
Docker
Magazine

ODROID
Magazine

X86 Exagear Emulation • Android Gaming • Meta Package Installation

ODROID Year Two
Issue #14
Feb 2015

Deploying
ready-to-use

containers
for running complex
system environments

• Interfacing ODROID-C1 with 16 Channel Relay
• ODROID-C1 Minimal Install
• Device Configuration for Android Development
• Remote Desktop using Guacamole

OS Spotlight:
Ubuntu Studio

Play with the Weather Board

Docker

What we stand for.
We strive to symbolize the edge of technology,
future, youth, humanity, and engineering.

Our philosophy is based on Developers.
And our efforts to keep close relationships with
developers around the world.

For that, you can always count on having the quality
and sophistication that is the hallmark of our products.

Simple, modern and distinctive.
So you can have the best to accomplish
everything you can dream of.

We are now shipping the ODROID U3
devices to EU countries! Come and visit
our online store to shop!

Address: Max-Pollin-Straße 1
85104 Pförring Germany

Telephone & Fax
phone : +49 (0) 8403 / 920-920
email : service@pollin.de

Our ODROID products can be found at
http://bit.ly/1tXPXwe

http://www.hardkernel.com
mailto:service@pollin.de
http://bit.ly/1tXPXwe
http://bit.ly/1tXPXwe

EDITORIAL

ODROID Magazine, published monthly at http://magazine.odroid.com, is your source for all things ODROIDian.
Hard Kernel, Ltd. • 704 Anyang K-Center, Gwanyang, Dongan, Anyang, Gyeonggi, South Korea, 431-815
Makers of the ODROID family of quad-core development boards and the world’s first ARM big.LITTLE architecture
based single board computer.
Join the ODROID community with members from over 135 countries, at http://forum.odroid.com, and explore the
new technologies offered by Hardkernel at http://www.hardkernel.com.

Now that ODROID Magazine is in its second year, we’ve ex-
panded into several social networks in order to make it
easier for you to ask questions, suggest topics, send article

submissions, and be notified whenever the latest issue has been
posted. Check out our Google+ page at http://bit.ly/1D7ds9u,

our Reddit forum at http://bit.
ly/1DyClsP, and our Hardkernel
subforum at http://bit.ly/1E66Tm6.

If you’ve been following the recent
Docker trends, you’ll be excited to

find out about some of the pre-built Docker
images available for the ODROID, detailed

in the second part of our Docker series that
began last month. For those who want to try x86 emulation,

Tobias presents an overview of an application called Exagear, which
allows many Windows applications to run on ARM architecture, includ-
ing Skype. Venkat brings us the technical details for installing Guacamole,
which enables remote desktop viewing from a browser, and Nanik contin-
ues his Android Development series with a look into device configuration.

For those interested in setting up a weather station, the ODROID Weather
Board (http://bit.ly/1wtPdgP) makes a perfect addon, and Jussi had some
fun by remotely monitoring meteorological conditions with it. Tinkering en-
thusiasts will enjoy the feature on connecting a 16-channel relay to the C1,
and and musicians and artists can learn more about Ubuntu Studio, which
is free to download and install on any Ubuntu distribution, providing lots of
open-source media tools for creating and producing art, videos and music.

Android and mobile gaming has become very popular in recent years, and Bru-
no continues to present his favorite games for the ODROID, including Plants
Vs. Zombies 2, Fish out of Water, and Pew Pew. If you have a favorite game
that you’d like to see reviewed, create a post on the ODROID Magazine subfo-
rum or make a note on our Google+ page, and we may feature it in an upcoming
issue!

ODROID MAGAZINE	 3

http://magazine.odroid.com
big.LITTLE
http://forum.odroid.com
http://www.hardkernel.com
http://bit.ly/1D7ds9u
http://bit.ly/1DyClsP
http://bit.ly/1DyClsP
http://bit.ly/1E66Tm6
http://bit.ly/1wtPdgP

STAFF

ODROID
Magazine

Rob Roy,
Chief Editor

I’m a computer
programmer living

and working in San
Francisco, CA, design-

ing and building web applications
for local clients on my network
cluster of ODROIDs. My primary
languages are jQuery, Angular JS
and HTML5/CSS3. I also develop
pre-built operating systems, custom
kernels and optimized applications
for the ODROID platform based
on Hardkernel’s official releases, for
which I have won several Monthly
Forum Awards. I use my ODROIDs
for a variety of purposes, including
media center, web server, applica-
tion development, workstation, and
gaming console. You can check out
my 100GB collection of ODROID
software, prebuilt kernels and OS
images at http://bit.ly/1fsaXQs.

Bo
Lechnowsky,
Editor

I am President of Re-
spectech, Inc., a tech-

nology consultancy in Uki-
ah, CA, USA that I founded in 2001.
From my background in electronics
and computer programming, I manage
a team of technologists, plus develop
custom solutions for companies rang-
ing from small businesses to worldwide
corporations. ODROIDs are one of
the weapons in my arsenal for tack-
ling these projects. My favorite devel-
opment languages are Rebol and Red,
both of which run fabulously on ARM-
based systems like the ODROID-U3.
Regarding hobbies, if you need some,
I’d be happy to give you some of mine
as I have too many. That would help
me to have more time to spend with my
wonderful wife of 23 years and my four
beautiful children.

Bruno Doiche,
Senior
Art Editor

Made a pact with
the fianceé to sweep

the floor everyday, so he got himself a
Roomba.

Manuel
Adamuz,
Spanish
Editor

I am 31 years old
and live in Seville,

Spain, and was born in Granada. I
am married to a wonderful woman
and have a child. A few years ago I
worked as a computer technician and
programmer, but my current job is
related to quality management and
information technology: ISO 9001,
ISO 27001, and ISO 20000. I am
passionate about computer science,
especially microcomputers such as the
ODROID and Raspberry Pi. I love
experimenting with these computers.
My wife says I’m crazy because I just
think of ODROIDs! My other great
hobby is mountain biking, and I oc-
casionally participate in semi-profes-
sional competitions.

Nicole Scott,
Art Editor

I’m a Digital Strat-
egist and Trans-

media Producer
specializing in online

optimization and inbound market-
ing strategies, social media directing,
and media production for print, web,
video, and film. Managing multiple
accounts with agencies and filmmak-
ers, from Analytics and Adwords to
video editing and DVD authoring. I
own an ODROID-U3 which I use
to run a sandbox web server, live in
the California Bay Area, and enjoy
hiking, camping and playing music.
Visit my web page at http://www.ni-
colecscott.com.

James
LeFevour,
Art Editor

I am a Digital Me-
dia Specialist who is

also enjoying freelance
work in social network marketing and
website administration. The more I
learn about ODROID capabilities the
more excited I am to try new things I’m
learning about. Being a transplant to
San Diego from the Midwest, I am still
quite enamored with many aspects that
I think most West Coast people take for
granted. I live with my lovely wife and
our adorable pet rabbit; the latter keeps
my books and computer equipment in
constant peril, the former consoles me
when said peril manifests.

ODROID MAGAZINE	 4

http://bit.ly/1fsaXQs
http://www.nicolecscott.com
http://www.nicolecscott.com

INDEX
EXAGEAR X86 EMULATION - 6

ANDROID GAMING: PEW PEW - 9

ANDROID GAMIING: FISH OUT OF WATER - 11

WEATHER BOARD - 19

CI MINIMAL INSTALL - 32

RELAY - 36

DOCKER - 41

ANDROID GAMING: PLANTS VS. ZOMBIES - 18

MEET AN ODROIDIAN - 49

REMOTE DESKTOP - 12

OS SPOTLIGHT: UBUNTU STUDIO - 15

META PACKAGE MANAGEMENT - 10

ANDROID DEVELOPMENT - 29

ODROID MAGAZINE ON GOOGLE+ - 35

ODROID FORUMS- 40

DEBIAN VS. UBUNTU- 48

ODROID MAGAZINE	 5

http://forum.odroid.com

OpenGL. This means that not all functions are supported,
and the graphics are rather slow.

For example, you can install Steam on the ODROID, but
you can’t run it, since some functions are missing and it won’t
start. Any applications that requires fancy graphics won’t run,
and the same applies to Windows applications. Although you
can run many Windows x86 applications, those that use heavy
DirectX components like 3D games won’t work, or will be very
slow, and actually will make your ODROID run very hot.

Real examples
With all that said, you might wonder, what is ExaGear

good for and what can you expect? Check out Figure 1 for
an example of ExaGear working. As you can see,– it is quite
capable but with some limitations.

I have found that many programs have issues with the
sound. If there are multiple sound samples playing at the
same time the sound gets scratchy with audible delays. So,
although gaming is possible to a certain degree, don’t expect
it to be perfect.

Skype and TeamViewer
One of the most useful things that you can do with Ex-

aGear is to run applications that are widely used in x86 envi-

Eltechs ExaGear desktop is a virtual machine that imple-
ments a software-based x86 Linux container on ARM
and allows you to run Intel x86 applications directly. It

is like QEMU but 4.5 times faster. You can even run Windows
applications on your ARM device if you install Wine. When
ExaGear was first announced, I had doubts about its capabili-
ties, and never thought I would actually use it. However, when
I installed it a short time ago, I was actually surprised, and want
to share my experience and results with x86 emulation on ARM
devices using ExaGear.

Overview
ExaGear is not free, and a license must be purchased from

Eltechs at http://bit.ly/YbPqc5. ExaGear comes with install-
able Debian packages and a stripped-down Ubuntu 12.04 x86
image. The package should work on all Debian-based systems
such as the official Ubuntu 14.04 images from HardKernel, as
well as any Debian image, such as my ODROID GameStation
Turbo image.

ExaGear works by running x86 applications on your ARM-
based ODROID board using the kernel and drivers coming
from your board. It seems to simply translate x86 function
calls into ARM equivalents, and for this purpose, it is rather
efficient.

What can you do
Since ExaGear comes with a minimal Ubuntu 12.04 im-

age, you can install and (theoretically) run any program that
is compatible with Ubuntu 12.04, which gives a wide range of
applications. Basically everything that’s in the Ubuntu reposi-
tory can be installed, including applications that come from
Ubuntu partners, like Zentyal and Steam. Generally, every-
thing that runs under the native Linux window management
runs surprisingly fast with ExaGear.

What can’t you do
Although you can install everything that come with or ex-

ists for Ubuntu 12.04, you are still limited with what you can
do with ExaGear. For instance, you can’t use any hardware-
accelerated applications since the drivers do not support this.
Anything that requires OpenGL, for example, will only run
in software emulation through MESA software version of

X86 EMULATION
A LOOK INTO EXAGEAR
by Tobias Schaaf

Exagear runs x86 applications on ARM
devices, including the ODROID family

X86 EMULATION

ODROID MAGAZINE	 6

http://bit.ly/YbPqc5

Figure 1 - Windows game Total Annihilation running on the
ODROID-XU3

Figure 2 - Skype and TeamViewer running simultaneously using
ExaGear on an ODROID-U3

X86 EMULATION

ronments, but that do not exist for ARM. Skype and Team-
viewer are two of the best examples. As previously mentioned,
if a program does not require any special mechanism, they run
perfectly fine on ODROID devices.

Both programs can be used without any restrictions. I have
already made calls using Skype on my TV using an ODROID-
U3 already, even with a camera for a video call, which runs
flawlessly. The same experience applies to for TeamViewer,
which in fact uses Wine, and means that it’s actually running
a Windows application directly on the ODROID. As shown
in Figure 2, you can even run both Skype and TeamViewer
simultaneously.

Shortcuts
The “normal” way to start a program with ExaGear would

be to open a Terminal session and type in the command “ex-
agear”. After that, you are in the x86 environment, where you
once again can start certain applications via a command line,
for example, typing “skype” to start Skype.

Although this method works, it’s a little bit complicated,
especially since you can not close this terminal window with-
out terminating the x86 program as well. Therefore, I want
to show you how to start programs directly from your ARM
environment without using the exagear command.

Skype
The first thing to do is to find out how programs are started

via ExaGear, and see if we can replicate it. To determine this,
start Skype using the “normal” method, which assumes that
you already have Skype installed in your ExaGear environ-
ment. First, start Skype from the terminal:

$ exagear

Starting the shell in the guest image /opt/exagear/images/
ubuntu-1204lts

$ skype

Open a new terminal, or a new tab in your current terminal
window, and type:

$ ps aux | grep skype

You will find a line similar to this:

odroid 3125 5.7 15.1 828424 314764 ? Sl

16:00 2:59 /opt/exagear/bin/ubt_x32a32_al --path-

prefix /opt/exagear/images/ubuntu-1204lts --vpaths-

list /opt/exagear/images/ubuntu-1204lts/.exagear/

vpaths-list --hifd-base 4095 -f /usr/bin/skype –

skype

If your terminal is too short, you might not see the full
command line. In that case, use this command instead, which
redirects the output to a file called skype.txt, which you can
open with any text editor.

$ ps aux | grep skype > skype.txt

Among other information, we can see the command that is
used to start Skype:

/opt/exagear/bin/ubt_x32a32_al --path-prefix /opt/

exagear/images/ubuntu-1204lts --vpaths-list /opt/

exagear/images/ubuntu-1204lts/.exagear/vpaths-list

--hifd-base 4095 -f /usr/bin/skype -- skype

Let’s experiment to see if this command actually works.
Quit Skype, then open a new terminal session so that you are
no longer in the ExaGear environment, and try out this newly
found command.

If everything works as intended, you will see Skype start up
normally, which means that it was launched directly from your

ODROID MAGAZINE	 7

skype.txt
skype.txt

ARM environment without the extra step of opening the Ex-
aGear environment first. Although this does not seem much of
a difference, since you are still using the terminal to start Skype,
it’s just the first step.

To make things easier, let’s prepare a start shortcut for Sky-
pe. We don’t actually have to do that much work, since such
a starter already exists in the ExaGear environment. Let’s use
that instead of rewriting everything. To do so, open a new ter-
minal and logon as root:

$ su

Password:

$ echo “/opt/exagear/bin/ubt_x32a32_al --path-prefix

/opt/exagear/images/ubuntu-1204lts --vpaths-list /

opt/exagear/images/ubuntu-1204lts/.exagear/vpaths-

list --hifd-base 4095 -f /usr/bin/skype – skype” > /

usr/local/bin/skype

$ chmod +x /usr/local/bin/skype

$ cp /opt/exagear/images/ubuntu-1204lts/usr/share/

applications/skype.desktop /usr/local/share/applica-

tions/

$ cp /opt/exagear/images/ubuntu-1204lts/usr/share/

pixmaps/skype.png /usr/local/share/pixmaps

Once these steps are completed, we already have everything
that we need in order to start Skype. If you open the program
list by clicking the Start button and navigate to Internet, you
should find a new icon labelled “Skype”. From now on, when-
ever you want to start Skype, just click on that icon, just like
you would in a real x86 environment, and after a short wait,
Skype will start up just like a native ARM application.

TeamViewer
Running TeamViewer directly from a shortcut works simi-

larly to Skype, but is slightly more complicated. TeamViewer
has a small problem, since it needs the TeamViewer daemon
service, called teamviewerd, to start before the actual Team-
Viewer program. The TeamViewer daemon may only be start-
ed as root, so we would have to start ExaGear as the root user,
then start the teamviewerd service, then logon a second time as
a normal user in ExaGear, and finally start TeamViewer. We
want to end up with the same simple and direct way of starting
TeamViewer as we have with Skype already, so let’s apply some
Linux magic in order to get it working as desired. To begin,
open a new terminal and create the following script:

$ su

Password:

$ cat <<\EOF > /etc/init.d/teamviewerd_exagear

#! /bin/sh

BEGIN INIT INFO

 # Provides: teamviewerd_exagear

 # Required-Start: $local_fs $remote_fs

 # Required-Stop:

 # X-Start-Before:

Default-Start: 2 3 4 5

 # Default-Stop:	 0 1 6

 # Short-Description: starts teamvierwer deamon

 # Description: Starts the teamvierwer deamon for

teamviewer useage through exagear.

