
Year Two
Issue #22
Oct 2015ODROID

Magazine

LVM Data Migration • XU4 Fan Control • OSX USB-UART interfacing

Apache

Your web server and servlet container running on the
world’s most power-efficient computing platform

TOMCAT

Plex
Media
Server

Linux Gaming: Emulate Sega’s last
console, the Dreamcast

What we stand for.
We strive to symbolize the edge of technology,
future, youth, humanity, and engineering.

Our philosophy is based on Developers.
And our efforts to keep close relationships with
developers around the world.

For that, you can always count on having the quality
and sophistication that is the hallmark of our products.

Simple, modern and distinctive.
So you can have the best to accomplish
everything you can dream of.

We are now shipping the ODROID-U3
device to EU countries! Come and visit
our online store to shop!

Address: Max-Pollin-Straße 1
85104 Pförring Germany

Telephone & Fax
phone: +49 (0) 8403 / 920-920
email: service@pollin.de

Our ODROID products can be found at
http://bit.ly/1tXPXwe

http://www.hardkernel.com
mailto:service@pollin.de
http://bit.ly/1tXPXwe
http://bit.ly/1tXPXwe

EDITORIAL

ODROID Magazine, published monthly at http://magazine.odroid.com, is your source for all things ODROIDian.
Hard Kernel, Ltd. • 704 Anyang K-Center, Gwanyang, Dongan, Anyang, Gyeonggi, South Korea, 431-815
Hardkernel manufactures the ODROID family of quad-core development boards and the world’s first ARM big.LITTLE single board computer.
For information on submitting articles, contact odroidmagazine@gmail.com, or visit http://bit.ly/1ypImXs.
You can join the growing ODROID community with members from over 135 countries at http://forum.odroid.com.
Explore the new technologies offered by Hardkernel at http://www.hardkernel.com.

This month, we feature two extremely useful servers that
run very well on the ODROID platform: Apache Tom-
cat and Plex Media Server. Apache Tomcat is an open-

source web server and servlet container that provides a “pure
Java” HTTP web server environment for Java code to run

in. It allows you to write complex
web applications in Java without
needing to learn a specific server
language such as .NET or PHP.

Plex Media Server organizes your vid-
eo, music, and photo collections and

streams them to all of your screens. Our tu-
torials take you through these server installa-

tions step-by-step so that you can enjoy a low-
cost, power-efficient way to run an advanced server at home.

The recent release of Lakka for the ODROID, an OpenElec-based distri-
bution, makes it easier to play your favorite games. Tobias reviews the Dreamcast emu-
lator, which is one of the most advanced console emulators available for the ODROID,
Nanik continues to show us how to build Android for the ODROID-C1, Bruno details data
migration using LVM, and we learn how to control the ODROID-SHOW using Python. As
usual, we also present many beloved Linux game ports that will provide hours of fun!

http://magazine.odroid.com
big.LITTLE
mailto:odroidmagazine@gmail.com
http://bit.ly/1ypImXs
http://forum.odroid.com
http://www.hardkernel.com
http://www.ameridroid.com/

STAFF

ODROID
Magazine

Rob Roy,
Chief Editor

I’m a computer
programmer living

and working in San
Francisco, CA, design-

ing and building web applications
for local clients on my network
cluster of ODROIDs. My primary
languages are jQuery, Angular JS
and HTML5/CSS3. I also develop
pre-built operating systems, custom
kernels and optimized applications
for the ODROID platform based
on Hardkernel’s official releases, for
which I have won several Monthly
Forum Awards. I use my ODROIDs
for a variety of purposes, including
media center, web server, applica-
tion development, workstation, and
gaming console. You can check out
my 100GB collection of ODROID
software, prebuilt kernels and OS
images at http://bit.ly/1fsaXQs.

Robert Cleere,
Editor

I am a hardware and
software designer cur-

rently living in Hunts-
ville, Alabama. While

semi-retired from a career in embed-
ded systems design, including more
than a decade working on the Space
Shuttle program, I remain active with
hardware and software product design
work as well as dabbling in audio/video
production and still artwork. My pro-
gramming languages of choice are Java,
C, and C++, and I have experience with
a wide range of embedded Operating
Systems. Currently, my primary proj-
ects are marine monitoring and control
systems, environmental monitoring,
and solar power. I am currently working
with several ARM Cortex-class proces-
sors, but my ODROID-C1 is far and
away the most powerful of the bunch!

Bruno Doiche,
Senior
Art Editor

The fall season on the
northern hemisphere

means that the summer is approach-
ing Brazil, and this is the time when
our fans kick high to keep our pro-
cessors cool over here. Not that my
ODROIDS suffer much though. Still,
unfortunately for them, I’m the only
one popping some cold beers at the
pool over here.

Or maybe someday I’ll devise
a submarine beer drinking robotic
ODROID...

Manuel
Adamuz,
Spanish
Editor

I am 31 years old
and live in Seville,

Spain, and was born in Granada. I
am married to a wonderful woman
and have a child. A few years ago I
worked as a computer technician and
programmer, but my current job is
related to quality management and
information technology: ISO 9001,
ISO 27001, and ISO 20000. I am
passionate about computer science,
especially microcomputers such as the
ODROID and Raspberry Pi. I love
experimenting with these computers.
My wife says I’m crazy because I just
think of ODROIDs! My other great
hobby is mountain biking, and I oc-
casionally participate in semi-profes-
sional competitions.

Nicole Scott,
Art Editor

I’m a Digital Strat-
egist and Trans-

media Producer
specializing in online

optimization and inbound market-
ing strategies, social media directing,
and media production for print, web,
video, and film. Managing multiple
accounts with agencies and filmmak-
ers, from Analytics and Adwords to
video editing and DVD authoring. I
own an ODROID-U3 which I use
to run a sandbox web server, live in
the California Bay Area, and enjoy
hiking, camping and playing music.
Visit my web page at http://www.ni-
colecscott.com.

