, which
I incorporated on my design especially
on the fan and ports. This project uses
a lot of “guesstimations” as well as trial
and error.

Build process

With the PCB measurements and de-
sign of the Raspberry Pi case, I made my
first basic draft and print to check if the
dimensions are correct

I made minor adjustments on the
dimensions and added folds where you
will apply your glue

I changed the design orientation into

DIY projects are great, especially
when you have all the stuff you
need at home and it costs you al-

most nothing to make. I used up all of
my budget to get myself an ODROID-
XU4, so I have nothing left to spare for
a case. I was concerned about using the
ODROID without an enclosure. It felt
like it was too exposed to the elements,
so I researched how to make a simple
case that I could build at home.

The idea of fabricating my own case
was challenging, and involved many
things that I lack and/or know little
about. I don’t have the typical power
tools needed to make a case out of met-
al, wood or plastic, which are difficult
to get, as well as expensive. I also have
zero knowledge with software design,
so CAD and similar programs were out
of the question. I also set out to make
this project as cheaply as possible, mean-
ing that materials should already be at
home, or be very affordable and readily
available.

While searching for ideas, I discov-
ered the Punnet Case for the Raspberry
Pi and realized that it was exactly what
I was looking for. I started by asking at
the ODROID forums if there was such
a case ever made for the XU4, but there
was none, so I decided to make one for
myself.

Because I don’t have any experience
with using CAD programs, I opted to do
this project on Microsoft Office, which
is the only application that I know how
to use. Most of the measurements I used
on this project came from two sources:
one is the XU4 PCB details found on
Hardkernel’s product page, and the oth-
er is available on http://www.tinkercad.
com from Ronald Westmoreland, who

portrait to avoid blocking the I/O ports
by the glue folds, and also started adding
cut lines for the ports

After several adjustments to the size
and position of the holes for the ports, I
added the square hole for the fan intake

With the port holes for the fan intake
positioned correctly, I switched from
regular bond paper to 180 GSM card
paper

After several reprints and readjust-
ments for the fan intake, I added the
holes for the exhaust starting from the
sides and then the bottom

The XU4 Punnet
A printable card case for the ODROID-XU4
By Randolph Gimena

XU4 CASE

ODROID MAGAZINE	 39

http://www.tinkercad.com
http://www.tinkercad.com

The final product top, side and bot-
tom view

Assembly
Here are the things you will need to

make your own case:
1. Printer
2. Card Paper
 (I recommend 180GSM)
3. Scissors
4. Precision Cutting Knife
5. Glue

The .docx file is available at http://
bit.ly/2bp82RB for those interested in
printing their very own XU4 Punnet
case. Skinning your case is super easy.
Add the desired skin by inserting your
own picture, wrap the image “Behind
Text”, then adjust the size and position
of your skin and crop to save on printer
ink. My chosen skin helps with hiding

A view of the Punnet case from the
top, side and bottom

I added a hole for the eMMC/SD
switch, and revised the fan intake design
into something simpler, since the previ-
ous one had too many shapes layered on
top of each other

XU4 CASE

flaws made while cutting.
I would also like to encourage in-

terested users to modify the file to their
heart’s desire because I would if I could,
but this is the extent of my knowledge
and skills. I surely would love to see
this design converted into other formats
and even see it improved upon, such as
a slimmer version. Don’t forget to share
your work on the ODROID forums,
and leave any comments, questions or
suggestions on the original thread at
http://bit.ly/2bTGLUA.

Useful links

XU4 Punnet case blueprints
http://bit.ly/2bp82RB

Original Raspberry Pi Punnet case
http://bit.ly/2bEricG

XU4 PCB measurements
http://bit.ly/2bTGReN

ODROID MAGAZINE	 40

http://bit.ly/2bp82RB
http://bit.ly/2bp82RB
http://bit.ly/2bTGLUA
http://bit.ly/2bp82RB
http://bit.ly/2bEricG
http://bit.ly/2bTGReN

tom, in a sequential manner. In other words, we get an “older”
image on the upper part of a rolling shutter camera, while the
lower part shows a “newer” image. So, we get the older posi-
tion of the blue dot, to the left, and then get the current posi-
tion of the red dot. This gives an unjustified advantage to the
red dot which will win the game if we use the rolling shutter
camera to find the winner.

So, does a camera with a global shutter really give a differ-
ent result? Let’s verify it by seeing the images of taken with a
global shutter camera, the oCam-1MGN-U in this case.

As expected, the global shutter camera shows the result cor-
rectly. Now, the blue dot wins the game, rightfully!

As a continuation of our last article, available at http://
bit.ly/2bu0Owj, we looked at electronic camera shut-
ters. In this article, we will build on that and demon-

strate a few interesting experiments.