 ### END INIT INFO

 set -e

 case “$1” in

 start)

 	 # only run as root

 	 if [`id -u` -eq 0];

 	 then

 /opt/exagear/bin/ubt_x32a32_al

--path-prefix /opt/exagear/images/ubuntu-1204lts

--vpaths-list /opt/exagear/images/ubuntu-1204lts/.

exagear/vpaths-list --hifd-base 4095 -f /opt/team-

viewer/tv_bin/teamviewerd -- /opt/teamviewer/tv_bin/

teamviewerd

 	 fi

 	 ;;

 stop)

 	 PID=`ps aux | grep “/opt/exagear/bin/ubt_

x32a32_al --path-prefix /opt/exagear/images/ubuntu-

1204lts --vpaths-list /opt/exagear/images/ubuntu-

1204lts/.exagear/vpaths-list --hifd-base 4095 -f /

opt/teamviewer/tv_bin/teamviewerd -- /opt/teamview-

er/tv_bin/teamviewerd” | grep -v grep | awk ‘{print

$2}’`

 	 if [! -z $PID];

 	 then

 		 kill $PID

 	 fi

 	 ;;

 *)

 	 echo “Usage: $N {start|stop}” >&2

 	 exit 1

 	 ;;

 esac

 exit 0

EOF

$ chmod +x /etc/init.d/teamviewerd_exagear

$ update-rc.d teamviewerd_exagear defaults

This creates a service script that can be started as root, which
cal also run each time you start your ODROID:

$ service teamvierwerd_exagear start

X86 EMULATION

ODROID MAGAZINE	 8

skype.desktop
skype.png
init.d/teamviewerd
init.d/teamviewerd

Then, we create a launcher shortcut for TeamViewer, like
we did for Skype:

$ su

Password:

$ cp /opt/exagear/images/ubuntu-1204lts/usr/share/

applications/teamviewer-teamviewer10.desktop /usr/

local/share/applications/

$ cp /opt/exagear/images/ubuntu-1204lts/opt/team-

viewer/tv_bin/desktop/teamviewer.png /usr/local/

share/pixmaps/

$ cp /usr/local/bin/skype /usr/local/bin/teamviewer

$ pico /usr/local/bin/teamviewer

$ pico /usr/local/share/applications/teamviewer-

teamviewer10.desktop

For the last two steps, we need to edit the files slightly. In
the file /usr/local/bin/teamviewer, replace the word “skype” two
times with the word “teamviewer”, then save the file by pressing
Ctrl-X, answering with “y” for yes, then pressing Enter twice.
Next, in the file /usr/local/share/applications/teamviewer-team-
viewer10.desktop, change the Icon patch to include just “team-
viewer” and nothing else, then save that file as well. Now, we can
either start the teamviewerd_exagear service manually, or reboot
the ODROID and then launch TeamViewer in the same way as
we did with Skype, using the Start button’s Internet submenu.

Caveats
There are some quirks with ExaGear that make things a

little bit harder to use. For example, the file access in the Ex-
aGear environment is somewhat slow. Starting TeamViewer
can take anywhere from 30 seconds up to a minute on an
ODROID-U3, which happens regardless of whether you’re us-
ing an eMMC module or SD card. You should occasionally

run “apt-get update” in your ExaGear environment in order
to update the package lists, or else some packages may not be
installed during the TeamViewer or Skype installation.

If you perform a system update using “apt-get upgrade” and/
or “apt-get dist-upgrade” command, you might encounter sev-
eral issues, since the image was highly modified. I noticed that
a few things were forgotten, such as altering the initramfs-tools
to disable the creation of an initrd.img file, which isn’t possible
anyway. Also, some packages will fail to update, which requires
some Linux expertise to fix, but an upgrade is probably not re-
ally necessary once everything is working.

Another issue is that ExaGear distributes tasks over all CPU
cores, which is generally a very good thing since it uses all the
power it can get, but it also can lead to a very hot CPU if an
application uses a lot of CPU power. For example, I was run-
ning a Windows application called Blender on my XU3 using
ExaGear and Wine, which resulted in all 8 cores running at
100%, and even with the fan spinning at its maximum speed,
the temperature rose to over 94°C (200°F)!

Overall, I really like what you can do with ExaGear, and
although I was very skeptical when it was first announced, I
have to say it’s doing a very good job.

Wine
If you use ExaGear with Wine, a very convenient program

is PlayOnLinux, which allows you to easily configure and in-
stall Windows applications under Wine. If you try to run full-
screen applications such as games using Wine, you need to con-
figure Wine to run in a fake desktop with a size of 800x600 or
1024x768, rather than allow it to run natively in Linux. Play-
OnLinux may spare you some of these resolution problems, es-
pecially with the C1, which cannot change resolutions on the fly.
PlayOnLinux also makes recovery easier when a program hangs,
since it is able to actually close the specific program.

X86 EMULATION

PEW PEW
SHOOT ‘EM UP FUN WITH
SPACE AND ASTEROIDS!
by Bruno Doiche

When classic games are re-invented on modern
hardware, they are just the best! Pew Pew is a
multi-directional shoot ‘em up for Android. It’s

basically megatons of enemies with many different game
modes, combined with sweet smooth retro graphics. Win
medals, unlock ships, and compete on the online ladder.

https://play.google.com/store/apps/

details?id=com.jyaif.pewpew

ANDROID GAMING

ODROID MAGAZINE	 9

teamviewer-teamviewer10.desktop
teamviewer.png
teamviewer-teamviewer10.desktop
teamviewer-teamviewer10.desktop
teamviewer-teamviewer10.desktop
teamviewer-teamviewer10.desktop
initrd.img
https://play.google.com/store/apps/details?id=com.jyaif.pewpew
https://play.google.com/store/apps/details?id=com.jyaif.pewpew

META PACKAGE MANAGEMENT

Tasksel is a Debian and Ubuntu compatible tool that fa-
cilitates the installation of multiple related packages as
a coordinated “task” onto your system, allowing single-

click installations of web server bundles, desktop environments,
and software suites. The installation function is similar to that
of meta-packages, and most of the tasks available from tasksel
are also available from the Ubuntu package managers, such as
Synaptic Package Manager.

Installation
If tasksel is not already installed, it may be downloaded with

the following command:

$ sudo apt-get install tasksel

Usage
To run tasksel from the command line, type the following

into a Terminal window, which will show the menu seen in
below:

$ sudo tasksel

Already-installed tasks are indicated with an asterisk beside
their name. Select a task by scrolling down and pressing space,
which will put an asterisk beside the selected task and mark it
for installation. Removing an asterisk marks the task for re-
moval. After pressing “OK”, the selected the task installations
and/or removals will take place using apt-get.

TASKSEL
EASILY INSTALL UBUNTU
METAPACKAGES FROM THE CLI
edited by Rob Roy

Command line arguments
You can also directly specify which task to install on the

command line. For instance, to add the Apache-MySQL-PHP
stack to an existing system, type:

$ sudo tasksel install lamp-server

For complete options, see the tasksel manual by typing:

$ man tasksel

Usage
Tasks can also be installed with apt-get using the syntax:

$ sudo apt-get install <task_name>

For example, the following commands will install the
Ubuntdesktop, Kubuntdesktop and LAMP server, respectively:

$ sudo apt-get install ubuntu-desktop

$ sudo apt-get install kubuntu-desktop

$ sudo apt-get install lamp-server

Tasks list
Tasks are defined in .desc files located in the /usr/share/

tasksel directory. The default list available in Ubuntu may be
viewed with the following command:

$ grep Task /usr/share/tasksel/ubuntu-tasks.desc

Does going through the thousands of packages available for
Ubuntu seem like 4th dimensional physics? Use Tasksel instead!

The main Tasksel menu allows single-click package installation

ODROID MAGAZINE	 10

ubuntu-tasks.desc

META PACKAGE MANAGEMENT

Package descriptions
Below is a list of the tasks in Ubuntu 14.04 Trusty Tahr that can be installed us-

ing the tasksel meta package manager. The supported packages may change between
Ubuntu versions, so be sure to run the following command in order to see the latest
list:

$ tasksel --list

server			 Basic Ubuntu server

openssh-server		 OpenSSH server

dns-server			 DNS server

lamp-server			 LAMP server

mail-server			 Mail server

postgresql-server		 PostgreSQL database

print-server			 Print server

samba-server			 Samba file server

tomcat-server			 Tomcat Java server

cloud-image			 Ubuntu Cloud Image (instance)

virt-host			 Virtual Machine host

ubuntustudio-graphics		 2D/3D creation and editing suite

ubuntustudio-audio		 Audio recording/editing suite

edubuntu-desktop-gnome	 Edubuntu desktop

kubuntu-active		 Kubuntu Active

kubuntu-desktop		 Kubuntu desktop

kubuntu-full			 Kubuntu full

ubuntustudio-font-meta	 Large selection of font packages

lubuntu-desktop		 Lubuntu Desktop

lubuntu-core			 Lubuntu minimal installation

mythbuntu-desktop		 Mythbuntu additional roles

mythbuntu-frontend		 Mythbuntu frontend

mythbuntu-backend-master	 Mythbuntu master backend

mythbuntu-backend-slave	 Mythbuntu slave backend

ubuntustudio-photography	 Photograph touchup/editing suite

ubuntustudio-publishing	 Publishing applications

ubuntu-gnome-desktop		 Ubuntu GNOME desktop

ubuntu-desktop		 Ubuntu desktop

ubuntu-usb			 Ubuntu desktop USB

ubuntustudio-video		 Video creation and editing suite

xubuntu-desktop		 Xubuntu desktop

edubuntu-dvd-live		 Edubuntu live DVD

kubuntu-active-live		 Kubuntu Active Remix live CD

kubuntu-live			 Kubuntu live CD

kubuntu-dvd-live		 Kubuntu live DVD

lubuntu-live			 Lubuntu live CD

ubuntu-gnome-live		 Ubuntu GNOME live CD

ubuntustudio-dvd-live		 Ubuntu Studio live DVD

ubuntu-live			 Ubuntu live CD

ubuntu-usb-live		 Ubuntu live USB

xubuntu-live			 Xubuntu live CD

ANDROID GAMING

FISH OUT OF
WATER
SKIM YOUR MOUSE
AROUND ON VIRTUAL
SEAS
by Bruno Doiche

If you are in the mood for a totally fun
casual game, take a look at Fish Out
of Water. It’s not a typical instantly

addictive game, but has a different ap-
peal of a casual game. You just throw
your characters across the water and try
to skim them as far as possible in order to
get a high score. Created by Halfbrick,
the creators of the classic Fruit Ninja
game, this pastime is certainly worth
your attention!

https://play.google.com/store/

apps/details?id=com.halfbrick.

FishOutOfWater

This game features fish wearing hats!
Isn’t that awesome?

ODROID MAGAZINE	 11

https://play.google.com/store/apps/details?id=com.halfbrick.FishOutOfWater
https://play.google.com/store/apps/details?id=com.halfbrick.FishOutOfWater
https://play.google.com/store/apps/details?id=com.halfbrick.FishOutOfWater

REMOTE DESKTOP

Are you looking for a clientless, browser-based remote
desktop solution for accessing an ODROID such as a
remotely located C1? Guacamole is perfect for your

project! All you need is a web browser with HTML5 support
in order to be able to use your device from a smartphone, lap-
top or desktop PC, since no plugin or client-side software is

required.

Guacamole is an HTML5
protocol-agnostic remote-
desktop web application,
which supports several remote
desktop protocols such as
VNC, SSH and RDP. Figure
1, obtained from guac-dev.
org, illustrates the architec-
ture, which essentially con-
sists of three (3) components:

• a guacamole servlet hosted by Apache tomcat (servlet contain-
er) that fields web-based requests.
• a guacd daemon that talks the guacamole protocol with the servlet.
• a guacamole-client, a fully server-side resident component, that
serves HTML5 user-interface (UI) content

Requirements
1. An ODROID-C1 - while this article targets a C1, it can apply

to a U3 or an XU3 series board
2. C1 accessories such as HDMI cable, CAT 5E+ ethernet

cable or WIFI 3 dongle, PSU, and RTC battery
3. A 16GB+ eMMC 5.0 card with the latest XU3-Lite spe-

cific lubuntu desktop image like ubuntu-14.04.1lts-lubuntu-
odroid-c1-20150102.img and/or a 16GB+ Class 10 MicroSD
card with an SDCard reader/writer

4. A network where the device has access to the Internet
and the ODROID forums

5. Network access to the C1 via utilities like PuTTY, FileZil-

REMOTE DESKTOP
USING GUACAMOLE
by Venkat Bommakanti

la, TightVNC Viewer (MS Windows 7+) and Terminal (Mac,
linux) from a development machine

6. Apache tomcat 6
7. Guacamole 0.8.3

Preparing Lubuntu
Install the latest C1 image onto the eMMC card, then at-

tach the eMMC card to the C1. With the HDMI display
attached, boot up the system. The first step is to run the
ODROID Utility, then expand the installation partition to use
all of the eMMC by selecting the “Resize your root partition”
option. Reboot, then run the ODROID Utility again, config-
ure and update all remaining aspects of the system such as the
kernel and video drivers, then reboot the system again.

Install related software
Run the following commands to install the necessary gua-

camole 0.8.3 web-application software:

$ sudo apt-get install guacamole guacamole-tomcat

guacd

$ sudo apt-get install libguac-client-vnc0 libguac-

client-rdp0 libguac-client-ssh0

Setup user accounts
The installation process installs the following files:

$ cd /etc/guacamole

$ ls -lsa

 4 -rw-r--r-- 1 root root 	 1099 Sep 21

2013 guacamole.properties

 4 -rw-r----- 1 root guacamole-web 1030 Sep 21

2013 user-mapping.xml

User accounts need to be setup in the user-mapping.xml
file, which is done by editing the file to match the following:

Figure 1: Typical Guacamole
server architecture

ODROID MAGAZINE	 12

guac-dev.org
guac-dev.org
ubuntu-14.04.1lts-lubuntu-odroid-c1-20150102.img
ubuntu-14.04.1lts-lubuntu-odroid-c1-20150102.img
guacamole.properties
user-mapping.xml
user-mapping.xml

REMOTE DESKTOP

<user-mapping>

	 <!-- Example user configurations are given be-

low. For more information,

 	see the user-mapping.xml section of the Guaca-

mole configuration

 	documentation: http://guac-dev.org/Configur-

ing%20Guacamole -->

	 <!-- Per-user authentication and config informa-

tion -->

	 <authorize username=”USERNAME”

password=”PASSWORD”>

 	 <protocol>vnc</protocol>

 	 <param name=”hostname”>localhost</param>

 	 <param name=”port”>5900</param>

 	 <param name=”password”>VNCPASS</param>

	 </authorize>

	 <!-- Another user, but using md5 to hash the

password

 	(example below uses the md5 hash of the pass-

word “odroid”) -->

	 <authorize

 	 username=”odroid”

 	 password=”54e6a0bc46148912360a9f6bd82352

aa”

 	 encoding=”md5”>

 	 <connection name=”vnc-conn”>

 	 <protocol>vnc</protocol>

 	 <param name=”hostname”>localhost</param>

 	 <param name=”port”>5900</param>

 	 <param name=”password”>VNCPASS</param>

 </connection>

 	 <connection name=”ssh-conn”>

 	 <protocol>ssh</protocol>

 	 <param name=”hostname”>localhost</param>

 </connection>

	 </authorize>

</user-mapping>

Note that this setup is coded to use the odroid user account,
which matches the default Linux user account on the C1 for
convenience. This account has two connection options: vnc-
conn and ssh-conn, which are intended to illustrate the various
connection possibilities. The vnc-port and vnc-password used
by the X11VNC vnc-server setup are 5900 and VNCPASS
respectively. Its password is the md5 hash equivalent of the
password odroid:

$ echo -n odroid | md5sum

54e6a0bc46148912360a9f6bd82352aa -

The guacamole login information for this user is:

username:	 odroid

password:	 odroid

The default guacamole.properties file does not need to be
altered for the setup used in this article. However, the user id
that tomcat6 requires needs access to this file. After determin-
ing the tomcat6 user id, set up the file linkage using the follow-
ing commands:

$ sudo cat /etc/passwd | grep tomcat

tomcat6:x:115:122::/usr/share/tomcat6:/bin/false

$ sudo mkdir /usr/share/tomcat6/.guacamole

$ sudo ln -s /etc/guacamole/guacamole.properties /

usr/share/tomcat6/.guacamole

Ensure that the tomcat6 server’s connector configura-

tion (/etc/tomcat6/server.xml) matches the following

code snippet, then reboot:

<Connector port=”8080” protocol=”HTTP/1.1” connec-

tionTimeout=”20000” URIEncoding=”UTF-8” redirect-

Port=”8443” />

Setup X11VNC server
Guacamole requires the setup of a supported vnc-server, so

that the user may access the desktop remotely. The official C1
image already includes the X11VNC server, and no new vnc-
server software needs to be installed. To create a more robust
and secure system, it is advisable to disable direct system access
via ports such 5900. To do so, permit direct vnc-server access
only from localhost, which is illustrated in Figures 2 and 3.

X11VNC
server
setup

ODROID MAGAZINE	 13

user-mapping.xml
http://guac-dev.org/Configuring
http://guac-dev.org/Configuring
guacamole.properties
guacamole.properties
server.xml

The password used here, which is VNCPASS, is the same
one that is specified in guacamole user settings file. Save the
changes and continue to the next section to ensure that the
vnc-server is running properly.