James
LeFevour,
Art Editor

I am a Digital Me-
dia Specialist who is

also enjoying freelance
work in social network marketing and
website administration. The more I
learn about ODROID capabilities, the
more excited I am to try new things I’m
learning about. Being a transplant to
San Diego from the Midwest, I am still
quite enamored with many aspects that
I think most West Coast people take for
granted. I live with my lovely wife and
our adorable pet rabbit; the latter keeps
my books and computer equipment in
constant peril, the former consoles me
when said peril manifests.

http://bit.ly/1fsaXQs
http://www.nicolecscott.com
http://www.nicolecscott.com

INDEX

Apache Tomcat- 10

OSX USB-UART - 26

Linux gaming: dreamcast - 34

speedy ninja - 16

community wiki - 17

HAXIMA Nazghul - 31

meet an odroidian - 41

PLEX MEDIA INSTALLER - 18

FREEORION- 30

showtime - 32

ANDROID DEVELOPMENT - 28

LVM - 8

xu4 fan control - 9

OS spotlight: lakka - 6

prince of persia - 33

OS SPOTLIGHT

There are some great community gaming images avail-
able for the ODROID platform such as the Debian-
based ODROID GameStation Turbo and the An-

droid-based Pocket Rocket. The latest gaming image to be
released is an open-source, multi-platform operating system
based on OpenElec called Lakka, which uses the populator
RetroArch software to provide console emulation for many
different types of games. It has recently been ported to the
ODROID-C1, is intended to be easy to setup and use, and
supports the following systems:

One of the benefits of Lakka is that it auto-detects many
different types of pre-configured controllers, including Xbox
360, PS3/PS4, Saitek, Logitech, and Zeemote.

Getting started
To install Lakka, download the pre-built image for the

ODROID-C1 from http://bit.ly/1YIOrvw onto a host
Linux system. Unzip the file, then determine the device name
for the SD card by listing the current drives and partitions:

$ ls -l /dev/sd*

brw-rw---- 1 root disk 8, 0 22 mars 23:01 /dev/sda

OS SPOTLIGHT:
Lakka on THE
Odroid-C1
DIY Retro Emulation Console
edited by Rob Roy

brw-rw---- 1 root disk 8, 1 22 mars 23:01 /dev/sda1

brw-rw---- 1 root disk 8, 2 22 mars 23:01 /dev/sda2

brw-rw---- 1 root disk 8, 3 22 mars 23:01 /dev/sda3

brw-rw---- 1 root disk 8, 4 22 mars 23:01 /dev/sda4

brw-rw---- 1 root disk 8, 5 22 mars 23:01 /dev/sda5

brw-rw-r-- 1 root users 8, 16 22 mars 23:01 /dev/sdb

Those ending with numbers are partitions, and others are
drives. In this example, sda is the main hard drive, and sda1
to sda5 are its partitions. Insert a blank microSD card into
the host computer, and type the command again:

$ ls -l /dev/sd*

brw-rw---- 1 root disk 8, 0 22 mars 23:01 /dev/sda

brw-rw---- 1 root disk 8, 1 22 mars 23:01 /dev/sda1

brw-rw---- 1 root disk 8, 2 22 mars 23:01 /dev/sda2

brw-rw---- 1 root disk 8, 3 22 mars 23:01 /dev/sda3

brw-rw---- 1 root disk 8, 4 22 mars 23:01 /dev/sda4

brw-rw---- 1 root disk 8, 5 22 mars 23:01 /dev/sda5

brw-rw-r-- 1 root users 8, 16 22 mars 23:49 /dev/sdb

brw-rw---- 1 root disk 8, 17 22 mars 23:49 /dev/sdb1

brw-rw---- 1 root disk 8, 18 22 mars 23:49 /dev/sdb2

Notice that sdb is now filled with one or more partitions,
which are shown as sdb1 and sdb2 in this example. This
means that sdb represents the SD card reader, but it could be
a different letter on your system. Make sure to adapt the rest
of this tutorial to use your drive letter.

Atari 2600
Atari Jaguar
Atari Lynx
Cave Story
Dinothawr
Doom
FB Alpha
FFmpeg
Game Boy
Game Boy Advance
Game Boy Color
Master System

Mega Drive
Nintendo Entertainment
System (NES)
Neo Geo Pocket
PCEngine
PlayStation
PlayStation Portable
(PSP)
Sega 32X
Super Nintendo Entertain-
ment System (SNES)
Vectrex

ODROID MAGAZINE	 6

http://bit.ly/1YIOrvw

OS SPOTLIGHT

Flash the image
Now that you know your SD card drive, navigate to the

directory where you extracted Lakka, and flash the card, sub-
stituting your drive letter for sdX:

$ sudo dd if=Lakka-*.img of=/dev/sdX

It should take a few minutes until the prompt returns.
Once it has completed, you can unplug your SD card and
proceed to the next step.

First boot
To run Lakka, follow these steps:

Insert the microSD card into the ODROID-C1
Plug an HDMI cable between your ODROID and your TV
Turn on the TV
Plug in the ethernet cable to the ODROID-C1 (optional)
Plug one of the supported joypads into one of the 4 ODROID’s
USB ports
Plug in the power supply of the ODROID-C1

You should see the Lakka splash screen, as shown in
Figure 1. The package will then automatically expand the
filesystem and reboot after about 30 seconds. This hap-
pens only on the first boot, and subsequent boots should
be much faster. If everything went well, you should now
be able to navigate Lakka Menu, our graphical interface, as
shown in Figure 2. Congratulations, you have successfully
installed Lakka!

Playing games
Insert a USB drive containing the ROMs that you’d like

to use. Your USB drive must be formatted as FAT or NTFS.
The partition will be mounted automatically in a new folder
under /storage/roms/, and your ROMs will appear in the
Lakka menu.

Some libretro cores require a BIOS to work. You need
to find those BIOSes by yourself as it is illegal to provide
them. Those BIOSes must be placed in the “system” folder
on your Lakka Box. Figure 3 outlines the different BIOS
files that are required to emulate each type of system. Re-
member that Linux is a case-sensitive system, so it will be
necessary to rename the BIOS files according to this table,
so Lakka will be able to find them. Figure 4 details the file
extensions used for the various emulators.

For more information, or to post comments, questions or
suggestions about Lakka, please visit the Lakka home page at
http://www.lakka.tv, or the Libretro forums at http://bit.
ly/1P09vcs.

Lakka menu

Lakka BIOS table

ROM extension table

ODROID MAGAZINE	 7

http://www.lakka.tv
http://bit.ly/1P09vcs
http://bit.ly/1P09vcs

Let’s say that you just bought a
brand new ODROID-XU4 and
want to migrate all of your run-

ning services from an old ODROID to
this new one. You already have it all con-
figured for your needs, and having to set
up everything again by creating logical
volumes, file systems, and setting per-
missions would take a long time. There
is also the time spent transferring all files
to the new ODROID that, depending
on the amount of files, could take a lot
of time.

Having all of your files configured
under an external drive using LVM
can make all this migration process a
lot easier and take just a few minutes.
How? By exporting your volume group
from the old system and importing it
back on the new one.