Experiment 1
Figure 1 is an overhead view of a race track that has two rac-

ing dots, one blue and one red. These dots are racing towards
the black finish line on the right side. Although both dots are
very close, we intentionally made the blue dot go a little bit
faster than the red dot. If you look closely at the last scene, we
can see that the blue dot touches the finish line first. However
the blue dot only finishes slightly ahead of the red dot. Since
the difference is so small, we need to use a camera to verify the
result.

Now, let’s look at the outcome of the race using real camera
images taken with different shutter mechanisms. Figure 2 is
the result of the race captured by a typical webcam with a roll-
ing shutter.

In Figure 2, the red dot appears to be winning now! This is
clearly the opposite result from the real situation. If you have
read the previous article and understood it, this would not be
so surprising because, as you already know, a camera with a roll-
ing shutter sends out the image line-by-line, from top to bot-

Why Does The Loser
Seem To Touch The
Finish Line First?
Interesting experiments to understand the
difference of shutter mechanisms
by withrobot@withrobot.com

CAMERA SHUTTER

Figure 1 - Race of two dots

Figure 2 - Image of a rolling shutter camera

Figure 3 - Image of a global shutter camera (oCam-1MGN-U)

Figure 4 - Same numbers displayed on a vertical line

ODROID MAGAZINE	 41

http://bit.ly/2bu0Owj
http://bit.ly/2bu0Owj
mailto:withrobot@withrobot.com

Experiment 2
We will do another experiment to

show the difference between the two
types of cameras more quantitatively.
The same numbers will be displayed on
a vertical line at a time.

Now, we will increment all the num-
bers very rapidly, from 0 to 9. As before,
let’s examine the resulting image of a
rolling shutter camera first.

As expected, the lower part of an im-
age shows the later data than the upper
part. Therefore, we get higher numbers
on the lower part than the upper part.
Namely, 0 on the top line, 1 on the mid-
dle line, and almost 2 at the bottom line.

Now lets take some images with a
oCam-1MGN-U, which has a global
shutter. Do we get the same numbers
from top to bottom? You bet!

The conclusion that we can draw
from these experiments is that if you
need time synchronicity between all the
points on a video frame, then the global
shutter camera is your best choice.

CAMERA SHUTTER

Figure 5 - Numbers captured by a
rolling shutter camera

Figure 6 - Numbers captured by a
global shutter camera

VU7 PLUS

The ODROID-VU7 recently received a nice update recently, along with in-
creased compatibility with Android and Linux. The original version sup-
ported up to 800x480 resolution, and the Plus model raises the screen size

to 1024x600 while still allowing 10 separate touch points at a time, and may be
purchased from the Hardkernel store at http://bit.ly/2cmKyuN.

This 7-inch multi-touch screen for ODROIDs gives users the ability to create all-
in-one, integrated projects such as tablets, game consoles, infotainment systems and
embedded systems. The 1024 x 600 display connects to ODROID-C2 / C1+ via an
HDMI link board and a micro-USB link board which handles power and signal. Just
connect a DC plug in to the DC-jack on C2 / C1+, and you are ready to play, once
you install the latest OS update This high-quality touchscreen is specifically designed
to work with both Android and Linux on the ODROID-C1+, C2 and XU4.

Specifications
- 7-inch TFT-LCD
- ScreenrResolution: 1024 x 600 pixels
- 5 finger capacitive touch input
- Power consumption : 700mA/5Volt
- Backlight on/off slide switch
- Wide viewing angle (in degrees) : Left 75, Right 75, Up 75, Down 75
- Screen dimensions : 172.9 x 124.3 x 15 mm Including switch and connectors)
- Viewable screen size : 153.6 x 86.64 mm (active area)

ODROID-VU7 PLUS
YOUR FAVORITE TOUCHSCREEN
NOW OFFERS HIGHER RESOLUTION
by Justin Lee

The ODROID-VU7 Plus supports up to 1024x600 resolution, is compatible with the
ODROID-C0/C1/C1+, XU4 and C2 models, and supports 10 touch points at a time

ODROID MAGAZINE	 42

new PC, tried Ubuntu, and really liked it. I actually liked
it so much that I switched completely to GNU Linux and
never regretted it. The GNU Linux world opened a lot of
doors for me. I started to hang out at Ubuntu forums and
I found some friends and mentors.

I learned programming, and did all different kinds of
projects with others. I became a member of the Debian Sci-
ence team and did packaging of crystallographic software.
Currently, I work with the LibreELEC team and take care of
Amlogic CEC issues together with Gerald Dachs. I’m also a
forum moderator together with @wrxtasy on the ODROID
forums for his LibreELEC community build.