Access the desktop
The guacamole web application is set to listen on port 8080

through tomcat6. From a development machine, such as a
Windows 7 desktop, launch an HTML5-capable web-browser
and point it to the address http://<c1s-ip-address>:8080/guaca-
mole. A login
screen should
appear, as
shown at
right. Enter
the guaca-
mole user ac-

count information, then click on the Login button.

Remote desktop
connection options

Upon successful login, the home screen should be shown.
Note that the application offers the two options configured ear-
lier for this user: vnc-conn and ssh-conn.

On the very first access, the Recent Connections section will

be blank, so click on the ssh-conn option first, which opens a
terminal-like session on the C1. Enter the guacamole account
login information and proceed with the the SSH connection,
which should open in a new tab as seen below.

After experi-
menting with this
session, close the
SSH tab and go

back to the original session tab. Next, click on the ssh-conn
option, which will again open a new tab like below.

If the server
side vnc-server
is not correctly
configured, you
may see a screen

similar the error below. Figure 9 shows the.

REMOTE DESKTOP

Guacamole
 login

screen

Error message that will result
from entering the wrong user

credentials

Another
X11VNC
server
setup

SSH
connection

Desktop
through
VNC
connection

The result of a VNC
server error

Oops! An example
of recursive desktop
access

Connection options

If, for some reason, you try to access the desktop from the
ODROID-C1 itself, you may see an interesting phenomenon
that reflects the recursive nature of the access.

ODROID MAGAZINE	 14

ODROID MAGAZINE	 15

OS SPOTLIGHT

producing high-quality music and audio creations.

Jack

Jack is a low latency capable audio and MIDI server, de-
signed for professional audio use. It enables all Jack-capable
applications to connect to each other. A common program for
controlling the jack server is Qjackctl, as shown above. Jack
provides low latencies of less than 5ms with the right hardware,
completely flexible connections, and also acts as a transport for
Jack-aware applications.

Ardour
Ardour is a Digital Audio

Workstation (DAW), suit-
able for recording, mixing
and mastering. Some of its
features include:

Unlimited audio tracks
and buses

Non-destructive, non-
linear editing with unlimited
undo

Anything-to-anywhere
signal routing

Unlimited pre- and post-
fader plugins

32 bit floating point au-
dio path

UBUNTU
STUDIO
A UNIQUE SET OF OPEN-SOURCE
MULTIMEDIA-FOCUSED TOOLS
edited by Rob Roy

Ubuntu Studio is a free and open source operating sys-
tem that is packaged as an official flavor of Ubuntu,
intended for creative people to produce art. It is the

most widely used multimedia-oriented GNU/Linux distribu-
tion in the world, and comes pre-installed with a selection of
the most common free multimedia applications available. It is
free to download and use, so that you can get the source code,
study it and modify it to suit your needs.

Installation
The various Ubuntu Studio packages are available via Syn-

aptic Package Manager or the tasksel application. To install
all of the available software suites, type the following into a
Terminal window:

$ sudo apt-get install ubuntustudio-dvd-live ubun-

tustudio-video ubuntustudio-publishing ubuntustudio-

photography ubuntustudio-font-meta ubuntustudio-audio

ubuntustudio-graphics

Community project
Ubuntu Studio is a community effort, created by volun-

teers, targeted towards all skill levels, from beginner to profes-
sional, and aims to be easily installed and simple to use, as well
as providing all the tools necessary for any type of media con-
tent creation. As an officially recognized derivative of Ubuntu,
Ubuntu Studio is supported by Canonical Ltd., the producers
of Ubuntu, along with an amazing and continually increasing
community. Ubuntu Studio is released every six months, but
a long term release (LTS) version is released only every 2 years.

Audio production
Ubuntu Studio makes available some of the most popular

and recently updated audio software in the Linux world, some
of which are detailed below. When used with a MIDI instru-
ment such as a keyboard, or recording devices such as a USB
or standard microphone, it provides a enormous set of tools for

QJackCtl

Ardour Digital Workstation

ODROID MAGAZINE	 16

Automatic track delay compensation
Sample accurate automation
Standard file formats (BWF, WAV, WAV64, AIFF, CAF and

more)
More than 200 LADSPA & LV2 plugins freely available
MIDI CC control with 1 click
Level 2 MIDI Machine Control
MIDI Timecode (MTC) Master or Slave
Full integration with all JACK applications
Video-synced playback, pull up/pull down

Sequencers and Synthesizers
Ubuntu Studio also comes installed with other notable ap-

plications such as:

Audacity, an Audio Wave Editor
Qtractor, a MIDI-capable Digital Audio Workstation
Hydrogen, a drum machine and sequencer
Yoshimi, a software-based synthesizer

Virtual guitar amps
Rakarrack and Guitarix are two popular guitar amp simula-

tors that let you create and use software-based amplifiers with
your electric or electro-acoustic guitar.

Gladish
Gladish, an alternative to Qjackctl, allows you to start appli-

cations, make connections between them, and save the whole
configuration to a file for later use.

Audio programming
There are numerous easy-to-use audio programming envi-

ronments available in Ubuntu Studio, such as Pure Data, Super

Collider, Csound and Chuck. These programs can be used to
create software that influences audio waveforms for complete
control over the effects used in samples and recordings.

Blender
Blender (www.blender.org) is a full-fledged 3D content cre-

ation suite, allowing you to create 3D models and animated
scenes. Blender also has its own game engine, and is vastly
expandable with addons. Features of Blender include:

3D Solids and character modeling
Scene animation
Physics and particle functions
Shading
Game engine (create a whole game using only Blender)
Imaging and compositing
Highly extensible

Inkscape
Inkscape (www.inkscape.org) is a superb vector graphics

editor, with capabilities similar to Illustrator, CorelDraw, or
Xara X, using the W3C standard Scalable Vector Graphics
(SVG) file format.

OS SPOTLIGHT

Audacity, Qtractor, Hydrogen and Yoshimi

Guitarix

Puredata

Blender

InkScape

www.blender.org
www.inkscape.org

ODROID MAGAZINE	 17

OS SPOTLIGHT

Openshot
Openshot (www.openshot.org) is a simple video editor for

Linux, making it easy to add videos, photos and music for
DVDs, youtube clips and a range of other formats.

FFMPEG
FFMPEG is the leading multimedia framework, able to

decode, encode, transcode, mux, demux, stream, filter and
play pretty much any format, supporting the most obscure
ancient codecs up to cutting-edge modern ones. It contains
libavcodec, libavutil, libavformat, libavdevice, libswscale and
libswresample, which can be used by other applications, as well
as ffmpeg, ffserver, ffplay and ffprobe which can be used by end
users for transcoding, streaming and playing.

DVDStyler
DVDStyler may be used to create custom, professional

looking DVDs.

User-friendly interface with support of drag & drop
Multiple subtitles and audio tracks
Design your own DVD menu or select a template
Create a photo slide show
support of AVI, MOV, MP4, MPEG, OGG, WMV and

other file formats
support of MPEG-2, MPEG-4, DivX, Xvid, MP2, MP3,

AC3 and other audio and video formats

GIMP
GIMP (www.gimp.org) stands for Gnu Image Manipula-

tion Program, and is a similar to Photoshop. It is highly ex-
pandable via add-ons, and contains many features for visual
effects, cropping tools, and much more.

MyPaint
MyPaint is a digital painting tool, designed to work with

graphic tablets. It comes with a large collection of brushes,
including ink and charcoal.

Designed for pressure sensitive graphics tablets
Simple and minimalistic user interface
Extensive brush creation and configuration options
Unlimited canvas
Basic layer support

Darktable
Darktable is a photography workflow application and RAW

developer, featuring a virtual light table and darkroom for pho-
tographers. It manages your digital negatives in a database, lets
you view them through a zoomable light table, and enables you
to develop images and enhance them.

Shotwell
You can use Shotwell to organize your library of photos,

with an emphasis on keeping things simple:

OpenShot

GIMP

My Paint

DVD Styler

www.openshot.org
www.gimp.org

PLANTS VS. ZOMBIES™ 2
CLASSICS NEVER DIE, ESPECIALLY
WHEN UNDEAD
by Bruno Doiche

Plants vs. Zombies is the sort of classic that precedes
the tablet/smartphone age, so it is no surprise that
it would be recently improved for our amusement.

Like the original, it is a freemium game, and requires lots of
planning and real-time strategy in order to keep the undead
from attacking your house. Enjoy defeating your endless
waves of zombies!

https://play.google.com/store/apps/details?id=com.

ea.game.pvz2_row

Import multiple formats
Edit tags
Convert formats
Simple editing on the fly
Publish directly to social sites

Calibre
Calibre is a popular program that makes things easy for new users

by providing excellent templates for common formats, such as kindle,
various types of tablets and other hardware readers, and more.

Scribus
Another great tool for desktop publishing is Scribus, which will

let you create professional PDF publications. It includes many pre-
built templates for posters, business cards, brochures and more.

LibreOffice
LibreOffice is a powerful office suite that embeds several

applications similar to those found in Microsoft Office. For
example, with LibreOffice Writer you can create text and save
it in any format you like, including MS Office formats, as well
as exporting to PDF.

OS SPOTLIGHT

Shotwell

A fun travel through time and zombies galore!

Calibre

Scribus

ANDROID GAMING

ODROID MAGAZINE	 18

https://play.google.com/store/apps/details?id=com.ea.game.pvz2_row
https://play.google.com/store/apps/details?id=com.ea.game.pvz2_row

PLAY WITH THE
WEATHER BOARD
TECHNOLOGY FOR ALL FOUR SEASONS
by Jussi Opas

WEATHER BOARD

Hardkernel’s Weather Board, which is an inexpensive
add-on for the ODROID-SHOW peripheral, records
weather phenomenon such as UV index, barometric

pressure, altitude, relative humidity, illumination, and temper-
ature. In this article, we show how to read the Weather Board
sensor values using Java, as well as inte-
grate the sensor reader into a Java-based
web service, implemented with the mod-
ern Play framework. By using the web
service, the weather board sensor values
can be viewed from a browser page via a
home network or over the Internet.

Use case
Let’s assume that somewhere in the

countryside, far away from home, there is a summer house or
cottage. The cottage has been set up to rest over winter time,
and its heating has been downgraded to save energy, to main-
tain dry conditions inside the cottage. To know the current
condition of a cottage, one could drive a long distance, or ask
a neighbor to check out the situation such as whether the heat
is on, or if a window is broken. In this case, a Weather Board
with sensors would help. If there is an Internet connection and
continuous power available, we can set up the Weather Board
hardware along with a computer to continuously measure the
conditions within the cottage.

To get a measurement, we must have
1) a weather board connected to computer,
2) know how to read sensor values from the weather board,
continuously or on an ad-hoc basis, and
3) implement the measurements as a service.

Initiation
The first requirement can be fulfilled by purchasing a

weather board together with an ODROID-SHOW board
from Hardkernel. Programming and monitoring the system
using an ODROID computer would be a plus, but is not ab-

ODROID MAGAZINE	 19

solutely necessary. Basically, any computer with Java capability
and a USB port will suffice, since the SHOW can be connected
universally via USB cable. The size of the Weather Board with
sensors is 20x20mm, and the size of the ODROID-SHOW
is 48x83mm. Here is the
weather board connected to
a SHOW along with a Lego
chef for scale.

The sensors in the
Weather Board are SI7020
for humidity, BMP180 for
air pressure, and SI1132 for
light sensing. One can eas-
ily set up the SHOW board
by loading the sample soft-
ware code from Hardker-
nel’s wiki page. After load-
ing sensor software into the
microcontroller of the ODROID-SHOW board, the values are
displayed on the TFT screen.

Read sensor values
The source code of the Qt-based desktop application shows

how sensor values may be read from a continuous stream.
However, we want to have access to the sensor values from
Java. In principle, we could write a C or C++ based program
that reads the stream from serial connection and then writes it
into a file at appropriate intervals. Then, a Java program could
read the sensor values from that same file. However, if a Java
program reads the data stream directly from serial connection,
then no intermediate file is needed.

We wrote a Java imple-
mentation for accessing
the sensor values directly
by abstracting the reading
process as three Java class-
es: Measurement, Sensor-
DataReader and Weather-
Board. The Measurement
class represents sensor val-
ues and their treatment,
value, unit and recogni-
tion as they are read from
the data stream. There are 7 distinct sensor values that are be-
ing delivered by the serial port.

The SensorDataReader class knows how to read input data
stream correctly by interpreting the delimiter between sensor
values within the data stream, and deciding when to stop read-
ing. Last, but not least, is the WeatherBoard class that imple-
ments a method for opening the serial port for reading, and
delivering the result as a map of measurements. The Weather

WEATHER BOARD

Weather Board model

ODROID MAGAZINE	 20

WEATHER BOARD

Practice Folder

Board class can invoke reading as an ad-hoc operation or as
a continuous thread. Although the abstraction has the capa-
bility of producing a continuous stream of sensor values, we
have only been using the ad-hoc read methods. Sample source
code for reading serial port with Java are available from the
ODROID forums at http://bit.ly/1GsQKw8.

Hardkernel’s pre-built Lubuntu images already have Java
installed. They also have a library that permits binding in-
put to serial port. The two RX*.jar files are located in /usr/
share/java folder, and the respective native libraries are located
as /usr/lib/jni/librxtx*.so files. For those operating systems that
don’t have these installed yet, download and install them with
the following command:

$ sudo apt-get install librxtx-java

Another alternative is to download a Java to serial port
binding from the Debian repositories. After extraction, every-
one can locate libraries in accordance to own preferences, as
shown at http://bit.ly/15wqqke. During development we used
this method.

 Before running the script, each platform (ARM, X86,
Linux and Windows) must have correctly compiled native li-
braries available. They must be properly referenced by com-
mand line compilation, or within an Interactive Development
Environment (IDE) tool. With an IDE, we added “-Djava.
library.path=/usr/lib/jni” as an option to the virtual machine
so that native libraries were used at run time. The Java abstrac-
tion and implementation may be useful with other Java service
containers as well.

Command line
We stored the Java source code into the practice folder using

the command line, as shown in Figure 4.

We also created the practice/out directory where compiled
Java classes will be located. First, change to the practice direc-
tory:

$ cd practice

Then, create a file called Manifest.txt file inside the practice
directory. The content should be as follows:

ODROID MAGAZINE	 21

http://bit.ly/1GsQKw8
http://bit.ly/15wqqke
-Djava.library.path
-Djava.library.path
Manifest.txt

WEATHER BOARD

Sensor values in Terminal window

Main-Class: serial.WeatherBoard

Next, write javac commands into build.sh:

#!/bin/bash

javac src/serial/*.java -d ./out -cp /usr/share/java/

RXTXcomm.jar:/usr/share/RXTXcomm-2.2pre2.jar

Finally, write jar packaging command into pack.sh:

#!/bin/bash

clear

echo “make wboard.jar”

current=.

cd out

jarfile=../wboard.jar

classes=./serial

jar cmf ../Manifest.txt $jarfile $classes/*

cd $current

Now, one can compile and package the source code into the
wboard.jar file:

$ sh build.sh

$ sh pack.sh

To be able to access the serial port, users must have the cor-
rect privileges. In Debian, the command “sudo adduser <user>
dialout” adds a user to the dialout group. To make the change
effective, one must run the newgrp command, or logout and
login again.

The last file to write is run.sh, which links the self-made
wboard.jar, the installed RXTX*.jar libraries
and native libraries in /usr/lib/jni, then in-
vokes serial port reading:

#!/bin/bash

java -cp wboard.jar:/usr/share/java/

RXTXcomm.jar:/usr/share/java/RXTXcomm-

2.2pre2.jar -Djava.library.path=/usr/

lib/jni serial.WeatherBoard

One can then invoke continuous serial
port monitoring:

$ sh run.sh

The Terminal window will show a continu-
ous flow of sensor values, as demonstrated in
here.