Please note that all commands are
run with root privileges. First, you will
need to stop all services running under
that volume group, which usually done
by typing the following:

service <daemon name> stop

Then, unmount all the file systems
attached to volume group. In my case, I
only have /home on it.

umount /home

Next, you have to deactivate the

Logical Volume
Management
Make your data migration
easier with LVM
by David Gabriel

LVM

logical volumes (LVs) under the volume
group that you are going to export. You
should check current status first:

lvscan

The above command will give you the
status of the LVs, showing them under /
dev/<vg_name>. This is the same as the
/dev/mapper/<vg_name>-<lv_name>
structure that we saw in the previous ar-
ticle. They are both links to the actual
lvm block file on /dev/dm-x. To deacti-
vate the logical volume, type:

lvchange -a n \

 /dev/rootvg/homelv

If you have more than one, just paste
them one after the other, separated by
spaces. If you run lvscan again, you will
see that the LVs changes from active to
inactive. Once all of the LVs from the
VG are inactive, you can export the VG:

	
vgexport rootvg

You can then do a final check by run-
ning vgscan, and it will show you that
the volume group is now exported. At
this point, you can remove your drive
from your old system and plug it onto
the new one. Then, you can run pvscan,
and you should see all your partitions
showing on the new system.

To import your data, type:

vgimport rootvg

This should allow you to see your
logical volumes. Now, just mount the
file system back:

mount /dev/rootvg/homelv

This should restore everything to the
new ODROID without wasting time
copying or recreating all of the struc-
tures that you already had. Of course,
you still have to reinstall your software in
the likely case that they were not stored
on the LVM.

Now you know how to migrate your
data between different systems by tak-
ing advantage of the features of LVM. I
hope this helps you save time when you
want to move your files to another com-
puter.

Moving volumes across disk groups is easy

ODROID MAGAZINE	 8

The ODROID fan driver uses pulse width modula-
tion (PWM) to control the speed of the fan, with the
PWM duty cycle adjusted based on the temperature of

the CPU. The driver has four speed settings, which it selects
among based on three temperature settings. So, if the current
CPU temp is below the lowest temperature setting it uses the
first fan speed, when between the first and second temperature
settings it uses the second fan speed, when between the sec-
ond and third temperature settings it uses the third fan speed,
and when greater than the third temperature setting it uses the
fourth fan speed.

There are a number of settings in sysfs for the ODROID-fan
driver, and on the XU4 this is under /sys/devices/ODROID_
fan.13, while on the XU3 it is /sys/devices/ODROID_fan.14.

The settings are:

fan_mode: Auto or Manual (set to 1 for auto and 0 for manual,
default Auto)
fan_speeds: Four space delimited fan speed percentage val-
ues, in ascending order. (default “1 51 71 91”)
pwm_duty: Current setting of the PWM duty cycle (0-255, set
dynamically)
pwm_enable: On or off (default on)
temp_levels: Three space delimited CPU Celsius temperature
values, in ascending order (default “57 63 68”)

There are two places to get the CPU temperature in sysfs: /
sys/devices/10060000.tmu/temp and /sys/devices/virtual/ther-
mal/thermal_zone0/temp. The first is readable only by root or
a user in group root, and shows the temperatures of five sensors.
The second is readable by all and gives a single temperature.
In both cases, the temperatures are in milli-degrees Celsius, so
you’ll need to divide by 1000 in order to get Celsius. The high-
est of the values in /sys/devices/10060000.tmu/temp is used to
control the fan speed.

The fan speed settings are specified as percentages, and
should be in the range 0-100. The PWM duty cycle is speci-
fied in the range 0-255, and in automatic mode is calculated by

ODROID-XU4
Fan Control
the cool way to manage your
xu4 temperature and power usage
by @Grotus

multiplying the fan speed setting by 255 and dividing by 100.
For example, in the default case, when the temperature hits 57
degrees it turns the fan on to 51%, which equals a PWM duty
cycle of 51*255/100 = 130.

The fan-control script works by setting the fan_mode to
manual and changing the pwm_duty to the desired value based
on the temperature. The script has 9 fan levels defined as op-
posed to the 4 in the ODROID-fan driver. In order to config-
ure the automatic mode for the fan, you can echo new settings
to the fan_speeds and temp_levels settings, which will take ef-
fect immediately.

Example
Here is an example to make the fan turn on to 20% at

50C, go up to 50% at 70C, and up to 95% at 80C on the
ODROID-XU4:

$ sudo echo “1 20 50 95” > /sys/devices/ODROID_

fan.13/fan_speeds

$ sudo echo “50 70 80” > /sys/devices/ODROID_fan.13/

temp_levels

Setting the values in this way will not persist over a reboot.
To have the settings applied at boot time, you can set a rule
for udev, by creating a file in /etc/udev/rules.d with the desired
settings. I used 60-ODROID_fan.rules as the name on my
system. The following should work on either an XU3 or XU4
as it matches based on the driver name of ODROID-fan rather
than the kernel name which is different in the two versions:

DRIVER==”ODROID-fan”, ACTION==”add”, ATTR{fan_

speeds}=”1 20 50 95”, ATTR{temp_levels}=”50 70 80”

To post comments, questions or suggestions, please visit the
original thread at http://bit.ly/1jit0Rx.

XU4 FAN CONTROL

ODROID MAGAZINE	 9

10060000.tmu/temp
10060000.tmu/temp
ODROID_fan.13/fan
ODROID_fan.13/fan
ODROID_fan.13/temp
ODROID_fan.13/temp
60-ODROID_fan.rules
http://bit.ly/1jit0Rx

Apache Tomcat
A POWERFUL java-based
web page and applet server
by Andrew Ruggeri

APACHE TOMCAT

Apache Tomcat, or just simply Tomcat, is an open source
HTTP web container or web server that was created in
1998. Tomcat is a cross-platform program written in

Java, and is actively maintained by the Apache Software Foun-
dation. Tomcat is used to run special Java programs such as
Servlets or JavaServer Pages (JSP), which are commonly known
as web applications (or web apps).

A simple description of Tomcat is that it’s a web-server:
meaning that when it receives a request from a computer, it
will return a webpage. This web page is created from a program
known as a webapp, written in java, which is run by Tomcat.

This guide is meant to be easy to use, and is aimed at some-
one who is looking to get started with Java webapps. The
instructions below outline the basic steps needed to install
Tomcat on an ODROID-C1, set up Tomcat to run a simple
servlet, and lastly to create a simple servlet/webapp that will
post the C1’s CPU temperature. Although this guide is writ-
ten for the ODROID-C1, similar steps would be needed for
other devices.

Installing Tomcat
There are several ways to install Tomcat onto the C1, the

three most popular are via source compile and install, ‘apt-
get’ting, and having it run as stand-alone. A quick apt-cache
search for ‘Tomcat’ shows that Tomcat 7 is available in the C1’s
default repos. For the sake of simplicity, we will do an install
from apt-get using the following commands:

sudo apt-get install tomcat7

[Optional] documentation can be downloaded with:

sudo apt-get install tomcat7-docs

ODROID MAGAZINE	 10

APACHE TOMCAT

Whenever you install Tomcat you will see this page confirming that it is running OK.