What attracted you to the ODROID platform?

My first device with ARM was a Pandaboard ES. I’ve
been using Kodi for a while on my PC, and I wanted to
reduce my power consumption, but there were always issues
with Kodi and deinterlacing. I continually looked for al-
ternatives, and every once in awhile, I searched the Internet
for an ARM device to run my media center. There was a
big community and Kodi support for the Raspberry Pi, so
I got one, but again I was disappointed because there were
limitations with the codecs. In 2015, I found a list of An-

Please tell us a little about yourself.
I’m 31 and live with my wife Anna and my newborn

son Nemuel in a suburban town near Marburg in Germany.
I did my apprenticeship as a chemical laboratory assistant
at the department for the pharmaceutical chemistry depart-
ment of the University of Marburg. Currently, I work at the
department of X-ray crystallography as a technician and sys-
tem administrator. Mainly, we try to determine 3D chemi-
cal structures from X-ray diffraction experiments. My job
requires me to do a lot of computer calculations. I also take
care of our Linux servers along with performing repairs and
maintenance of our machines.

How did you get started with computers?
My first computer was an Amiga A500+, and of course,

I just used it for gaming. I had to share it with my siblings
and parents. We had a lot of games on diskettes, but we
didn’t have a hard drive to save the scores, so we always had
to start over.

When I was 12, I got my own Windows 98 PC, with
which I started to experiment with computers. The PC was
too slow to upgrade to Windows XP, so I tried to get SuSE
Linux up and running, but I failed. A few years later I got a

Meet an ODROIDian
Radostan Riedel (@raybuntu)
TALENTED LibreElec developer
edited by Rob Roy

MEET AN ODROIDIAN

Radostan with his beautiful wife Anna in Amsterdam Radostan’s DIY LibreELEC Tablet: C2, VU7 Plus, and HiFi Shield+

ODROID MAGAZINE	 43

problem with Amlogic devices is the software support, so I’d
really like to see mainline kernel support for current and fu-
ture ODROID products. Since a lot of people are attracted
to ODROID products because of Kodi, it would be awe-
some if Hardkernel offered eMMC modules and microSD
cards pre-installed with LibreELEC for beginners. In the
future, I’d like to have a modular ARM64-based ODROID
board with SATA support.

What hobbies and interests do you have apart from computers?

I play blues harmonica, but not in any professional way.
I have an interest in old-fashioned vintage men’s fedoras,
from their history to cleaning, shaping and manufacturing.
I guess that my interest comes from old American movies
with Humphrey Bogart.

What advice do you have for someone wanting to learn more
about programming?

In my opinion, the best way to learn is to read source
code. Start using a script language like bash and try to ease
your life with small functions or programs inside the ter-
minal. Copy, reuse and improve source code from other
people. You’ll see that after some time, it becomes easier.
Don’t be afraid to make mistakes. Read the compiler warn-
ings and errors. Python is a good language to start with
too, because you learn to indent your source code cleanly
without brackets. It’s important to never give up. There are
things I couldn’t do 3 months ago but now I can.

droid ARM devices on the Kodi Wiki and learned about the
ODROID-C1+. I ordered one, tried it, and finally found
what I had been looking for. The ODROID community is
helpful and constantly growing, and with Hardkernel, we
have a great company that supports the community and lis-
tens to what users need.

How do you use your ODROIDs?
I use them for kernel development and for my media

centers. Currently, I’m planning to build a low power Emby
media server or Plex Media Server with one of my C2’s.
I also want to build a few environmental sensors with the
Weatherboard 2 for our lab.

Which ODROID is your favorite and why?

The ODROID-C2 is my favorite one because it can
decode all of my media in Kodi and has really low power
consumption, which is about 1.8W - 2.1W while watching
1080p 10-bit HEVC videos. I haven’t had the chance to try
an XU4, but I guess for media center purposes an Amlogic
based device is the best choice. The S905 chip is just state
of the art and a lot of companies are releasing Android TV
devices with that chip this year.

What innovations would you like to see in future Hardkernel
products?

I’d like to see new Amlogic devices in the future. The
S912 chip will feature a TS input interfac e, which makes
it suitable to connect digital tuners for DVB and ATSC.
Also, with the built in DAC, we already have a HiFi shield
on-board. On-board WiFi would be nice, too. The biggest

MEET AN ODROIDIAN

Radostan uses an ODROID-C2 for kernel development, which
is always connected to the TV to identify CEC bugs

One of Radostan’s hobbies is vintage fedoras. This is a cus-
tom-made hat by Art Fawcet that was built to look like Hum-
phrey Bogart’s hat from “The Maltese Falcon (1941)

MEET AN ODROIDIAN

ODROID MAGAZINE	 44