ODROID MAGAZINE	 22

serial.WeatherBoard
build.sh
RXTXcomm.jar
RXTXcomm-2.2pre2.jar
pack.sh
wboard.jar
wboard.jar
Manifest.txt
wboard.jar
build.sh
pack.sh
run.sh
wboard.jar
wboard.jar
RXTXcomm.jar
RXTXcomm-2.2pre2.jar
RXTXcomm-2.2pre2.jar
-Djava.library.path
serial.WeatherBoard
run.sh

WEATHER BOARD

Play framework
Play is a modern development and deployment friendly,

non-JEE based Java service container. The services may be pro-
grammed with Java and/or Scala, and to develop web pages and
their layouts, one must know also HTML and CSS. Play may
be downloaded from the home pages of the Play framework at
http://bit.ly/1uz0UU0. We used Play version 2.2.2:

$ cd ~ && mkdir Applications && cd Applications

$ wget http://downloads.typesafe.com/play/play-

2.2.2.zip

If wget does not work, then just visit the Play framework’s
download pages and click on the appropriate link. After down-
loading is completed, unzip the file:

$ sudo apt-get install p7zip-full

$ 7z x play-2.2.2.zip

For development purposes, we extracted Play into the ~/Ap-
plications folder, then added the “play” command to the PATH
variable, which may be done by opening the file ~/.profile in a
text editor and adding the following lines:

if [-d “$HOME/Applications/play-2.2.2”] ; then

 PATH=”$HOME/Applications/play-2.2.2:$PATH”

fi

The definition can be immediately used by running the
“source ~/.profile” command. Start a sample application by
typing the following:

$ cd ~/Applications/play-2.2.2/samples/java/hello-

world

$ play

Play will now start, showing a Play prompt. Next, start the
application:

[helloworld] $run

The service will then be ready to go. Open a browser and
navigate to “http://localhost:9000”, which will show the sam-
ple web application. Memory usage of the Play service may
be defined in the last line of the file ../play-2.2.2/framework/
build, using values similar to -Xms128M -Xmx256M or
-Xms32M -Xmx64M. To create a new project, type the fol-
lowing command:

play new weather

ODROID MAGAZINE	 23

http://bit.ly/1uz0UU0
http://downloads.typesafe.com/play/play-2.2.2.zip
http://downloads.typesafe.com/play/play-2.2.2.zip
play-2.2.2.zip
play-2.2.2/samples/java/helloworld
play-2.2.2/samples/java/helloworld
play-2.2.2/framework/build
play-2.2.2/framework/build

WEATHER BOARD

This creates a new Play project with the name weather.
Next, invoke the newly created project:

cd weather

play

run

Play application and web pages can be developed without
an IDE, because the application will be compiled when any of
the files have changed and the browser page is refreshed. Any
errors are displayed in the browser page as well.

Libraries
External Java libraries are automatically compiled into the

Play application, as long as they are located into the
weather application’s lib folder. In our case, it means
that .jar files are located in the /weather/lib direc-
tory, which contains the RXTXcomm.jar and RX-
TXcomm-2.2pre2.jar files. We placed also the ARM
specific native .so files in the same folder.

However, only the .jar files are included with this
method. We defined additionally explicit loading of
the native libraries by creating a Global.java file in
the /weather/app/controllers folder:

import play.*;

public class Global extends GlobalSettings {

	 @Override

	 public void beforeStart(Application app) {

		 super.beforeStart(app);

 ...

 System.load(“/home/odroid/Applica-

tions/weather/lib/librxtxSerial.so”);

 System.load(“/home/odroid/Applica-

tions/weather/lib/librxtxSerial-2.2pre1.so”);

 ...

 }

}

We must also include the library path when invoking the
Play service:

$ vi invoke.sh

Insert the following instructions into the file:

play -Djava.library.path=$HOME/Applications/weather/

lib start

Then, launch the application:

Added libraries

ODROID MAGAZINE	 24

RXTXcomm.jar
RXTXcomm-2.2pre2.jar
RXTXcomm-2.2pre2.jar
Global.java
super.beforeStart
System.load
librxtxSerial.so
System.load
librxtxSerial-2.2pre1.so
invoke.sh
-Djava.library.path

WEATHER BOARD

$ chmod +x invoke.sh

$./invoke.sh

Play Application
The weather/conf/routes file contains the following defini-

tions:

GET /weather controllers.Application.getWeath-

er()

GET /refresh controllers.Application.refresh-

Weather()

Two web pages are defined. The first one is consistent with
the concept of the Play framework, as shown in the file /view/
index.scala.html:

@(weatherForm: Form[Application.Weather])

@import helper._

@main(title = “Play with Weather Board”) {

 <h1>Sensors</h1>

 Si7020, humidity

 SI1132, ambient light

 BMP180, air pressure

 @form(action = routes.Application.getWeather,

args = ‘id -> “weatherform”) {

 @inputText(

 weatherForm(“name”).copy(value=Some(“/

dev/ttyUSB0”)),

 args = ‘_label -> “Port name”, ‘size -> 9

)

 @inputText(

 weatherForm(“time”).

copy(value=Some(“5”)),

 args = ‘_label -> “First read time as

sec?”, ‘size -> 3

)

 <p class=”buttons”>

 <input type=”submit” value=”Get values”>

 <p>

 }

}

There are two fields defined, but the name of the port can-
not be edited. However, the maximum sensor read time can be
edited. The definition of the result page (/view/weather.scala.
html) is still more succinct:

@(name: String, time: Int, measurements:

List[String])

ODROID MAGAZINE	 25

invoke.sh
invoke.sh
controllers.Application.getWeather
controllers.Application.getWeather
controllers.Application.refreshWeather
controllers.Application.refreshWeather
index.scala.html
Application.Weather
routes.Application.getWeather
weather.scala.html
weather.scala.html

WEATHER BOARD

@main(“Play with Weather Board”) {

 <h1>Sensors’ values</h1>

 @for(measurement <- measurements) {

 @measurement

 }

 <p class=”buttons”>

 Back to

sensors page

 <a href=”@routes.Application.

refreshWeather”>Refresh

 </p>

}

This definition is automatically transformed to an invoca-

tion of Weather Board reading by the Play framework. Below
is our implementation of the weather sensor service:

public class Application extends Controller {

 public static Weather data;

 public static class Weather {

 public String name;

 @Min(1) @Max(60) public Integer time;

 public List<String> measurements;

 }

 public static Result index() {

 return ok(index.render(form(Weather.class)));

 }

 public static Result getWeather() {

 Form<Weather> form = form(Weather.class).

bindFromRequest();

 if (form.hasErrors()) {

 return badRequest(index.render(form));

 } else {

 data = form.get();

 try {

 data.measurements =

readMeasurements(data.name, data.time, 0);

 } catch (Exception e, data.name) {

 return handleErrors(e);

 }

 return ok(weather.render(data.name, data.

time, data.measurements));

 }

 }

 public static Result refreshWeather() throws Ex-

ODROID MAGAZINE	 26

routes.Application.index
routes.Application.refreshWeather
routes.Application.refreshWeather
index.render
Weather.class
Weather.class
form.hasErrors
index.render
form.get
data.measurements
data.name
data.time
data.name
weather.render
data.name
data.time
data.time
data.measurements

WEATHER BOARD

Play with Weather Board main
page and Sensor view

ception {

 List<String> measurements =

readMeasurements(data.name, data.time, 0);

 return ok(weather.render(data.name, data.

time, measurements));

 }

 static List<String> readMeasurements(String port,

int time, int logLevel) throws Exception {

 WeatherBoard board = new WeatherBoard();

 return transform(board.

readContinuously(port, time, logLevel));

 }

 private static List<String> transform(Map<String,

Measurement> data) {

 List<String> measurements = new

ArrayList<String>();

	 String today = (new Date()).toString();

	 measurements.add(today);

 for (Measurement measurement: data.values())

{

 measurements.add(“” + measurement);

 }

 return measurements;

 }

 private static Result handleErrors(Exception e,

String portName) {

 if (e instanceof NoSuchPortException) {

 String message = (new PortFinder()).prepar

ePortErrorMessage(portName);

 return internalServerError(message);

 } else {

 e.printStackTrace();

 return internalServerError(e.getMes-

sage());

 }

 }

}

The style sheet is based on the Play’s hello-
world sample project and is not included here.

Web pages
The resulting web pages are shown here, with

the main page on the left.
Pressing the Get values button invokes con-

tinuous reading of sensor values. The results of
the read are shown in the sensors’ values page.
The page may also be refreshed to show the most

ODROID MAGAZINE	 27

data.name
data.time
weather.render
data.name
data.time
data.time
board.readContinuously
board.readContinuously
measurements.add
data.values
measurements.add
e.printStackTrace
e.getMessage
e.getMessage

WEATHER BOARD

recent values. In the case that the port is not available, an error
message will be shown:

Port /dev/ttyUSB0 was not found, please try another.

Available ports are:

/dev/ttyUSB1

/dev/ttyACM99

With this information, one can then type /dev/ttyUSB1
into the main page and get sensor values again.

Conclusion
Once the steps are completed, all family members can in-

spect the weather in the cottage from their home locations as
long as they are connected via Ethernet. However, only one
reader can consume the output stream from sensors at a time,
since the Qt and C++ based desktop application cannot get val-
ues while a threaded Java reader is consuming the data stream
from serial port. The Java reader program reads 7 measurement
values, then stops. Although, it possible that 7 values can never
be read, because there will be not that many measurements
available. For instance, at night time, when lights are off, there
will be no value available for visible light. Tuning of this time
limit for first time invocation is also possible via the web page.

If several users were aimed to be served in a responsive way,
then the service should itself maintain a file or database of the
latest values in order to give a rapid response based on that. We
didn’t store values into files, and instead, the server holds a stat-
ic state that stores the latest sensor values. From the static state,
each request can be served as a non-blocking response. The ser-
vice is so small that it can be deployed with any ODROID that
has Java available and native libraries for reading serial port,
even the inexpensive C1 model. For development purposes,
it is faster to use a ODROID-U3 or ODROID-XU3 instead.

ODROID MAGAZINE	 28

that need to be followed in order to en-
sure that there is consistency between de-
vices. The process behind the rules and
the integration of different drivers dur-
ing the build process is beyond the scope
of this article, and will be discussed in fu-
ture installments. For now, we will only
look at how devices are being configured
inside Android and how it is relevant to
the build process, using the ODROID-
U3 running Android Kitkat 4.4.4 as an
example.

device/
The standard way for Android to find

device configurations is to look inside
the device/ folder as shown in Figure
1. ODROID boards configuration are
found inside device/hardkernel/.

Along with the ODROID boards,
you can also find configurations for
Nexus-based devices that come standard
with AOSP, such as the Google Nexus
Tablet 7 2012 (grouper) and the Nexus 7

You may be familiar with the
many different Android devices
that are currently available, with

enormous disparity in hardware such as
screen size, available peripherals, and in-
tended purpose such as mobile phones
and automotive installations. Android
runs nearly anywhere and everywhere,
but you may be wondering how it is
possible that it can function on so many
different hardware configurations, pro-
cessors, while using a variety of sensors
and inputs. Every day, we read about
new devices that have been released with
supported peripherals from previously
unknown vendors. How is it possible
to integrate so many different kind of
hardware inside Android devices? Most
of the integration is due to the power
of Linux, since it’s a mature ecosystem
that allows hardware vendors to create
their own product with their own driv-
ers. However, there are still many ven-
dors that do not want to release the code
for their software drivers as open source
projects, so those drivers are packaged
as binary files, which are referred to as
Binary Large Objects (BLOBs) in Linux
vernacular.

Different devices requires separate
configuration and settings, which are
necessary in order to be packaged as part
of the Android build process. Android
is very flexible when it comes to device
configuration, but there are certain rules

2013 (flo). Figure 2 shows the details of
what is inside the hardkernel directory,
which contains a few of Hardkernel’s
boards: the ODROID-U (ODROID-
U3) , ODROID-X and ODROID-X2.
Inside these directories you can find driv-
ers, configuration and build scripts that
are specific to ODROIDs. In Figure 3,
you can see the contents of the odroidu/
directory containing the configuration
details for the ODROID-U3 board. We
will take a look at each of the files and
directories in the following sections.

bluetooth/
The bluetooth directory contains

a single file called bdroid_buildcfg.h,
which is basically used as part of An-
droid’s Bluedroid bluetooth stack. This
file contains many configuration options
such as the device name, and the kind of
bluetooth support that the device offers.

ANDROID
DEVELOPMENT
DEVICE CONFIGURATION
by Nanik Tolaram

ANDROID DEVELOPMENT

Figure 2 : ODROID board configuration

Figure 1 : Hardkernel board configuration

ODROID MAGAZINE	 29

Audio can be found here. These files are
copied during the build process to /sys-
tem/lib/modules/.

overlay/
This directory contains configura-

tions that exist inside the system appli-
cations which may need to be modified
by the user. As can be seen in Figure 6,
there are a few .xml files inside the res/
folder, and if we take a look at one of the
files such as power_profile.xml, you will
see the following configuration:

<item name=”bluetooth.ac-

tive”>10</item> <!-- Bluetooth

data transfer, ~10mA -->

 <item name=”bluetooth.on”>0.1</

item> <!-- Bluetooth on & con-

nectable, but not connected,

~0.1mA -->

 <item name=”wifi.on”>3</item>

<!-- ~3mA -->

The above configuration (bluetooth.
active, bluetooth.on and wifi.on) will
be used to replace the original content
inside the framework/base/core/res/res/
xml/power_profile.xml file.

proprietary/
This particular directory is a very in-

teresting, since it contains many propri-
etary files that are packaged together as
part of the Android image. The first di-
rectory is the apk/ folder which contains
application .apk files. You will see the
apk shown in Figure 7 when you build
your own Android image files, or when
you download the pre-built one from

conf/
The conf directory contains configu-

ration files such as codecs, fstab (block
device), the .rc file, and the ueventd file,
as shown in Figure 4.

drivers/
Binary drivers that are needed for

peripherals such as WiFi, Ethernet and

http://bit.ly/1xkxreJ. The file that in-
structs the build process to include these
apks can be seen inside device/hardker-
nel/odroidu/device.mk as shown in Fig-
ure 8a and 8b.

The propietary/bin directory contains
files that are relevant to touch and key-
board devices. One of the files is called
Vendor_2808_Product_81c9.idc, which
correspond to the ODROID-VU touch
screen device, as detailed in the August
2014 ODROID Magazine on page 30.
Most of the files inside this directory

Figure 4 : conf directory

Figure 3 : ODROID-U3 configuration

Figure 5 : drivers directory

Figure 6 : overlay directory

Figure 8b: device.mk

Figure 7 : apk folder

Figure 8a: device.mk

ANDROID DEVELOPMENT

ODROID MAGAZINE	 30

power_profile.xml
bluetooth.active
bluetooth.active
bluetooth.on
wifi.on
bluetooth.active
bluetooth.active
bluetooth.on
wifi.on
power_profile.xml
http://bit.ly/1xkxreJ
device.mk
Vendor_2808_Product_81c9.idc
device.mk
device.mk

ANDROID DEVELOPMENT

number of .so library files that are used
by .apk files, as shown in Figure 10. The
last directory, proprietary/uboot_4412,
is important because it contains the
proprietary Samsung bootloader and
ODROID uboot binary. Without these
files, the board would not be able to boot
up! The proprietary bootloader source
code is not available, but the ODROID
uboot code may be downloaded from
http://bit.ly/1ydj3cb, as seen in Figure
11. The other file, called zImage, is the
pre-built kernel image, created during
the build process, that is also used for
booting up the board.

are copied into the image file, and are
subsequently used by the Android input
subsystem in order to understand the
configuration of the touch devices that
are available for use. Figure 6 shows the
content of the ODROID-VU touch de-
vice configuration file.

The proprietary/lib folder contains a

Figure 9 : Vendor_2808_Product_81c9.idc

Figure 11 : bootloader files

Figure 10 : .so library files

ANDROID DEVELOPMENT

Android’s device configuration architecture is designed to work many types of peripherals

ODROID MAGAZINE	 31

http://bit.ly/1xkxreJ
Vendor_2808_Product_81c9.idc

chromium-codecs-ffmpeg-extra

colord cups cups-browsed cups-bsd

cups-client cups-common cups-

core-drivers cups-daemon cups-

driver-gutenprint cups-filters

cups-filters-core-drivers cups-

ppdc cups-server-common deadbeef

dmz-cursor-theme docbook docbook-

dsssl docbook-to-man docbook-xml

docbook-xsl evince evince-common

evolution-data-server-common

extra-xdg-menus faenza-icon-theme

fbset ffmpegthumbnailer filezilla

filezilla-common file-roller

flite1-dev:armhf fontconfig font-

config-config fonts-arabeyes

fonts-arphic-ukai fonts-arphic-

uming fonts-dejavu fonts-dejavu-

core fonts-dejavu-extra fonts-

droid fonts-farsiweb

fonts-freefont-ttf fonts-kacst

fonts-kacst-one fonts-khmeros

fonts-khmeros-core fonts-lao

fonts-liberation fonts-lklug-sin-

hala fonts-lyx fonts-manchufont

fonts-mgopen fonts-nafees fonts-

nanum fonts-nanum-coding fonts-

opensymbol fonts-sil-abyssinica

fonts-sil-ezra fonts-sil-gentium

fonts-sil-gentium-basic fonts-

sil-padauk fonts-sil-scheherazade

fonts-takao-gothic fonts-takao-

mincho fonts-takao-pgothic

fonts-thai-tlwg fonts-tibetan-

machine fonts-tlwg-garuda fonts-

ODROID-C1 MINIMAL
INSTALL
GET BACK TO
THE BASICS
by segfault@kill-9.me

C1 MINIMAL

Fix udev

echo > /etc/udev/rules.d/70-

persistent-net.rules

reboot

Remove Network-
Manager

echo >> /etc/network/interfaces

echo auto eth0 >> /etc/network/

interfaces

echo iface eth0 inet dhcp >> /

etc/network/interfaces

stop network-manager

echo “manual” | tee /etc/init/

network-manager.override

reboot

Strip out X11
packages

apt-get remove abiword abiword-

common abiword-plugin-grammar

abiword-plugin-mathview ac-

countsservice acl alsa-base

alsa-utils anthy anthy-common

apport apport-gtk apport-symptoms

aria2 aspell audacious audacious-

plugins:armhf audacious-plugins-

data autopoint axel bind9-host

blueman bluez bluez-alsa:armhf

bluez-cups camorama chromium-

browser chromium-browser-l10n

My Odroid C1 is equipped with
an 8GB eMMC. However,
there are no “console” ver-

sions yet of any the operating systems
provided by Hardkernel. The only ones
available at the time of this writing have
all of the GUI software installed, which
for my purpose is unnecessary. This
means that nearly 4GB of disk space is
used out of the box. With some trial and
error, I managed to strip out everything
that I don’t need for my Odroid C1 and
condensed it into a few lines of code.
There’s also a few caveats to the eMMC
images as well, some of which are secu-
rity issues:

1. SSH Server Keys are not regener-
ated upon first boot.

2. udev rules for network devices
aren’t purged before the image is created.
This causes the main ethernet interface
to get listed as eth1 instead of eth0.