[Optional] various Tomcat examples can be downloaded with:

sudo apt-get install tomcat7-examples

While the newest version of Tomcat is 8, it is only available
through other repositories or by building the source. To keep
this guide at a beginners level, I will focus only on Tomcat 7
installed from the default repositories. If you do wish to install
Tomcat 8 from source, you can still follow this guide as the
steps past installation are unchanged.

Running & Testing
Once installed, Tomcat will run as a service and can be

turned on, restarted, or stopped with the following commands.

	 sudo service tomcat7 start

	 sudo service tomcat7 restart

	 sudo service tomcat7 stop

Now the simplest way to test if Tomcat7 is up and running

properly is to see if Tomcat’s test web page will load. Open a
web browser (Firefox, Chromium, ect) on the C1. In the navi-
gation text box type:

 	 localhost:8080

Lets look at what the address means: firstly, localhost is
telling the browser to look at the local computer that it’s run-
ning on (likewise when you type google.com, you’re telling the
browser to look for the computer that google.com is running
on). ‘8080’ is the port Tomcat is receiving connections on
(8080 is the default). This value can be changed, and is dis-
cussed in the optional configuration section. If everything is
working correctly, the following web page should load.

ODROID MAGAZINE	 11

google.com
google.com

APACHE TOMCAT

Here at webapps is where your webpages are going to be placed.

Configuring [Non-Optional]
Following an apt-get install, we need to configure a few

things to get Tomcat up and running with our servlet which
we are going to make. What we are going to be doing is telling
Tomcat what to do when it receives a web request, or HTTP
request as we will be using.

Navigate to /var/lib/tomcat7/webapps/ in either a file
browser or terminal. There should be 1 folder in there already:
‘ROOT’, and this is the default webpage we saw during testing.
We are now going to set up a place for our new page. Start by
creating a folder called “odroid” (you might need to be root to
do so) in the webapps directory, so you should now have both
a ROOT and an odroid folder side-by-side.

Now go into the odroid folder (/var/lib/tomcat7/webapps/
odroid/) and create a folder named “WEB-INF”. Once again,
move into the newly create “WEB-INF” folder and create a
folder named “classes”. You should now have created a total of
3 folders (marked in bold) with the following paths:

/var/lib/tomcat7/webapps/odroid/

/var/lib/tomcat7/webapps/odroid/WEB-INF/

/var/lib/tomcat7/webapps/odroid/WEB-INF/classes/

odroid: This folder, and any other folder in the “webapps”

folder (such as ROOT), are known as a “document base direc-
tory”. This is the folder where any assistant files to the webapp,
such as images, javascript files, CSSs, or additional HTML files,
should be placed.

WEB-INF: Every “document base directory” contains this
folder. Inside each one of these folders, you will see a ‘classes’
directory as well as a file named “web.xml”. The “web.xml” files

ODROID MAGAZINE	 12

web.xml
web.xml

APACHE TOMCAT

will be discussed in more detail below.

classes: This is the folder which will contain the compiled
java servlet files.

Now that we have all the directories in place, navigate to
the WEB-INF folder /varr/lib/tomcat7/odroid/WEB-INF/.
Open up a file editor (gEdit, kate, nano, vim, etc.) and create
a new xml file named “web.xml”. This is the file that will tell
Tomcat which servlet to run when it receives a web request.
The content of the web.xml file is as follows:

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<web-app version=”3.0” xmlns=”http://java.sun.com/

xml/ns/javaee” xmlns:xsi=”http://www.w3.org/2001/

XMLSchema-instance” xsi:schemaLocation=”http://java.

sun.com/xml/ns/javaee http://java.sun.com/xml/ns/ja-

vaee/web-app_3_0.xsd”>

 <servlet>

 <servlet-name>odroidTemperature</servlet-

name>

 <servlet-class>temperatureServlet</servlet-

class>

 </servlet>

 <servlet-mapping>

 <servlet-name>odroidTemperature</servlet-

name>

 <url-pattern>/temperature</url-pattern>

 </servlet-mapping>

</web-app>

The very top of this xml document is standard, you will see
those same lines in every web.xml file, and they are need to set-
up the xml namespaces. The two parts in the middle are what
we will focus on as they are specific to each servlet web page we
set-up. The servlet element always needs to go before the serv-
let-mapping element. The servlet elements describe the servlet
that will produce the html, and servlet-mapping describes the
url path that will call this servlet. It can be thought of as a
two part system. If you look inside “servlet” and “servlet-map-
ping” you’ll notice they both contain ‘servlet-name’ and have
the same value for ‘odroidTemperature’. This is because the
servlet-name links both the ‘servlet’ element and the ‘servlet-
mapping’ element together. Up in the servlet element there is
something called ‘servlet-class’, this is simply the name of the
servlet we are going to create (we will create a file later on called
“temperatureServlet.java”). Lastly there is “url-patern” found
in the servlet-mapping element. This will currently tell Tom-
cat to wait for any url with /temperature at the end of it, and

ODROID MAGAZINE	 13

web.xml
web.xml
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd
web.xml
temperatureServlet.java

APACHE TOMCAT

if found, will send it to the servlet named temperatureServlet.

Configuring [Optional]
Tomcat is highly configurable, however it will still work

straight from an install. If you wish to customize Tomcat more
this is done by editing a few xml files. The additional xml
files are located in /etc/tomcat7 and these files are context.xml,
server.xml, web.xml. To edit these files you can use any text
editor of your choice (vim, gedit, nano, etc.). Several of these
files contain many parameters that can be changed. Below is
just a quick overview of each of these xml files. Take a look
at the xml file itself, or check out Apache’s documentation for
more in-depth info.

server.xml : Changes Tomcat itself. While making the xml
changes listed below, have a look at the other possible changes
which could be made as well. This is the file in which you can
change the Tomcat’s default port from 8080. Note that for
debug it is advisable to use ports above 1024.

context.xml : Changes the behavior of Tomcat. One change
to this file that you might wish to make is to have Tomcat au-
tomatically refresh a web page on a code change. This is very
useful during debug, but should be turned off during normal
use as it adds unneeded overhead.

web.xml : The properties in this xml are the default proper-
ties used for all web applications.

Creating a servlet
What is a java servlet? A simple definition of a servlet is that

it is a java program that takes in information sent to it by a web
browser, and answers with HTML. For this example we are go-
ing to make a servlet call odroidTemp (easier than odroid_Tem-
perature). When it receives a request from a browser, it will cre-
ate a web page that will display the temperature of the odroid.