3. NetworkManager is installed.
You’ll need to edit /etc/network/inter-
faces, then disable NetworkManager.

To begin, login as root using the “su”
command before following the steps
below. It’s recommended to copy-and-
paste the commands!

SSH keys

dpkg-reconfigure openssh-server

ODROID MAGAZINE	 32

kill-9.me
rules.d/70-persistent-net.rules
rules.d/70-persistent-net.rules
network-manager.override

gstreamer1.0-plugins-good-doc

gstreamer1.0-pulseaudio:armhf

gstreamer1.0-tools gvfs-common

gvfs-libs:armhf hicolor-icon-

theme hplip-data hunspell-en-us

imagemagick-common java-common

jade joe kerneloops-daemon

ladspa-sdk laptop-detect lightdm

link-grammar-dictionaries-en

lintian linux-sound-base lubuntu-

lxpanel-icons openjdk-7-jre

ca-certificates-java aspell

aspell-en fonts-dejavu-core

lxmenu-data lxsession-data m4

make maliddx mc mc-data mesa-

utils mesa-utils-extra metacity-

common mircommon-dev:armhf

mobile-broadband-provider-info

modemmanager mysql-common nauti-

lus-data netpbm obex-data-server

openprinting-ppds p11-kit p11-

kit-modules:armhf pastebinit

pcmciautils pidgin-data poli-

cykit-desktop-privileges poppler-

data printer-driver-c2esp print-

er-driver-foo2zjs-common

printer-driver-min12xxw pulseau-

dio python-cups python-cupshelp-

ers qpdf quilt rfkill samba-com-

mon samba-common-bin

samba-libs:armhf sgml-base

sgml-data sgmlspl smbclient

sound-theme-freedesktop swig

swig2.0 sylpheed-doc system-con-

fig-printer-common system-config-

printer-udev t1utils transmis-

sion-common tsconf

ttf-bengali-fonts ttf-devanagari-

fonts ttf-gujarati-fonts ttf-in-

dic-fonts-core ttf-kannada-fonts

ttf-malayalam-fonts ttf-oriya-

fonts ttf-punjabi-fonts ttf-tam-

il-fonts ttf-telugu-fonts ttf-

ubuntu-font-family usbmuxd

uvcdynctrl uvcdynctrl-data

valgrind whoopsie wireless-tools

wpasupplicant wvdial x11-xfs-

utils xbmc xinput xserver-xorg-

core xfce4-power-manager xfonts-

100dpi xfonts-base xfonts-mathml

xfonts-scalable xfonts-utils

tlwg-kinnari fonts-tlwg-loma

fonts-tlwg-mono fonts-tlwg-norasi

fonts-tlwg-purisa fonts-tlwg-sa-

wasdee fonts-tlwg-typewriter

fonts-tlwg-typist fonts-tlwg-typo

fonts-tlwg-umpush fonts-tlwg-wa-

ree fonts-ukij-uyghur fonts-un-

fonts-core foomatic-db-com-

pressed-ppds fuse libfontconfig1

libgtk2.0.0 libpango-1.0.0

libqt5widgets5 snappy transmis-

sion-qt transmission-cli foomat-

ic-filters gir1.2* zenity-common

yelp-xsl yasm xvfb xtrans-dev

xsltproc xserver-common xscreen-

saver-data xscreensaver-screen-

saver-bsod x11-common xfconf

xfce4-dev-tools xfce4-power-man-

ager-data xdg-utils xauth xbit-

maps xdg-user-dirs xkb-data

xorg-docs-core xorg-sgml-doctools

autoconf autoconf2.13 automake

autotools-dev avr-libc avrdude

binutils binutils-avr build-es-

sential ccache cdbs cmake cmake-

data comerr-dev command-not-

found-data cpp cpp-4.8

desktop-file-utils dpkg-dev

fakeroot firefox-locale-en flex

bison g++ g++-4.8 gcc gcc-4.8

gcc-avr gconf-service gconf-ser-

vice-backend gconf2 gconf2-common

gdb gdebi-core genisoimage

giblib1:armhf glmark2-data

glmark2-es2 gnome-accessibility-

themes gnome-desktop-data gnome-

desktop3-data gnome-menus gnome-

panel-data gnome-pkg-tools

gnome-themes-standard-data

gnumeric-common gobject-intro-

spection gstreamer0.10-nice:armhf

gstreamer0.10-plugins-base:armhf

gsfonts gsettings-desktop-schemas

gstreamer0.10-plugins-base:armhf

gstreamer1.0-alsa:armhf

gstreamer1.0-doc gstreamer1.0-

libav:armhf gstreamer1.0-plugins-

bad-doc gstreamer1.0-plugins-

base:armhf

gstreamer1.0-plugins-base-apps

gstreamer1.0-plugins-base-doc

C1 MINIMAL

xinit xdg-user-dirs-gtk xdg-user-

dirs xarchiver x11proto-xinerama-

dev x11proto-xf86vidmode-dev

x11proto-xf86dri-dev x11proto-

xcmisc-dev x11proto-video-dev

x11proto-record-dev x11proto-ran-

dr-dev x11proto-present-dev

x11proto-kb-dev x11proto-dri3-dev

x11proto-dri2-dev x11proto-dmx-

dev x11proto-bigreqs-dev diction-

aries-common libavc1394-0:armhf

libavresample1:armhf

libavutil52:armhf

libbluetooth3:armhf

libbluray1:armhf libbonobo2-com-

mon libbonoboui2-common libboost-

atomic1.54.0:armhf libboost-

chrono1.54.0:armhf

libboost-date-time1.54.0:armhf

libboost-

serialization1.54.0:armhf lib-

boost-system1.54.0:armhf lib-

boost-thread1.54.0:armhf libbs2b0

libburn4 libcaca0:armhf lib-

camel-1.2-45 libcdaudio1 libcddb2

libcdio-cdda1 libcdio-paranoia1

libcdio13 libcdparanoia0:armhf

libcdt5 libcec libcgraph6

libcogl15:armhf

libcolamd2.8.0:armhf

libcolord1:armhf

libcolorhug1:armhf libcompfaceg1

libcrack2:armhf libcroco3:armhf

libcue1 libcups2:armhf

libcupscgi1:armhf

libcupsfilters1:armhf

libcupsimage2:armhf

libcupsmime1:armhf

libcupsppdc1:armhf

libdatrie1:armhf libdc1394-

22:armhf libdca0:armhf libdirac-

decoder0:armhf libdirac-

encoder0:armhf libdiscid0:armhf

libdjvulibre-text

libdjvulibre21:armhf

libdmx1:armhf libdrm-

nouveau2:armhf libdrm-

radeon1:armhf libdv4:armhf

libdvdnav4:armhf

libdvdread4:armhf libegl1-

mesa:armhf libdrm-omap1:armhf

ODROID MAGAZINE	 33

lite8:armhf libproxy1:armhf

libqmi-glib0:armhf

libqpdf13:armhf libquvi-scripts

libraptor2-0:armhf librarian0

librasqal3:armhf libraw1394-

11:armhf librxtx-java

libsamplerate0:armhf libsane-com-

mon libsbc1:armhf libschroeding-

er-1.0-0:armhf libsecret-

1-0:armhf libsecret-common

libshairplay libsidplayfp:armhf

libsoundtouch0:armhf libsp1c2

libspeex1:armhf

libspeexdsp1:armhf libsrtp0

libt1-5 libtag1-vanilla:armhf

libtag1c2a:armhf libtagc0:armhf

libtcl8.6:armhf libtelepathy-

glib0:armhf libthai-data

libtheora0:armhf libudisks2-

0:armhf libusbmuxd2

libv4l2rds0:armhf libva1:armhf

libvdpau1:armhf libvisual-0.4-

0:armhf libvo-aacenc0:armhf

libvo-amrwbenc0:armhf

libvpx1:armhf libvte-2.90-common

libvte-common libwavpack1:armhf

libwayland-client0:armhf libway-

land-cursor0:armhf libwayland-

server0:armhf libwbclient0:armhf

libwebcam0 libwebkitgtk-3.0-com-

mon libwebp5:armhf

libwebpdemux1:armhf

libwebpmux1:armhf libwhoopsie0

libwildmidi-config

libwildmidi1:armhf libwnck-3-com-

mon libwnck-common libwpd-0.9-9

libwpg-0.2-2 libwps-0.2-2

libwvstreams4.6-base

libwvstreams4.6-extras libx11-

6:armhf libx11-data libx11-

xcb1:armhf libx264-142:armhf

libxapian22 libxau6:armhf libxcb-

dri2-0:armhf libxcb-dri3-0:armhf

libxcb-glx0:armhf libxcb-

icccm4:armhf libxcb-image0:armhf

libxcb-keysyms1:armhf libxcb-

present0:armhf libxcb-

randr0:armhf libxcb-render0:armhf

libxcb-shape0:armhf libxcb-

shm0:armhf libxcb-sync1:armhf

libxcb-util0:armhf libxcb-

libjack-jackd2-0:armhf

libjasper1:armhf libjavascript-

coregtk-3.0-0:armhf

libjbig0:armhf libjbig2dec0

libjna-java libjpeg-turbo8:armhf

libjpeg8:armhf libjs-jquery

libjte1 libkate1 liblavjpeg-2.1-0

liblcms2-2:armhf liblircclient0

libllvm3.4:armhf liblockfile-bin

liblockfile1:armhf libloudmouth1-0

liblqr-1-0:armhf libltdl7:armhf

liblua5.2-0:armhf libmad0:armhf

libmbim-glib0:armhf libmeanwhile1

libmenu-cache-bin libmenu-cache3

libmessaging-menu0 libmi-

crohttpd10 libmikmod2:armhf

libmimic0 libmirprotobuf0:armhf

libmjpegutils-2.1-0 libmms0:armhf

libmodplug1 libmp3lame0:armhf

libmpcdec6 libmpeg2-4:armhf

libmpeg2encpp-2.1-0 libmpg123-

0:armhf libmplex2-2.1-0

libmtdev1:armhf libmtp-common

libmtp-runtime libmtp9:armhf

libnetpbm10 libnettle4:armhf

libobt2 libogg0:armhf libopenal-

data libopenal1:armhf libopencv-

calib3d2.4:armhf libopencv-

core2.4:armhf

libopencv-features2d2.4:armhf

libopencv-flann2.4:armhf libo-

pencv-gpu2.4:armhf libopencv-

imgproc2.4:armhf libopencv-

ml2.4:armhf

libopencv-photo2.4:armhf libo-

pencv-stitching2.4:armhf libo-

pencv-video2.4:armhf

libopenjpeg2:armhf libopenobex1

libopenvg1-mesa:armhf liborbit-

2-0:armhf liborc-0.4-0:armhf

libots0 libp11-kit-gnome-

keyring:armhf libpam-gnome-

keyring:armhf libpaper-utils

libpaper1:armhf libpathplan4

libpcsclite1:armhf consolekit

libpixman-1-0:armhf libpixman-

1-0-dbg:armhf libplist1:armhf

libpolkit-agent-1-0:armhf libpol-

kit-backend-1-0:armhf libpolkit-

gobject-1-0:armhf libpostproc52

libprotobuf8:armhf libprotobuf-

libegl1-mesa-drivers:armhf

libexo-common libexo-helpers

libfaad2:armhf libfakeroot:armhf

libfftw3-bin libfftw3-

double3:armhf libfftw3-

single3:armhf libflac8:armhf

libfontembed1:armhf

libfontenc1:armhf libframe6:armhf

libfreetype6:armhf

libfribidi0:armhf libfs6:armhf

libftdi1:armhf libfuse2:armhf

libgbm1:armhf libgck-1-0:armhf

libgcr-3-common libgcr-base-

3-1:armhf libgda-5.0-common

libgdk-pixbuf2.0-0:armhf libgdk-

pixbuf2.0-common libgdome2-0

libgdome2-cpp-smart0c2a

libgeis1:armhf libgeoclue0:armhf

libgeoip1:armhf libgif4:armhf

libgirepository-1.0-1 libgl1-me-

sa-dri:armhf libgl1-mesa-

glx:armhf libglapi-mesa:armhf

libgles1-mesa:armhf libgles2-

mesa:armhf libglib2.0-doc lib-

glib-perl libgme0

libgmpxx4ldbl:armhf libgnome-key-

ring-common libgnome-

keyring0:armhf libgnome-menu-3-0

libgnomecanvas2-common libgno-

meui-common libgoffice-0.10-

10-common libgomp1:armhf libgpho-

to2-port10:armhf

libgraphite2-3:armhf libgs9-com-

mon libgsf-1-114 libgsf-1-common

libgsl0ldbl libgsm1:armhf libg-

streamer-plugins-base0.10-0:armhf

libgstreamer-plugins-base1.0-

0:armhf libgstreamer0.10-0:armhf

libgstreamer1.0-0:armhf libgtk-

3-common libgtk2.0-common libg-

top2-7 libgtop2-common lib-

gudev-1.0-0:armhf libguess1:armhf

libgusb2:armhf libgutenprint2

libgweather-common

libhogweed2:armhf libhpmud0

libhunspell-1.3-0:armhf libi-

bus-1.0-5:armhf libical1 libid-

3tag0 libieee1284-3:armhf libi-

js-0.35 libilmbase6:armhf

libimage-exiftool-perl libiptc-

data0 libisofs6 libiw30:armhf

C1 MINIMAL

ODROID MAGAZINE	 34

C1 MINIMAL

xf86dri0:armhf libxcb-

xfixes0:armhf libxcb-xv0:armhf

libxcb1:armhf

libxcomposite1:armhf

libxcursor1:armhf

libxdamage1:armhf

libxdmcp6:armhf libxdot4

libxext6:armhf libxfce4ui-common

libxfce4util-common libxfce4util6

libxfixes3:armhf libxi6:armhf

libxinerama1:armhf

libxkbfile1:armhf libxp6:armhf

Purge packages

dpkg --list | grep ^rc | awk

-F” “ ‘ { print $2 } ‘ | xargs

apt-get -y purge

After applying these changes, my disk
usage dropped to just under 1GB. Keep
in mind that following these instructions
completely removes the GUI so that the
HDMI no longer works, which leaves
only the serial port and SSH available
for managing the ODROID-C1. Please
leave any comments, suggestions and
feedback on the original post at http://
bit.ly/1CDvNIO.

A minimal installation on an ODROID-C1 is a
work of fine art, like a Mondrian painting

ODROID MAGAZINE ON GOOGLE+
FOLLOW US FOR THE LATEST UPDATES
by Rob Roy

Would you like to know when the newest edition of your favorite online mag-
azine has been released? Add ODROID Magazine to your Google+ circle
to be notified immediately as soon as the next issue has been posted. Find

out more about the ODROID Magazine community page at http://bit.ly/14rsCIr.

GOOGLE PLUS

ODROID MAGAZINE	 35

http://bit.ly/1CDvNIO
http://bit.ly/1CDvNIO
http://bit.ly/14rsCIr
http://bit.ly/14rsCIr

After I got my ODROID-C1, I
read through its specifications
and datasheet, and a big idea

came to mind. My project was to cre-
ate an easily accessible interface be-
tween the ODROID-C1 and SainSmart
16-Channel Relay Module (http://bit.
ly/17ZbxrG). The relay module may be
used to control appliances, lights, or any
other gadget or device that requires 12V
power.