To get started with our servlet we will create a java file di-
rectly in the ‘classes’ folder. Open up a text editor and create a
new file with the name “temperatureServlet.java”. When you
save the file, make sure it’s saved to the location: /var/lib/tom-
cat7/webapps/odroid/WEB-INF/classes/. 	

	
import java.io.*;

// From /usr/share/tomcat7/lib/servlet-api.jar

import javax.servlet.*;

import javax.servlet.http.*;

public class temperatureServlet extends HttpServlet {

 @Override

 public void doGet(HttpServletRequest request,

ODROID MAGAZINE	 14

context.xml
server.xml
web.xml
server.xml
context.xml
web.xml
temperatureServlet.java
java.io
servlet-api.jar
javax.servlet
javax.servlet.http

APACHE TOMCAT

HttpServletResponse response) throws IOException,

ServletException {

 // MIME type

 response.setContentType(“text/html”);

 PrintWriter htmlResponse = response.getWrit-

er();

 try {

 // Get the Tempurature

 String TempuratureValue;

 BufferedReader br = new

BufferedReader(new FileReader(“/sys/devices/virtual/

thermal/thermal_zone0/temp”));

 // 1 line file with current temp

 TempuratureValue = br.readLine();

 // Clean it up a bit

 TempuratureValue = TempuratureValue ==

null ? “NA” : TempuratureValue.substring(0,2);

 // HTML TIME

 // Open

 htmlResponse.println(“<html>”);

 htmlResponse.println(“<head><title>Odroid

Tempurature</title></head>”);

 htmlResponse.println(“<body>”);

 // Show Tempurature

 htmlResponse.println(“<h1>Odroid Tempura-

ture</h1>”);

 htmlResponse.println(“<p>Tempurature C: “

+ TempuratureValue + “</p>”);

 // Close

 htmlResponse.println(“</body>”);

 htmlResponse.println(“</html>”);

 } finally {

 // Close the writer and we’re finished

 htmlResponse.close();

 }

 }

}

You should have a basic understanding of java, and can get
the gist of the functionally that is happening in the java code
above. If not, don’t panic, there are MANY great beginner level
guides to java. Without getting too caught up in the basics of
java, I would like to explain at a higher level what is happening
in servlet. This servlet overrides the doPost function, which is
what intercepts a HTTP POST request (likewise there is a get-

ODROID MAGAZINE	 15

response.setContentType
response.getWriter
response.getWriter
br.readLine
TempuratureValue.substring
htmlResponse.println
htmlResponse.println
htmlResponse.println
htmlResponse.println
htmlResponse.println
htmlResponse.println
htmlResponse.println
htmlResponse.close

APACHE TOMCAT

Post which intercepts an HTTP GET request). The response
that this servlet returns is a string of HTML that is formed in
the try block, and set by the MIME type.

The next step is to compile the code to be used by Tomcat,
and we will do that straight from the terminal. Open the ter-
minal, go to the directory where you have the temperatureServ-
let.java file, and run the following commands.

$ javac -target 1.7 -source 1.7 -cp .:/usr/share/\

tomcat7/lib/servlet-api.jar temperatureServlet.java

The javac command invokes the java compiler which will
take our java source code and compile it into a program that
Tomcat can run. We add the ‘target’ 1.7 and ‘source’ 1.7 ar-
guments to tell the compiler to compile for java 1.7. This is
done because Tomcat7 will run with JVM 1.7, but invoking
javac alone will compile for Java 1.8 which will cause back-
wards compatibility problems. The third part of the command
you will notice is “-cp .:/usr/share/tomcat7/lib/servlet-api.jar”
which makes the java compiler use the servlet-api.jar to help
build the temperatureServlet.java program. We need to add
this because we are, as you know, making a java servlet that
needs some help from that external servlet-api.jar file.

Running the Servlet
Before we drive right in and check the servlet, first do a

quick check of the odroid webapp file structure (a quick check
can save you from a big headache). Your folder structure should
match the structure below:

Webapps\

	 odroid\

		 WEB-INF\

			 web.xml

			 classes\

			 temperatureServlet.java

			 temperatureServlet.class

Alright! Now it’s time to test and see if everything works.
If you have not yet done so, restart Tomcat with the “sudo ser-
vice tomcat7 restart” command. Now open up a browser and
load the page “localhost:8080\odroid\temperature”. If all went
well, the following page should have loaded.

Congratulations! that’s everything for this guide. As you
can imagine, there is much, much more information on this
topic, and I would highly recommend that you use this guide as
a starting point and use the examples and guides from Apache:
see tomcat.apache.org/tomcat-7.0-doc/index.html for further
information.

ODROID MAGAZINE	 16

temperatureServlet.java
temperatureServlet.java
servlet-api.jar
temperatureServlet.java
servlet-api.jar
servlet-api.jar
temperatureServlet.java
servlet-api.jar
web.xml
temperatureServlet.java
temperatureServlet.class
tomcat.apache.org/tomcat-7.0-doc/index.html

COMMUNITY WIKI

Community Wiki
CONTRIBUTE TO THE EXPANDING
ODROID KNOWLEDGE BASE
by Rob Roy

Hardkernel has
recently set up
a great resource

for ODROIDians to
contribute their knowl-
edge to a community
wiki, available at http://
wiki.odroid.in. It is in-
tended to complement
the official Hardkernel
wiki at http://bit.ly/1R6DOgZ, and is useful for posting your tips, community image
links, projects, and anything else that might be beneficial to the Hardkernel com-
munity.

If you’d like to participate, click on the “Request Account” button in the top right,
and include your ODROID forum username in the “Personal Biography” section.
For comments, questions and suggestions related to the new wiki, please visit the
original forum thread at http://bit.ly/1QDMNoT.

XU4 CLOUDSHELL
ANDROID GAMING

adrenaline-
charged fun
speedy ninja, the
new endless
runner you were
LOOKING for
by Bruno Doiche

H ere at the
m a g a z i n e
design of-

fice, alongside my
trusty ODROID
cluster stack, a good combination of
beer and coffee and lots of articles,
I enjoy testing every single endless
runner that appears in front of me.
Among the dozens that I have played,
Speedy Ninja certainly is worth of
your attention. Demanding as much
reflexes as the ability to think, you
have to be always aware of what is
happening from both sides in order
to continue collecting as many coins
as you can. The reward? A superfun
dragon ride while being a ninja!

https://play.google.com/store/

apps/details?id=com.netease_

na.nmd2

For every move and every feat achieved,
an amazing dragon ride awaits!

ODROID MAGAZINE	 17

http://wiki.odroid.in
http://wiki.odroid.in
http://bit.ly/1R6DOgZ
http://bit.ly/1QDMNoT
https://play.google.com/store/apps/details?id=com.netease_na.nmd2
https://play.google.com/store/apps/details?id=com.netease_na.nmd2
https://play.google.com/store/apps/details?id=com.netease_na.nmd2

About two months ago, my younger brother was looking for a new board
to use as a media server, and for the thousanth time I said to him: “get an
ODROID!”.

I then gave him an ODROID-XU4 and was working with him to migrate all of
his content to his new machine, when he asked me for a the tutorial on installing Plex
Media Server. I pointed to the Plex website and explained what he needed to do to
get it installed, and he said that he could do it by himself.

A few days later, he contacted me on a chat and said:
“Guess what, I wrote a script to make the Plex install easier, do you want to put

in the magazine?”
So, without further ado, here is my brother’s script for installing Plex Media Serv-

er on your ODROID:

#!/bin/bash

###################################

Install Plex Media Server

#

Odroid Magazine 2015

http://magazine.odroid.com/

#

This script will install

Plex Media Server

Beta 0.2

26 Aug 2015

###################################

Cheching system packages dependencies

DEPENDENCIES(){

PACK_LIBC=”libc6-armel”;

PACK_MULTILIB=”gcc-multilib”;

CHECK=$(dpkg-query -l $PACK_LIBC $PACK_MULTILIB > /dev/null 2>&1 ; echo

$?);

if [“$CHECK” -eq “1”]; then

	 echo “Installing Packages $PACK_LIBC and $PACK_MULTILIB “

	 apt-get install -y libc6-armel gcc-multilib ;

	 locale-gen en_US.UTF-8 ;

Plex MEDIA
SERVER
YOUR MEDIA ON ALL YOUR DEVICES
by Bruno Doiche and Rick Doiche

PLEX MEDIA SERVER

ODROID MAGAZINE	 18

http://magazine.odroid.com
en_US.UTF

PLEX MEDIA SERVER

	 dpkg-reconfigure locales ;

	 else

	 echo “INFO: Packages $PACK_LIBC and $PACK_MULTILIB are installed

already”

fi }

Creating a build in environment

BUILD(){

URL=”https://downloads.plex.tv/plex-media-serv-

er/0.9.12.11.1406-8403350/”;

PLEX_SPK=”PlexMediaServer-0.9.12.11.1406-8403350-arm.spk”;

mkdir /tmp/plex ; cd /tmp/plex ;

wget -P /tmp/plex URLPLEX_SPK ;

mv $PLEX_SPK PlexMediaServer.tgz ;

tar -xvf PlexMediaServer.tgz ;

mkdir /tmp/plex/package ;

tar -xvf /tmp/plex/package.tgz -C /tmp/plex/package ;

mkdir -p /apps/plexmediaserver/Binaries ;

mv /tmp/plex/package/** /apps/plexmediaserver/Binaries ;

mkdir /apps/plexmediaserver/temp ;

mkdir /apps/plexmediaserver/MediaLibrary ; };

touch /var/log/plex/plexms.log ; chown plex /var/log/plex/plexms.log ;

ADD_PLEX(){

K=$(useradd plex -s /bin/bash -d /home/plex ; echo $?);

if [“$K” -eq “0”]; then

	 mkdir /home/plex

	 chown -R plex.plex /home/plex

	 echo “INFO: Plex user has been created sucessfully”;

	 else

 	 echo “INFO: Plex user already exists”;

	 fi };

REMOVE_TEMP_BUILD(){

rm -rf /tmp/plex ; };

UNISTALL(){

/etc/init.d/plex stop

userdel plex ;

rm -rf /home/plex /apps/plexmediaserver /etc/default/plexmediaserver_en-

vironment /etc/init/plexmediaserver.conf /etc/plex /etc/init.d/plex /

var/log/plexms.log ;

update-rc.d plex remove ;

};

ODROID MAGAZINE	 19

https://downloads.plex.tv/plex-media-server/0.9.12.11.1406
https://downloads.plex.tv/plex-media-server/0.9.12.11.1406
PlexMediaServer-0.9.12.11.1406-8403350-arm.spk
PlexMediaServer.tgz
PlexMediaServer.tgz
package.tgz
plexms.log
plexms.log
plex.plex
init.d/plex
plexmediaserver.conf
init.d/plex
plexms.log

PLEX_CONF(){

mkdir /etc/plex ;

ln -s /home/plex/Library/Application\ Support/Plex\ Media\ Server/Prefer-

ences.xml /etc/plex/Preferences.xml ;

};

CALL_INFO(){

echo -e “\033[01;31m# ODROID MAGAZINE - Plex installation script

\033[00;37m”

echo -e “\033[01;31m# INFO:\033[00;37m”;

echo -e “\033[01;31m# ---

--------------------------\033[00;37m”

echo -e “\033[01;31m# Plex script will install Plex media Server on your

system.\033[00;37m”;

echo -e “\033[01;31m# As requirement this script must be run as

root.\033[00;37m”

echo -e “\033[01;31m# Plex script will also add \”plex\” user to your

system in order to avoid security issues\033[00;37m”;

echo -e “\033[01;31m# Directories as /home/plex and /apps/plexmediaserver

will be created.\033[00;37m”;

echo -e “\033[01;31m# Plex script requires internet access once it has to

access and download Plex media server from http://Plex.tv\033[00;37m”;

echo -e “\033[01;31m# Please note that some System package libs are also

required and script will try to install it\033[00;37m”;

echo -e “\033[01;31m# Libs: libc6-armel and gcc-multilib \033[00;37m”

echo -e “”;

echo -e “”;

echo -e “TERM:”

echo -e “\033[01;31m# Running this script you acknowledge and accept that

ODROID MAGAZINE will not be responsible for any damage caused in your

system. \033[00;37m”

echo “”;

echo -e “\033[01;31m# ---

--------------------------\033[00;37m” ;

echo “ “;

echo “ “;

echo -e “\033[01;32mOps.. please try $0 {install|uninstall|info}\033[00;

37m”;

echo -e “\033[01;32mExample: $0 install\033[00;37m”;

echo “”;

echo -e “May the force be with you”;

};

DEBIAN_SYSTEM_SCRIPT(){

sudo bash -c “cat <<EOT > /etc/init.d/plex

#!/bin/bash

PLEX MEDIA SERVER

ODROID MAGAZINE	 20

Preferences.xml
Preferences.xml
Preferences.xml
O:\033
http://Plex.tv
init.d/plex

###

##

##

###

##

Henrique Doiche

Plex Media Center

# http://www.plexapp.com/		 #

Last edition 07-02-2015

Plex script

##

BEGIN INIT INFO

Provides: scriptname

Required-Start: \\\$remote_fs \\\$syslog

Required-Stop: \\\$remote_fs \\\$syslog

Default-Start: 2 3 4 5

Default-Stop: 0 1 6

Short-Description: Start daemon at boot time

Description: Enable service provided by daemon.