By following the steps below, the re-
lay may be programmed remotely via a
web page, to be accessed by any type of
device such as a PC or cell phone. The
web page can then be published to the
Internet, or locally via intranet, depend-
ing on your needs. For the software
base, I used the the original Linux OS
which came with my ODROID-C1
when I bought it.

Hardware
requirements

1- 16x Transistors 2n2222 NPN:
http://ebay.to/1CtxlVn

2- 16x Resistors 10 Ohm 1/4 Watt:
http://ebay.to/1AD3ojt

3- 16x Resistors 2K2 Ohm 1/4 Watt:
http://bit.ly/1xpRjx6

4- 1x Solderless Plug-in BreadBoard:
http://amzn.to/14Z0Rar

5- 1x 16-Channel Relay Module:
http://bit.ly/1yAXMLG

6- 40x female-male breadboard con-
nections: http://amzn.to/1DVpRP4

Software
Configuration

Install and configure the wiringPi ap-
plication by typing the following com-
mands into a Terminal window:

HARDWARE TINKERING
INTERFACING THE ODROID-C1
WITH A 16-CHANNEL RELAY
by @vzool

RELAY

$ git clone git://github.com/

hardkernel/wiringPi

$ cd wiringPi/

$ sudo ./build

$ sudo ldconfig

I used PHP for server side scripting,
but you can implement it using any lan-
guage that you want. First, install the
necessary packages:

$ sudo apt-get install apache2

php5 libapache2-mod-php5 nano

Next, open the Apache configuration
file:

$ nano /etc/apache2/sites-

available/000-default.conf

Change the following line:

DocumentRoot /var/www/html

to

DocumentRoot /var/www

Then, open the php5 configuration
file:

$ nano /etc/php5/apache2/php.ini

Change the option short_open_tag
to On, which is Off by default:

short_open_tag = On

Create a new PHP file, and paste the
following code:

$ nano /var/www/odroid-c1.php

<?

// GPIO Configuration

$GPIO = array(

 array(‘Char’ => ‘A’, ‘Wiring-

Pi’ => ‘14’, ‘Header’ => ‘23’),

 array(‘Char’ => ‘B’, ‘Wiring-

Pi’ => ‘7’, ‘Header’ => ‘7’),

 array(‘Char’ => ‘C’, ‘Wiring-

Pi’ => ‘22’, ‘Header’ => ‘31’),

 array(‘Char’ => ‘D’, ‘Wiring-

Pi’ => ‘1’, ‘Header’ => ‘12’),

 array(‘Char’ => ‘E’, ‘Wiring-

Pi’ => ‘12’, ‘Header’ => ‘19’),

 array(‘Char’ => ‘F’, ‘Wiring-

Pi’ => ‘5’, ‘Header’ => ‘18’),

 array(‘Char’ => ‘G’, ‘Wiring-

Pi’ => ‘13’, ‘Header’ => ‘21’),

 array(‘Char’ => ‘H’, ‘Wiring-

Pi’ => ‘10’, ‘Header’ => ‘24’),

 array(‘Char’ => ‘I’, ‘Wiring-

Pi’ => ‘21’, ‘Header’ => ‘29’),

 array(‘Char’ => ‘J’, ‘Wiring-

Pi’ => ‘3’, ‘Header’ => ‘15’),

 array(‘Char’ => ‘K’, ‘Wiring-

Pi’ => ‘24’, ‘Header’ => ‘35’),

 array(‘Char’ => ‘L’, ‘Wiring-

Pi’ => ‘0’, ‘Header’ => ‘11’),

 array(‘Char’ => ‘M’, ‘Wiring-

Pi’ => ‘4’, ‘Header’ => ‘16’),

 array(‘Char’ => ‘N’, ‘Wiring-

Pi’ => ‘2’, ‘Header’ => ‘13’),

ODROID MAGAZINE	 36

http://bit.ly/17ZbxrG
http://bit.ly/17ZbxrG
http://ebay.to/1CtxlVn
http://ebay.to/1AD3ojt
http://bit.ly/1xpRjx6
http://amzn.to/14Z0Rar
http://bit.ly/1yAXMLG
http://amzn.to/1DVpRP4
github.com/hardkernel/wiringPi
github.com/hardkernel/wiringPi
000-default.conf
php.ini
odroid-c1.php

Typical pin diagrams for 2n2222 npn transistors

RELAY

Photos of the wiring for the relay

ODROID MAGAZINE	 37

variable

if (!($data = http_digest_

parse($_SERVER[‘PHP_AUTH_DI-

GEST’])) ||

 !isset($users[$data[‘userna

me’]]))

 die($wrong_credential_mes-

sage);

// generate the valid response

$A1 = md5($data[‘username’]

. ‘:’ . $realm . ‘:’ .

$users[$data[‘username’]]);

$A2 = md5($_SERVER[‘REQUEST_

METHOD’].’:’.$data[‘uri’]);

$valid_response = md5($A1.’:’.$da

ta[‘nonce’].’:’.$data[‘nc’].’:’.

$data[‘cnonce’].’:’.$data[‘qop’]

.’:’.$A2);

if ($data[‘response’] != $valid_

response)

 die($wrong_credential_mes-

sage);

// function to parse the http

auth header

function http_digest_parse($txt){

 // protect against missing

data

 $needed_parts =

array(‘nonce’=>1, ‘nc’=>1,

‘cnonce’=>1, ‘qop’=>1, ‘user-

name’=>1, ‘uri’=>1, ‘re-

sponse’=>1);

 $data = array();

 $keys = implode(‘|’, array_

keys($needed_parts));

 preg_match_all(‘@

(‘ . $keys . ‘)=(?:([\’”])

([^\2]+?)\2|([^\s,]+))@’, $txt,

$matches, PREG_SET_ORDER);

 foreach ($matches as $m) {

 $data[$m[1]] = $m[3] ?

$m[3] : $m[4];

 unset($needed_

parts[$m[1]]);

 }

 array(‘Char’ => ‘O’, ‘Wiring-

Pi’ => ‘23’, ‘Header’ => ‘33’),

 array(‘Char’ => ‘P’, ‘Wiring-

Pi’ => ‘6’, ‘Header’ => ‘22’),

 array(‘Char’ => null, ‘Wir-

ingPi’ => ‘11’, ‘Header’ =>

‘26’),

 array(‘Char’ => null, ‘Wir-

ingPi’ => ‘26’, ‘Header’ =>

‘32’),

 array(‘Char’ => null, ‘Wir-

ingPi’ => ‘27’, ‘Header’ =>

‘36’),

);

//user => password

$users = array(“admin” =>

“pass”);

/*===============================

=================================

=============================*/

/*###############################

Authenticated Access Security ###

############################*/

/*===============================

=================================

=============================*/

$realm = ‘Restricted Area!’;

$wrong_credential_message =

“<h1>401 Restricted Area: Failed

to Authenticate!</h1>”;

if (empty($_SERVER[‘PHP_AUTH_DI-

GEST’])) {

 header(‘HTTP/1.1 401 Unau-

thorized’);

 header(‘WWW-Authenticate: Di-

gest realm=”’.$realm.

‘”,qop=”auth”,nonce=”’.

uniqid().’”,opaque=”’.

md5($realm).’”’);

 die(‘Text to send if user

hits Cancel button’);

}

// analyze the PHP_AUTH_DIGEST

 return $needed_parts ? false

: $data;

}

/*===============================

=================================

=============================*/

/*###############################

Authenticated Access Security ###

############################*/

/*===============================

=================================

=============================*/

if(!function_exists(“php_cli”)){

 function php_cli($cmd, $auto_

reload = true){

 $result = trim(shell_

exec($cmd));

 if($auto_reload)

header(‘Location: ‘.$_

SERVER[‘REQUEST_URI’]);

 return $result;

 }

}

if(!function_exists(“gpio_ref”)){

 function gpio_ref($char,

$GPIO){

 foreach($GPIO as $g){

 if($g[‘Char’] ===

$char)

 return $g;

 }

 return null;

 }

}

$gpio = -1;

$mode = -1;

$status = -1;

if($_POST){

 try{

 if(isset($_POST[‘gpio’]))

{

 $gpio = $_

POST[‘gpio’];

 $mode = $_

POST[‘mode’];

 $status = $_

RELAY

ODROID MAGAZINE	 38

<?endforeach?>

 </select>

 <select

name=’mode’>

 <option

<?= $mode == “out” ? “SELECTED” :

“”?> value=’out’>OUT</option>

 <option

<?= $mode == “in” ? “SELECTED” :

“”?> value=’in’>IN</option>

 </select>

 <select

name=’status’>

 <option

<?= $status == 1 ? “SELECTED” :

“”?> value=’1’>ON</option>

 <option

<?= $status == 0 ? “SELECTED” :

“”?> value=’0’>OFF</option>

 </select>

 <input

type=’submit’ value=’Execute’/>

 </form>

 </td>

 <td>

 <form method=”post”>

 <input

name=’on_all’ type=’submit’

value=’ON ALL’/>

 <input

name=’off_all’ type=’submit’

value=’OFF ALL’/>

 </form>

 </td>

 </tr>

</table>

<center>

 <h6>powered by <a

href=’http://www.hardkernel.

com/main/products/prdt_info.

php?g_code=G141578608433’ tar-

get=’_blank’>ODROID-C1 Coded

by <a href=’https://plus.google.

com/u/0/109727413094063366437’

target=’_blank’>vZool</h6>

</center>

<style type=”text/css”>

 echo “<h1>$ex</h1>”;

 }

}

$GPIO_STATUS = array();

foreach($GPIO as $g){

 if(!$g[‘Char’])continue;

 $GPIO_STATUS[$g[‘Char’]]

= php_cli(“gpio read

{$g[‘WiringPi’]}”, false);

}

?>

<center>

 <h1>^_^ Welcome to My Home

Infrastructure Panel(HIP) ^_^</

h1>

</center>

<hr/>

<div id=’cmd_button’>

<?foreach($GPIO as $g):?>

 <?if(!$g[‘Char’])continue;?>

 <form method=”post”>

 <button class=’<?=$GPIO_

STATUS[$g[‘Char’]] == “1” ?

“on” : “off”?>’ name=’cmd’

type=’submit’ value=’<?=$g[‘Ch

ar’]?>’><?=$g[‘Char’]?> -

 <?=$GPIO_STATUS[$g[‘Char’]]

== “1” ? “ON” : “OFF”?></button>

 </form>

<?endforeach?>

</div>

<table border=’1’ width=’100%’>

 <tr align=’center’>

 <td>

 <form method=”post”>

 <select

name=’gpio’>

<?foreach($GPIO as $g):?>

<? $selected = $gpio ==

$g[‘WiringPi’] ? “SELECTED” :

“”?>

<option <?=$selected?> value=’<

?=$g[‘WiringPi’]?>’>Header PIN

<?=$g[‘Header’]?> ### WiringPi

<?=$g[‘WiringPi’]?></option>

POST[‘status’];

 php_cli(“gpio mode

$gpio $mode && gpio write $gpio

$status”);

 }

 if(isset($_POST[‘on_

all’])){

 foreach($GPIO as $g){

 $auto_reload =

end($GPIO) === $g;

 php_cli(“gpio

mode {$g[‘WiringPi’]} out && gpio

write {$g[‘WiringPi’]} 1”, $auto_

reload);

 }

 }

 if(isset($_POST[‘off_

all’])){

 foreach($GPIO as $g){

 $auto_reload =

end($GPIO) === $g;

 php_cli(“gpio

mode {$g[‘WiringPi’]} out && gpio

write {$g[‘WiringPi’]} 0”, $auto_

reload);

 }

 }

 if(isset($_POST[‘cmd’])){

 $header = gpio_

ref(strtoupper($_POST[‘cmd’]),

$GPIO);

 $header =

$header[‘WiringPi’];

 $result = php_

cli(“gpio read $header”, false);

 if($result === ‘1’){

 php_cli(“gpio

write $header 0 && gpio mode

$header in”);

 }else{

 php_cli(“gpio

mode $header out && gpio write

$header 1”);

 }

 }

 }catch(Exception $ex){

RELAY

ODROID MAGAZINE	 39

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G141578608433
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G141578608433
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G141578608433
https://plus.google.com/u/0/109727413094063366437
https://plus.google.com/u/0/109727413094063366437

form button{

 width: 50%;

 height: 10%;

 float: right;

}

.on, .off{

 font-weight: bold;

 font-size: 2em;

}

.on{

 color: green;

}

.off{

 color: red;

}

</style>

Save the file, then open a web brows-
er and point it to http://<your-device-
ip>/odroid-c1.php in order to access the
Home Infrastructure Panel (HIP). The
default user is admin and password is
pass, which may be changed on line 27
of the PHP code.

Power
The 16-Channel Relay Module needs

more power than the ODROID-C1 can
provide via the GPIO pins, so I used my
laboratory power supply unit (PSU) for
the project. For your own hardware, you
will need an adapter or similar source
for 12V 0.5A power, which should be
connected to the external power socket
which is located to the right of the low
level input pins.

More information
For more information about Raspber-

ry Pi-stye PC and Relay interface, check
out the collection of home automation
videos at http://bit.ly/1BX5Wxj. Spe-
cific details about wiring the relay may
be found at http://bit.ly/15r7Byv. For
reference, the ODROID-C1 datasheet
is available at http://bit.ly/1KWdJiM.
If you would like to ask questions or
leave feedback regarding this project,
please visit the original post at http://bit.
ly/15n93SQ.

RELAY FORUMS

ODROID FORUMS
THE PERFECT PLACE TO COMMUNICATE
WITH HARDKERNEL DEVELOPERS

by Rob Roy

The ODROID forums have been the central meeting place for the growing
Hardkernel community for several years, with over 8500 members as of Feb-
ruary 2015. You can discuss ODROIDs with Mauro, the lead Linux kernel

developer, and Justin, the CEO of Hardkernel, along with a growing team of devel-
opers who donate their time to helping you get the most out of your ODROID.
Check it out at http://forum.odroid.com!

ODROID MAGAZINE	 40

odroid-c1.php
http://bit.ly/1BX5Wxj
http://bit.ly/15r7Byv
http://bit.ly/1KWdJiM
http://bit.ly/1KWdJiM
http://bit.ly/1KWdJiM
http://forum.odroid.com
http://forum.odroid.com

The previous article in my series
on Docker detailed how to set up
Docker on the ODROID plat-

form, along with an overview on how
containers work. This article presents
several pre-built images, available for
free download, that are designed to help
you get Docker up and running quickly
with minimal setup.

Since initd/systemd are not available
inside the container, a Docker container
is designed to run only one foreground
process. However, sometimes there is the
need to run two processes concurrently,
such as a web server, in order to provide
a GUI for configuring or controlling a
running backend process. When the
container starts or stops, the processes
need to mimic that command. There are
two preferred options available. One is a
very small/lean initd/systystemd replace-
ment, like runit (http://bit.ly/1zp2o7s),
and the other is to use supervisor-dae-
mon (http://bit.ly/1yb6w95).

DOCKER: DEVELOP, SHIP AND RUN
ANY APPLICATION, ANYWHERE
PART 2 - PRE-BUILT IMAGES
by Fred Meyer

DOCKER

Subprocess transitions Debian Wheezy runs Docker very well

Arch Linux runs Docker too

Ubuntu and Debian
I prepared a pre-built Docker image

on top of the official Hardkernel Ubun-
tu 14.04 image that includes supervisor-
daemon as a foreground process. Inside
supervisord, the SSH-daemon is already
enabled and running on port 22. Fetch
and run the Ubuntu image with the fol-
lowing commands:

$ sudo docker pull hominidae/

armhf-supervisord

$ sudo docker run -d -p 8022:22

hominidae/armhf-supervisord

Next, SSH into that mapped port
8022 on your ODROID host, using the
default configured username and pass-
word of ubuntu/ubuntu. Please refer
to http://bit.ly/1CBw8f4 and http://bit.
ly/1xi309d for more information.

As another available pre-built option,
there is a Debian Wheezy image with
runit enabled, and the SSH-daemon
running on port 22. Fetch and run the

Debian image using the following com-
mands:

$ sudo docker pull hominidae/

armhf-wheezy

$ sudo docker run -d -p 9022:22

hominidae/armhf-wheezy \ /usr/

sbin/runsvdir-start

Connect using SSH via port 9022 on
your ODROID host, using the default
configured username and password of
wheezy/wheezy.

Arch Linux base
image

If you prefer Arch Linux, download
my Arch Linux base image by typing the
following:

$ docker pull hominidae/armhf-

archLinux

Should you prefer to create the image

ODROID MAGAZINE	 41

http://bit.ly/1zp2o7s
http://bit.ly/1yb6w95
http://bit.ly/1CBw8f4
http://bit.ly/1xi309d
http://bit.ly/1xi309d

 expect {

 -exact “anyway? \[Y/n\] “ {

send -- “n\r”; exp_continue }

 -exact “(default=all): “ {

send -- “\r”; exp_continue }

 -exact “installation? \

[Y/n\]” { send -- “y\r”; exp_con-

tinue }

 }

EOF

arch-chroot $ROOTFS /bin/sh -c

“haveged -w 1024; pacman-key

--init; pkill haveged; pacman -Rs

--noconfirm haveged”

arch-chroot $ROOTFS /bin/sh -c

“ln -s /usr/share/zoneinfo/UTC /

etc/localtime”

echo ‘en_US.UTF-8 UTF-8’ > $ROOT-

FS/etc/locale.gen

arch-chroot $ROOTFS locale-gen

arch-chroot $ROOTFS /bin/sh -c

‘echo “Server = http://mirror.

archLinuxarm.org/\$arch/\$repo” >

/etc/pacman.d/mirrorlist; pacman

--noconfirm -Sy; pacman --noconfirm

-S archLinuxarm-keyring’

udev doesn’t work in contain-

ers, rebuild /dev

DEV=$ROOTFS/dev

rm -rf $DEV

mkdir -p $DEV

mknod -m 666 $DEV/null c 1 3

mknod -m 666 $DEV/zero c 1 5

mknod -m 666 $DEV/random c 1 8

mknod -m 666 $DEV/urandom c 1 9

mkdir -m 755 $DEV/pts

mkdir -m 1777 $DEV/shm

mknod -m 666 $DEV/tty c 5 0

mknod -m 600 $DEV/console c 5 1

mknod -m 666 $DEV/tty0 c 4 0

mknod -m 666 $DEV/full c 1 7

mknod -m 600 $DEV/initctl p

mknod -m 666 $DEV/ptmx c 5 2

ln -sf /proc/self/fd $DEV/fd

tar --numeric-owner -C $ROOTFS

-c . | docker import - armhf-

archLinux

docker run -i -t armhf-archLinux

Docker needs lots of disk space

yourself, you can do so using the follow-
ing script:

#!/usr/bin/env bash

Generate a minimal filesystem

for Arch Linux

and load it into the local

docker as “armhf-archLinux”

requires root

based on https://github.com/

docker/docker/blob/master/con-

trib/mkimage-arch.sh

set -e

hash pacstrap &>/dev/null || {

 echo “Could not find pacstrap.

Run pacman -S arch-install-

scripts”

 exit 1

}

hash expect &>/dev/null || {

 echo “Could not find expect.

Run pacman -S expect”

 exit 1

}

ROOTFS=$(mktemp -d ${TMPDIR:-/

var/tmp}/rootfs-archLinux-

XXXXXXXXXX)

chmod 755 $ROOTFS

packages to ignore for space

savings

PKGIGNORE=Linux,jfsutils,lvm2,cry

ptsetup,groff,man-db,man-pages,md

adm,pciutils,pcmciautils,reiserfs

progs,s-nail,xfsprogs

expect <<EOF

 set send_slow {1 .1}

 proc send {ignore arg} {

 sleep .1

 exp_send -s -- \$arg

 }

 set timeout 60

 spawn pacstrap -C ./mkimage-

arch-pacman.conf -c -d -G -i

$ROOTFS base haveged --ignore

$PKGIGNORE

echo Success.

sleep 2

rm -rf $ROOTFS

You also need to download the mkim-
age-arch-pacman.conf file from the same
repository at http://bit.ly/1IQe2K0,
making sure to set the architecture to
“armv7hf”.

Needful Things
The space that a Docker image con-

sumes can get very large as you iterate
over it by stopping, starting and modify-
ing it. There are some tweaks that can be
done in order to strip the bloat and save
space on your eMMC or SD, as demon-
strated at http://bit.ly/1wjki47.

Here is some useful information
to be found about using “save” or “ex-
port” commands with Docker: http://
bit.ly/1GdEu2t. For details on using
networking and mapping ports with
a Docker container, visit http://bit.
ly/1EclIDL.	

Running a container in daemon
mode will start its foreground process.
You can also enter into a shell in the
running, daemonized container using
the exec command:

$ sudo docker exec -i -t <id> /

bin/bash

Ubuntu 14.04 with
ReadyMedia

A container running minidlna and
ReadyMedia in order to stream music
to my various audio devices was one

DOCKER

ODROID MAGAZINE	 42

en_US.UTF
locale.gen
http://mirror.archLinuxarm.org
http://mirror.archLinuxarm.org
pacman.d/mirrorlist
https://github.com/docker/docker/blob/master/contrib/mkimage-arch.sh
https://github.com/docker/docker/blob/master/contrib/mkimage-arch.sh
https://github.com/docker/docker/blob/master/contrib/mkimage-arch.sh
mkimage-arch-pacman.conf
mkimage-arch-pacman.conf
mkimage-arch-pacman.conf
mkimage-arch-pacman.conf
http://bit.ly/1IQe2K0
http://bit.ly/1wjki47
http://bit.ly/1GdEu2t
http://bit.ly/1GdEu2t
http://bit.ly/1EclIDL
http://bit.ly/1EclIDL

DOCKER

Common Unix Printing System (CUPS)

Cloud Print lets you print to any printer

Digital Living Network Alliance (DLNA)

ODROID and is available at /media/
mediadata/my-music on the host:

$ sudo docker run

--name=minidlna_d --rm=true

--net=host -p 1900:1900/udp -p

8200:8200 -v /media/mediadata/my-

music:/data:ro hominidae/armhf-

minidlna

Cups and Cloud Print
You can also add a Google Cloud

Print server to your home and enable
your local printer(s) for use with Google
Print. This is another one of my favou-
rite containers, as I already own some
networked printers, but all of them lack
Google Cloud Print capabilities. With
this container running, I can use the
printers from my Android phone, tab-
let and ChromeBrowser/OS, which adds
convenience for my family, as well as up-
grading my printer’s capabilities.

This particular image is built on
Debian Wheezy, and adds two major
components: cupsd, the UNIX printing
daemon, and a Python script (http://bit.
ly/1IVP766) that is able to connect to
the Google printing API. This time, we
are not using a Dockerfile, but will build

add config file.

ADD minidlna.conf /etc/minidlna.

conf

Define mountable directories.

VOLUME [“/data”]

Define working directory.

WORKDIR /data

Define default command.

CMD [“/usr/local/sbin/

minidlnad”,”-d”]

Expose ports.

- 1900: UPnP

- 8200: HTTP

EXPOSE 1900/udp

EXPOSE 8200

supervisor configuration für

minidlna

#ADD minidlna_d.conf /etc/super-

visor/conf.d/minidlna_d.conf

#

#CMD [“supervisord”, “-c”, “/etc/

supervisor/supervisord.conf”]

This Dockerfile will inject your
minidlna.conf configuration file and
provision a volume called “/data” in-
side the container. You’ll have to point
your minidlna to that directory in order
to store and find your media, as well as
map the host directory/filesystem into
that container. Should you opt to run
minidlna together with an SSH daemon,
just use the supervisord-image as the
base image with the FROM directive,
and add the appropriate supervisord.
conf into the image.

The image exposes the upnp/dlna
udp port (1900) and http UI port
(8200) for minidlna. However, for a
renderer to find and receive the broad-
casted advertisements of minidlna, you
will need to start/run the image with the
“--net=host” command option.

This is how I start the image locally,
assuming your media is attached to the

of the first images that I built, which is
still running strong in my home. The
container is based on Ubuntu 14 and
includes build tools, libs for codecs and
minidlna dependencies, as well as the
minidlna sources.

Here’s the Dockerfile:

#

MiniDLNA Dockerfile

#

Pull base image.

FROM hominidae/armhf-supervi-

sord

FROM hominidae/armhf-ubuntu:14.04

MAINTAINER hominidae

Install MiniDLNA(ReadyMedia).

RUN apt-get update && apt-get

upgrade -y

build tools and codecs

RUN apt-get install -y wget

build-essential libavutil-dev \

 libavcodec-dev libavformat-

dev libjpeg-dev libsqlite3-dev

libid3tag0-dev \

 libogg-dev libvorbis-dev lib-

flac-dev libexif-dev gettext

download minidlna source code,

build and install

RUN \

 cd /tmp && \

 wget http://downloads.source-

forge.net/project/minidlna/

minidlna/1.1.4/minidlna-

1.1.4.tar.gz && \

 tar xvzf minidlna-1.1.4.tar.gz

&& \

 cd minidlna-1.1.4 && \

 ./configure && \

 make && make install

ODROID MAGAZINE	 43

http://bit.ly/1IVP766
http://bit.ly/1IVP766
minidlna.conf
minidlna.conf
minidlna.conf
minidlna_d.conf
conf.d/minidlna_d.conf
supervisord.conf
minidlna.conf
supervisord.conf
supervisord.conf
http://downloads.sourceforge.net/project/minidlna/minidlna/1.1.4/minidlna-1.1.4.tar.gz
http://downloads.sourceforge.net/project/minidlna/minidlna/1.1.4/minidlna-1.1.4.tar.gz
http://downloads.sourceforge.net/project/minidlna/minidlna/1.1.4/minidlna-1.1.4.tar.gz
http://downloads.sourceforge.net/project/minidlna/minidlna/1.1.4/minidlna-1.1.4.tar.gz
minidlna-1.1.4.tar.gz

DOCKER

start

After entering the container via
SSH to check if cupsd is running, point
your browser to https://<your-odroid-
ip>:631/admin and configure your
printer. Use the cupsadmin/cupsadmin
credentials to authenticate when asked.

I always have a ppd-file for my print-
ers ready; upload it via the Web-Admin
interface. Note that I did not test with
USB-based printers, since my printers
are already network-enabled. You could
try and add the /dev filesystem as a vol-
ume, using the -v parameter, or the --de-
vice option to the run command when
starting the container, but I am not sure
about the security implications.

Finally, print a test page from the
cups maintenance interface. If you need
some more advice on cups, please con-
sult the tutorial available at http://bit.
ly/1KT6sjD.

Repeat the steps for all of your print-
ers that you want to manage through
this cupsd instance. Again, create a new
image from the running container, this
time including your configured printers:

$ sudo docker export <id> | sudo

docker import - armhf-cups_print-

ing

Then, add the Cloud Print python
stuff, using the pre-built Debian packag-
es from David Steele’s PPA at http://bit.
ly/17WkvpF. Once inside the container,
run the commands to add the Cloud
Print PPA. Add a reference to the Cloud
Print PPA to your /etc/apt/sources.list
file (as root):

$ deb http://davesteele.github.

io/Cloud Print-service/repo \

Cloud Printppa main

Add the repository key to your apt
key ring and install the packages:

$ wget http://davesteele.github.

io/key-366150CE.pub.txt

Restrict access to configuration

files...

<Location /admin/conf>

 AuthType Default

 Require user @SYSTEM

 Order allow,deny

 Allow all

</Location>

[...]

Add a user as Admin for the printing
system to the group lpadmin and create
a password:

$ sudo adduser cupsadmin

[...]

$ sudo usermod -a -G lpadmin cup-

sadmin

Enable cupsd startup with runit:

$ sudo mkdir /etc/service/cupsd

$ sudo cp /etc/service/sshd/run /

etc/service/cupsd/run

Edit the run-file /etc/service/cupsd/
run to look like this:

#!/bin/sh

#

start cupsd

exec /etc/init.d/cups start

end

Logout from your container and
fetch the container ID, then stop the
Wheezy image:

$ sudo docker ps -a

$ sudo docker stop <id>

Create a new image from the con-
tainer, so we have a state to return to lat-
er, just in case, then start the new cupsd
container:

$ sudo docker export <id> | sudo

docker import - armhf-cupsd

$ sudo docker run -d --net=host

armhf-cupsd \ /usr/sbin/runsvdir-

the image interactively. To begin, start
the Debian Wheezy base image:

$ sudo docker run -t -i

--net=host hominidae/armhf-wheezy

/bin/bash

Note that we’re using the --net=host
option in order to enable full IP access
for the container. If you have multiple
containers running with sshd inside, you
should reconfigure the ports or disable
all ssh-daemons except one, including
the one on your host. You can also enter
into a shell in the running, daemonized
container using the exec command:

$ sudo docker exec -i -t <id> /

bin/bash

Next, enter the container and install
cups:

$ apt-get update && apt-get up-

grade -y && apt-get install -y

cups

Then, check and configure the cupsd
configuration file at /etc/cups/cupsd.
conf, enable the Web-UI of cupsd using
the default port 631, and allow access for
admin:

[...]

Only listen for connections

from the local machine.

Listen 0.0.0.0:631

[...]

Restrict access to the serv-

er...

<Location />

 Order allow,deny

 Allow all

</Location>

Restrict access to the admin

pages...

<Location /admin>

 Order allow,deny

 Allow all

</Location>

ODROID MAGAZINE	 44

https://%3Cyour-odroid-ip%3E:631/admin
https://%3Cyour-odroid-ip%3E:631/admin
http://bit.ly/1KT6sjD
http://bit.ly/1KT6sjD
http://bit.ly/17WkvpF
http://bit.ly/17WkvpF
sources.list
http://davesteele.github.io/Cloud
http://davesteele.github.io/Cloud
http://davesteele.github.io/key-366150CE.pub.txt
http://davesteele.github.io/key-366150CE.pub.txt
init.d/cups
cupsd.conf
cupsd.conf

Google Cloud Print Screenshot

Madsonic lets you stream your media over the web

Madsonic Demo page

$ sudo docker export <id> | sudo docker import -

armhf-Cloud Printd

You can now re-run your Cloud Print-server docker con-
tainer:

$ sudo docker run -d --net=host armhf-Cloud Printd \

/usr/sbin/runsvdir-start

Note that this container and image carries your Cloud Print
credentials with Google. Although the credentials are stored
in an encrypted format, I suggest not pushing this image to a
public repository in order to avoid identity theft.

Arch Linux with Madsonic

Madsonic is a fork of the well known Subsonic application.
Although it is capable of running a UPnP/DLNA-daemon like
minidlna, its main purpose is to give access to your media and
stream it over the web. There already is a Dockerfile available
for x86 architecture at http://bit.ly/1EcvNRb. Since Madson-
ic is a Java app, this shouldn’t impose a compatibility problem
on ARM architecuter. However, Madsonic needs some trans-
coding plugins in order to be able to transcode the media for
playback with different devices.

At the time of writing this article, I haven’t been able to
find ARM based transcoding libs or the source code for Mad-
sonic. Nevertheless, the following is some brief information
on how to build Madsonic on your ODROID, albeit without

$ sudo apt-key add key-366150CE.pub.txt

$ sudo apt-get update

$ sudo apt-get install Cloud Print Cloud Print-ser-

vice

After completing these steps, the packages will be automati-
cally updated whenever “apt-get upgrade” is run.

Register the printer
Google accounts that have 2-step verification enabled need

to use an application-specific password, as described at http://
bit.ly/1CBGfAy. Configure these account credentials before
you try to connect to the printing service.