END INIT INFO

#############Comment######################

NOTE:

You can also add plex script into Debian /etc/init.d/

and add it to run in startup as priority 50

update-rc.d plex defaults 50

That way you are \”Debian\” compliance

#

#

Old school

If you add this script named as plex in

/usr/local/bin directory, Linux will

be able to read it as System default \\\$PATH

so you’ll be able to add it into rc.local:

Add: \”plex start\” to your /etc/rc.local

file. without “” =)

Ex: Script Location: /usr/local/bin/plex

rc.local exemple: cat /etc/rc.local

plex start

##

START(){

 sudo su - plex -c \”/apps/plexmediaserver/Binaries/start.sh > /

var/log/plex/plexms.log 2>&1 &\” ;

 echo -e \”Starting Plex [\033[01;32m Done \033[00;37m]\”; }

STOP(){

PLEX MEDIA SERVER

ODROID MAGAZINE	 21

http://www.plexapp.com
rc.local
rc.local
rc.local
rc.local
start.sh
plexms.log

 PIDS=\\\$(ps aux | grep plex | grep -v grep | grep -v root | awk

{‘print \\\$2’});

 PIDS_DLNA=\\\$(ps aux | grep DLNA | grep -v grep | awk {‘print

\\\$2’});

 if [-z \”\\\${PIDS}\”] || [-z \”\\\${PIDS_DLNA}\”]; then

 echo \”Plex isn’t running. Nothing to do.\”;

 else

 echo \”Starting graceful shutdown...\”;

 kill -s TERM $PIDS $PIDS_DLNA 2> /dev/null ;

 sleep 5;

 if [-z \”\\\$PIDS\”] && [-z \”\\\$PIDS_DLNA\”] ; then

 echo -e \”Graceful shutdown was [\033[01;32m Suc-

cessful \033[00;37m] \”;

 else

 echo -e \”Plex process are still running. Killing

Process [\033[01;32m Done \033[00;37m]\”;

 kill -9 \\\$PIDS \\\$PIDS_DLNA 2> /dev/null ;

 fi

 fi }

RESTART(){

 STOP;START;

 echo -e \”Restarting Plex [\033[01;32m Done \033[00;37m]\”; }

STATUS(){

 STATUS=\\\$(ps aux | grep plex | grep -v grep | grep -v root |

awk {‘print \\\$2’});

 if [-z \”\\\$STATUS\”]; then

 echo \”Plex isn’t running\”;

 else

 echo -e \”Plex is running on PIDs \n\033[01;31m\\\$STATUS

\033[00;37m\”;

 fi

}

case \\\$1 in

‘start’) START ;;

‘stop’) STOP ;;

‘restart’) STOP; START ;;

‘status’) STATUS ;;

*)

echo \”Ops.. please try \\\$0 {start|stop|restart|status}\”;

exit 0

;;

esac

EOT”

PLEX MEDIA SERVER

ODROID MAGAZINE	 22

chmod 755 /etc/init.d/plex

}

PLEX_MEDIA_CONF(){

bash -c “cat <<EOT > /etc/init/plexmediaserver.conf

plexpms - service job file

description \”Plex Media Server\”

author \”http://www.plexapp.com/\”

When to start the service

start on runlevel [2345]

When to stop the service

stop on runlevel [016]

Automatically restart process if crashed

respawn

Sets nice and ionice level for job

nice -5

What to execute

script

/etc/init.d/plex

end script

EOT”

};

PLEX_MEDIA_ENV(){

Creating plexmediaserver_environment

bash -c “cat <<EOT > /etc/default/plexmediaserver_environment

default script for Plex Media Server

the number of plugins that can run at the same time

PLEX_MEDIA_SERVER_MAX_PLUGIN_PROCS=6

ulimit -s \\\$PLEX_MEDIA_SERVER_MAX_STACK_SIZE

PLEX_MEDIA_SERVER_MAX_STACK_SIZE=3000

uncomment to set it to something else

PLEX_MEDIA_SERVER_APPLICATION_SUPPORT_DIR=\”/apps/plexmediaserver/Medi-

aLibrary\”

let’s set the tmp dir to something useful.

TMPDIR=\”/apps/plexmediaserver/temp\”

PLEX MEDIA SERVER

ODROID MAGAZINE	 23

init.d/plex
plexmediaserver.conf
http://www.plexapp.com
init.d/plex

We need to catch our libraries

LD_LIBRARY_PATH=\”/apps/plexmediaserver/Binaries:\\\$LD_LIBRARY_PATH\”

EOT”

};

PLEX_STARTUP(){

Creating start.sh

rm -rf /apps/plexmediaserver/Binaries/start.sh ;

bash -c “cat <<EOT > /apps/plexmediaserver/Binaries/start.sh

#!/bin/bash

#SCRIPTPATH=\\\$(dirname \\\$(python -c ‘import sys,os;print os.path.

realpath(sys.argv[1])’ \\\$0))

SCRIPT=\\\$(readlink -f \\\$0)

SCRIPTPATH=\\\`dirname \\\${SCRIPT}\\\`

export LD_LIBRARY_PATH=\”\\\${SCRIPTPATH}\”

export PLEX_MEDIA_SERVER_HOME=\”\\\${SCRIPTPATH}\”

export PLEX_MEDIA_SERVER_MAX_PLUGIN_PROCS=6

export LC_ALL=\”en_US.UTF-8\”

export LANG=\”en_US.UTF-8\”

ulimit -s 3000

cd \\\${SCRIPTPATH}

./Plex\ Media\ Server

EOT”

chmod 755 /apps/plexmediaserver/Binaries/start.sh ;

};

ROOT=$(whoami);

case $1 in

‘install’)

if [“$ROOT” == “root”]; then

	 clear ;

	 DEPENDENCIES ;

	 ADD_PLEX ;

	 BUILD ;

	 PLEX_CONF ;

	 PLEX_MEDIA_ENV ;

	 PLEX_MEDIA_CONF ;

	 PLEX_STARTUP ;

	 DEBIAN_SYSTEM_SCRIPT ;

	 REMOVE_TEMP_BUILD ;	

#	 update-rc.d plex defaults;

	 clear ;

	 echo “--”;

	 echo “INFO:”;

PLEX MEDIA SERVER

ODROID MAGAZINE	 24

s:\\\
start.sh
start.sh
start.sh
os.path.realpath
os.path.realpath
sys.argv
en_US.UTF
en_US.UTF
start.sh

	 echo “Please use service plex start | service plex stop | service

plex restart”;

	 echo “Plex installation completed”;

	 echo “You can reach server typing http://127.0.0.1:32400/web/index.

html into browser”;

	 echo “Install completed”;

	 else

	 echo -e “\033[01;31mINFO:\033[00;37m”;

	 echo -e “\033[01;31mPlex installation script must be run as root

user\033[00;37m”;

fi

 ;;

‘uninstall’)

UNISTALL ;;

‘info’)

CALL_INFO ; ;;

*)

CALL_INFO ;

exit 0

;;

esac

This script has been tested to work with the U2, U3, X2, XU3, and XU4 models.
It is also available for download at http://bit.ly/1LgYazS.