Next, run the Cloud Print python app, using your own cre-
dentials, which will register any printers that are configured in
cupsd with Google Cloud Print:

$ /etc/init.d/Cloud Printd login

Accounts with 2 factor authentication require an

application-specific password

Google username: <your-id>@gmail.com

Password: <your_app_pwd>

Added Printer Brother_MFC-9120CN

Next, check the setup using Google Print (http://bit.
ly/1yvWQou), which should show the printer as available, and
do a test print. Then, enable the Cloud Print daemon with the
runit services:

$ sudo mkdir /etc/service/Cloud Print

$ sudo cp /etc/service/sshd/run /etc/service/Cloud

Print/run

Edit the run-file /etc/service/Cloud Print/run to look like
this:

#!/bin/sh

#

start Cloud Print daemon

exec /etc/init.d/Cloud Printd start

end

As the final step, exit from the container, stop it and create
the final image in order to save your work:

ODROID MAGAZINE	 45

http://bit.ly/1EcvNRb
key-366150CE.pub.txt
http://bit.ly/1CBGfAy
http://bit.ly/1CBGfAy
init.d/Cloud
gmail.com
http://bit.ly/1yvWQou
http://bit.ly/1yvWQou
init.d/Cloud

DOCKER

#ADD http://madsonic.org/down-

load/transcode/20140819_madsonic-

transcode_latest_x64.zip /var/

madsonic/transcode/transcode.zip

RUN pacman -S ffmpeg lame flac

--noconfirm

unzip to folder

#RUN unzip /var/madsonic/trans-

code/transcode.zip -d /var/mad-

sonic/transcode

remove zip

#RUN rm /var/madsonic/transcode/

transcode.zip

copy transcode script to mad-

sonic install dir (copies trans-

coders to madsonic install dir)

ADD transcode.sh /var/madsonic/

transcode.sh

RUN cd /var/madsonic/transcode &&

ln -s “$(which ffmpeg)” && ln -s

“$(which flac)” && ln -s “$(which

lame)” && ls -la

docker settings

#################

set env variable for java

ENV JAVA_HOME /usr/lib/jvm/java-

7-openjdk/jre

map /config to host defined config

path (used to store configuration

from app)

VOLUME /config

map /media to host defined media

path (used to read/write to media

library)

VOLUME /media

expose port for http

EXPOSE 4040

expose port for https

EXPOSE 4050

expose UPnP - DLNA ports

EXPOSE 1900/udp

EXPOSE 2869

set permissions

#################

change owner

RUN chown -R nobody:users /var/

madsonic

set permissions

RUN chmod -R 775 /var/madsonic

add conf file

###############

ADD madsonic.conf /etc/supervi-

sor/conf.d/madsonic.conf

cleanup

#########

completely empty pacman cache

folder

RUN pacman -Scc --noconfirm

run supervisor

################

run supervisor

CMD [“supervisord”, “-c”, “/

etc/supervisor/supervisor.conf”,

“-n”]

The base image with supervisord
enabled, that is required for Madsonic,
is also available from the git archive of
user binhex at http://bit.ly/1KT6Z5k.
However, you can opt to create the im-
age from my armhf-archLinux image at
http://bit.ly/1Ecx76C by adapting the
Dockerfile. Don’t forget to fetch the
configuration files for Madsonic and
supervisord from the arch-madsonic git-
archive before you run the build on the
armhf-madsonic image.

Debian Wheezy with
FreeSwitch
& FusionPBX

transcoding capabilities. Start with the
Dockerfile, which was adopted from the
user binhex’s examples:

FROM hominidae/armhf-base-arch-

Linux

#MAINTAINER binhex

MAINTAINER hominidae

install application

#####################

update package databases from

the server

RUN pacman -Sy --noconfirm

install pre-req for application

RUN pacman -S libcups jre7-

openjdk-headless fontconfig unzip

--noconfirm

make destination folders

RUN mkdir -p /var/madsonic/media

RUN mkdir -p /var/madsonic/trans-

code

download madsonic

ADD http://madsonic.org/down-

load/5.1/20140823_madsonic-

5.1.5080-standalone.zip /var/mad-

sonic/madsonic.zip

unzip to folder

RUN unzip /var/madsonic/madsonic.

zip -d /var/madsonic

remove zip

RUN rm /var/madsonic/madsonic.zip

force process to run as fore-

ground task

RUN sed -i ‘s/-jar madsonic-

booter.jar > \${LOG} 2>\&1 \&/-

jar madsonic-booter.jar > \${LOG}

2>\&1/g’ /var/madsonic/madsonic.

sh

install transcoders

#####################

download madsonic transcoders

ODROID MAGAZINE	 46

http://madsonic.org/download/transcode/20140819_madsonic-transcode_latest_x64.zip
http://madsonic.org/download/transcode/20140819_madsonic-transcode_latest_x64.zip
http://madsonic.org/download/transcode/20140819_madsonic-transcode_latest_x64.zip
transcode.zip
transcode.zip
transcode.zip
transcode.sh
transcode.sh
madsonic.conf
conf.d/madsonic.conf
supervisor.conf
http://bit.ly/1KT6Z5k
http://bit.ly/1Ecx76C
http://madsonic.org/download/5.1/20140823_madsonic-5.1.5080-standalone.zip
http://madsonic.org/download/5.1/20140823_madsonic-5.1.5080-standalone.zip
http://madsonic.org/download/5.1/20140823_madsonic-5.1.5080-standalone.zip
madsonic.zip
madsonic.zip
madsonic.zip
madsonic.zip
madsonic-booter.jar
madsonic-booter.jar
madsonic-booter.jar
madsonic.sh
madsonic.sh

DOCKER

This container has the capability
of hosting a fully functional IP Private
Branch Exchange (IP-PBX) with a con-
venient web-based user interface. Inci-
dentally, Hardkernel’s business partner
Sipbox (sipbox.co.uk) sells a complete
IP-PBX system, based on an ODROID-
U3, using the same software stack, which
runs natively without Docker.

To begin, refer to http://bit.
ly/1AuGkDy for details on the base
setup. The included script will pull
the complete source code and build a
sipbox-like system on your ODROID.
However, unlike the original version, we
will use a Docker container to host the
files. Make sure to have approximately
1.5GB of storage available before setting
up this system.

To begin, use the Debian Wheezy
image as a base. Enter the container,
become root and fetch the install-script:

Fusion PBX Screenshot

Fusion PBX offers a custom IP-PBX

Free Switch is a telephony platform

While building, the script will de-
tect that the local version of itself has
changed compared to the one in the
repository, because we’ve edited it. Just
select *not* to use the “newer” version
from the repository by pressing “y” when
the following message is displayed:

there is a new version of this

script.

 It is PROBABLY a good idea use

the new version

 the new file is saved in /tmp/in-

stall_fusionpbx.latest

 to see the difference, run:

 diff -y /tmp/install_fusionpbx.

latest /usr/src/install_fusion-

pbx.sh

Continue [y/N]?

Once everything has been built, both
components will be installed and ac-
tivated. The script will prompt you to
connect your browser towards your fu-
sionpbx instance in order to set up ac-
counts and save a basic configuration.
Once you finish saving, the script will
finalize its build.

In order to enable the services in
Docker, you will need to add them to
the runit service. When the install script
finishes, you can examine which services
have alrady been started. All start scripts
have been installed into /etc/init.d/.

Create a directory for each service un-

apt-get install wget -y

cd /usr/src

wget http://bit.ly/Rfvxy5

chmod 755 install_fusionpbx.sh

Configure some variables that control
the build by editing the install-script.
First, enable the nginx and sqllite3
components, since these are the most
resource-friendly, then run the script:

[...]

#---------

#VARIABLES

#---------

#Variables are for the auto in-

stallation option.

#for apache set to a, for nginx/

php-fpm set to n -> for an auto

install, user mode will prompt

APACHENGINX=n

for mysql set m. for sqlite

set s. for postgresql set p

SQLITEMYSQL=s

[...]

Opt to install both components,
which will take quite a while. Some of
the options are interactive, so stand by
and monitor its progress.

./install_fusionpbx.sh install-

both auto

ODROID MAGAZINE	 47

sipbox.co.uk
http://bit.ly/1AuGkDy
http://bit.ly/1AuGkDy
install_fusionpbx.latest
install_fusionpbx.latest
install_fusionpbx.latest
install_fusionpbx.latest
install_fusionpbx.sh
install_fusionpbx.sh
http://bit.ly/Rfvxy5
install_fusionpbx.sh
install_fusionpbx.sh

DOCKER

what is available. Many of the contribu-
tors offer their Dockerfile either directly
or through a Github project. Remem-
ber that the Dockerfile is simply a type
of start/build-script for creating or en-
hancing Docker images. As long as the
Dockerfile is not importing any x86 or
non-ARMHF specific binaries, they will
work on the ODROID platform. The
base armhf images from the first install-
ment of this article should give you a
good head start.

My next project will be about em-
ploying a smart home automation solu-
tion on my ODROID, along with the
world of the Internet Of Things, using
Docker containers, of course!

References
http://docs.docker.com
http://bit.ly/1CQs1hl
http://bit.ly/1Cop8Wj

der /etc/service/ and create a run-script,
which invokes the script in /etc/init.d/.
You will want to create a script for each
of the following services, resulting in this
runit dir-tree:

/etc/service

|-- cron

| |-- run

|-- dbus

| |-- run

|-- fail2ban

| |-- run

|-- freeswitch

| |-- run

|-- nginx

| |-- run

|-- ntp

| |-- run

|-- php5-fpm

| |-- run

|-- sshd

 |-- run

For the final step, exit from the con-
tainer, stop it, and create the final image
to save your work:

$ sudo docker export <id> | sudo

docker import - armhf-mysipbox

You can now re-run your sipbox
Docker container:

$ sudo docker run -d --net=host

armhf-mysipbox \ /usr/sbin/runsv-

dir-start

Consult the excellent fusionpbx wiki
on how to configure your IP-PBX with
your SIP-Provider and SIP-Devices/-Ex-
tensions at http://bit.ly/1sOugPY.

Other Docker ideas
Can you think of an application

which you require on your ODROID
that you would like to run inside a Dock-
er container? There’s a good chance that
it has already been done, at least for the
x86 architecture. Just browse the Dock-
er Hub at https://hub.docker.com to see

INFOGRAPHIC

CLICK TO VIEW MOREODROID MAGAZINE	 48

http://docs.docker.com
http://bit.ly/1CQs1hl
http://bit.ly/1Cop8Wj
http://bit.ly/1sOugPY
https://hub.docker.com
http://bit.ly/1Ah2rT4
http://bit.ly/1Ah2rT4

Please tell us a little about yourself.
I am from South India, but have

made the Bay Area in California my
home. It’s the one place on earth that
permits a Chemical Engineer to dabble
with robotics, banking, ip-telephony,
biotechnology and networking.

How did you get started with computers?
In the early 1980s, I was in graduate

school, and for the very first time had
the chance to use an IBM 3081 using
Hollerith punch cards and brand new
VT220s. I had a donated Sinclair Z81
for my process control simulation thesis
using UCSD Pascal. I have been hooked
ever since, and bought my first PC at
the young age of 30, which was an Intel-
based 486 PC, at a price of $3000. Kids
today are very lucky because, thanks to
folks like Hardkernel, they can actually
afford computers.

What drew you to the ODROID platform?
In my most recent job at the local

networking giant, I had the once-in-
a-lifetime opportunity to help migrate
nOS to Linux, which started my journey
into Linux-based embedded systems. I
felt that x86-based Linux systems were
too complicated, so I started looking
at efficient Linux systems, and there it
was: ARM to the rescue. I started with
other platforms, but quickly settled on
the ODROID devices, which offer the
greatest bang for the buck, and are one
of the most well-supported general pur-
pose Linux systems available.

MEET AN
ODROIDIAN
VENKAT BOMMAKANTI
JACK OF ALL TRADES

edited by Rob Roy

Are you involved with any other computer
projects unrelated to the ODROID?

Small form factor powerhouses like
the ODROIDs, Beaglebone Black and,
to a lesser extent, the Raspberry Pi and
Arduino, have piqued my curiosity by
interfacing the sensory world to the
computational realm. I’m also looking
into interfacing appropriate field-pro-
grammable gate array (FPGA) boards.
Being a hands-on type of person, I’m
anxious to get my home automation and
car computer projects going.

What hobbies and interests do you have
apart from computers?

Like everyone else, I try to appreciate
life using all of my Ṣaḍāyatana, which is
Sanskrit for the 6 basic senses. Through
vision, I enjoy nature’s beauty and try to
capture some of it, if possible. I love to lis-
ten to woozy blues, bluegrass jams, Indian
and Western classical instrumentals all day
long. I wish there was an ODROID-based
time machine that could take me to the
1960s music scene. I enjoy spicy cuisine
from all over the world, satisfying my gus-
tatory and olfactory curiosities. I experi-
ment with cooking by mixing ingredients
from various cuisines. I let my ODROID
Magazine articles keep my mind busy and
enjoy hiking, cycling and woodworking to
clear my mind. I also volunteer at a couple
of Bay Area nonprofits, to give back for so
much that I have been blessed with.

MEET AN ODROIDIAN

Venkat at the Golden Gate Bridge in San
Francisco, California

Which ODROID is your favorite?

That’s a tough question to an-
swer. From my Linux point of
view, I think that the U2/U3 put
Hardkernel on the map. They are both
very special devices that embody all the
right levels of important basics: form fac-
tor, interfaces, memory, power efficiency,
computation power and reasonably quick
native compiling. They make great de-
velopment systems for testing out any
full-featured Linux image. Conceptually,
I think that they begat both the XU3-Lite
and the C1, which basically address the
different price-points driven by the bal-
ance between functionality and afford-
ability. I love all of the ODROIDs, for
different reasons.

Your technical articles are very detailed,
how do you produce a typical feature for
ODROID Magazine?

My first job was that of a teach-
ing assistant in graduate school. It laid
the foundation for being a meticulous
learner. I quickly became aware that
no two people learn the same way, so I
gathered enough knowledge in order to
address the lowest common denomina-
tor: the slowest learner (like myself).
I don’t like when material is presented
without background information, which
leads to frustration for some. Most of-
ten, outdated and hidden steps can’t be
replicated successfully without detailed
instructions. So, I try to document ev-
ery possible caveat in the process, to pro-
mote the longevity of the material.

CLICK TO VIEW MORE ODROID MAGAZINE	 49

http://bit.ly/1Ah2rT4

MEET AN ODROIDIAN

What type of hardware innovations would
you like to see for future Hardkernel boards?

There are five hardware improve-
ments that I would like to see for
ODROIDs:

• Simultaneously producing two types of
boards - one maxed out with all the connec-
tors and risers, and one with the bare mini-
mum single level connectors and risers.
For instance, a small footprint build would
have only 2 USB ports side by side, with
a boot media connector and power jack,
which would be ideal for a light-weight,
low-height minimalist embedded system.

• Moving all of the ports, media recepta-
cles, and connectors to face the top of the
device, which would allow changing cables,
peripherals or boot media to be much easi-
er, especially when the ODROID is encased.

• Relocating ports on the VU so that the con-
nections are on the back instead of the side.

• Producing adapter boards and shields
so that add-ons made for other popular
boards (such as the Raspberry Pi or Bea-
glebone Black) can be reused with mini-
mal effort on any ODROID. These adapter
boards would take care of varying voltage
levels, enabling circuit protections, and
providing other compatibility features.

• Incorporating useful functionality
from other best-of-breed single board
computers, such as the equivalent of the
Programmable Real-time Unit (PRU) that
is available for the Beaglebone Black.

Although it is not a hardware inno-
vation, I think that Hardkernel could
further popularize ODROIDs by em-
ulating the early success story of the
Raspberry Pi. Sun started the Rasp-
berry Pi legacy by giving away basic
systems to Computer Science schools.
As a result, every graduate then either
wanted to work at Sun or use Sun sys-
tems at their jobs. Similarly, if pos-
sible, Hardkernel could allocate mar-
keting funds towards donating boards
to schools through competitions
related to Science, Technology, En-
gineering and Mathemetics (STEM)

ADVERTISEMENT

ODROIDS ARE
NOW AVAILABLE
IN THE UNITED

STATES
WWW.AMERIDROID.COM

AFFORDABLE SHIPPING

that could be available for kids to
enter. The beginning programmers
could use an affordable ODROID-
C1, enter the competition, and use
their winnings to purchase higher-
end Hardkernel devices. Familiarity,
popularity and word-of-mouth will
create a larger, vibrant young com-
munity of ODROID users.

What advice do you have for someone
wanting to learn about programming?

An interesting job interview comes
to mind, where the manager asked me,
“What religion do you subscribe to?” I
was taken aback, since I was never asked
such a question in a progressive place
like California. He saw my perplexion
and quickly corrected himself by saying,
“I mean, which programming language
do you prefer?” I said, “Well, in that
case, I’m irreligious!”

Basically, I believe there is no single
universally applicable programming
panacea. Borrowing from my wood-
working vernacular, I see all of these
languages and utilities as a variety
of tools in a programmer’s toolbox.
There is always an appropriate tool for
a given job, and other similar tools can
also be used to achieve the final result.
I strongly believe in tool reuse, rather
than inventing a solution using a fan-
cier tool.

Linux and Unix are great at tool reuse,
and include some very powerful single-
purpose tools. In many cases, threading
together multiple tools via scripts can
quickly produce a working solution. One
can then optimize parts of the solution,
using other tools or languages.

My toolbox contains shell script-
ing, Python, Java, PERL, JavaScript,
LUA, C, C++, ANTLR, XML, JSON,
SQL, GDB, Valgrind, Wireshark and
various other mature frameworks and
stacks. I’m also learning Go and Dart,
to see where I can apply them in the
future. I wish there were more than 24
hours in a day, since there is so much
to learn and try!

Check out the ODROID Talk Subreddit at http://www.reddit.com/r/odroid

ODROID MAGAZINE	 50

http://www.ameridroid.com
http://www.ameridroid.com
www.ameridroid.com
http://www.reddit.com/r/odroid

Check out the ODROID Talk Subreddit at http://www.reddit.com/r/odroid

ODROID Magazine is now on Reddit!

ODROID MAGAZINE	 51

http://www.reddit.com/r/odroid