In case you are not using the default Linux distribution provided by Hardkernel,
you will need to create a directory at /var/log/plex and give 777 permission to it us-
ing chmod.

I ended asking Rick if he wanted to write more articles covering the things about
which he is a Linux expert, but he just said, “Meh, not right now bro, someday...
who knows!”

PLEX MEDIA SERVER

Bruno still hopes his brother writes another magazine article with him

ODROID MAGAZINE	 25

index.html
index.html
O:\033
http://bit.ly/1LgYazS

If you own a Macintosh as your primary computer, you can
use Hardkernel’s USB-UART kit to read console output
from an ODROID without needing to install a virtual

Linux machine, since OSX is based on BSD. This article de-
tails how to install the necessary drivers and software in order
to use a Macintosh as a debugging console for ODROID de-
velopment.

Driver installation
The first step is to obtain the drivers for the UART, which

may be downloaded from http://bit.ly/1Fk1rBu. Unzip and
install the package, then reboot the system.

Make sure that the driver is installed correctly by plugging
in the UART into the USB port of your Mac, and checking sys-
tem information under Apple Logo > About This Mac > More
Info... > System Report... > Hardware > USB, then looking for
the CP2104 USB to UART Bridge Connector.

Software setup
Minicom allows the console output from the ODROID

to be displayed on the Macintosh screen. In order to install
Minicom, it’s necessary to first install homebrew from http://
bit.ly/1R4sYYX, as well as to install the Command Line Tools

Using the USB-UART
with Mac OSX
Helping our mac userS GET console
access TO THEIR ODROIDS
by @midel

OSX USB-UART

(CLT) for Xcode from http://apple.co/1JsNXyi. The CLT
package is required for building software with brew, ports, or
fink. Since you are a developer on the Mac Platform, it’s a
good idea to pick it up if you want to be able to use the stan-
dard GNU Linux tools on your machine.

Open the Terminal application, found in /Applications/
Utilities/Terminal. Install Minicom with this command:

$ brew install minicom

It will take a few moments to compile the program. The
next step is to get the actual terminal device name for the
UART KIT.

Connecting the UART
Now that we have the drivers and Minicom installed, it’s

time to find out where it is. Enter the following command
into a Terminal window. The output will look similar to Fig-
ure 3.

$ ioreg -c IOSerialBSDClient | grep USBtoUART
Checking system information to verify driver installation

ioreg output

 OSX can be used to connect to your ODROID’s console

ODROID MAGAZINE	 26

http://bit.ly/1Fk1rBu
http://bit.ly/1R4sYYX
http://bit.ly/1R4sYYX
http://apple.co/1JsNXyi

OSX USB-UART

Next, open Minicom in SETUP mode with this command:

$ sudo minicom -s

Enter your user password, press enter, then navigate with
the arrow keys to Serial port setup and type A to change the
Serial Device to what we got from the previous command. The
hardware flow control should be OFF, and the software flow
control should be ON.

Press enter until you return to the main menu, and navigate
to “Save setup as dfl” in order to save the configuration so that
we never need to set it up again. Then select Exit to enter the
main view, then exit Minicom completely using Esc+X.

Logging
Type the following at the command prompt to start Mini-

com, then press ESC+L.

$ sudo minicom

Provide a filename and press enter. Run your Odroid and
capture your input, then stop or close the logging with ESC+L
again. You will find the log file in whatever was the current
directory when Minicom was started.

Tips			 			
If you don’t want to use MiniCom, OSX comes with GNU

Screen as part of the default install. This means that once
you’ve installed the USB-UART drivers, you can find the cor-
rect port to connect to with the following command:

$ ls -l /dev/tty.*

On my system, the UART device is listed as “dev/tty.SLAB_
USBtoUART”. You can then connect to the ODROID using
the “screen” application:

$ screen “dev/tty.SLAB_USBtoUART 115200

To post comments, questions, or suggestions regarding
using the USB-UART kit with OSX, please visit the original
thread at http://bit.ly/1Wm6BRs.

Changing the serial device using Minicom

Sample output from USB-UART device

This article finally gives us a reason to actually use a Macintosh

ODROID MAGAZINE	 27

tty.SLAB
tty.SLAB
http://bit.ly/1Wm6BRs

It is important to note that changing the sequence or re-
moving anything from the build script can render your image
unbootable. Changes in the build script require changes in
other part of the bootloader.

Boot Flow
The boot process for this particular board is slightly more

complicated than normal. There are 2 phases of the boot pro-
cess, as shown in Figure 3. The 1st boot phase checks whether
the microSD card has been formatted, and formats it if neces-
sary. Once 1st boot phase has completed, it will continue to
boot the board and move on to the 2nd boot phase by launch-
ing the Android init process.

When the board is powered on, the Amlogic chip will ex-
ecute the first part of the boot process by running the bl1.bin
main bootloader that is provided by the chip manufacturer.
Upon completion of the main bootloader, the U-Boot will
start executing, which is the part of the bootloader that decides
what the next step will be, based on whether the microSD card
has been formatted. When U-Boot finds that the microSD
card has not been formatted, it will format the card with the

In my previous article, I discussed how to build Android for
the ODROID-C1, and hopefully by now you are familiar
with building Android images from scratch, and have done

some experimentation with the board. In this article, I will
discuss the Android boot process for the C1, since the boot-
ing process is slightly different than what is normally found on
other ODROID boards.

selfinstall-odroidc.bin
The ODROID-C1 build system outputs one single file

called selfinstall-odroidc.bin that needs to be copied to the mi-
croSD card. What is fascinating about this file is that it con-
tains all of the relevant Android images ready for use with the
board, as shown in Figure 1.

This file acts as a container, hosting varieties of file that are

bundled together, which form a complete package for installa-
tion process. The magic of extracting and installing these dif-
ferent filesystems during boot process is done by the recovery
application that is loaded inside the recovery.img file. Figure 2
shows the snippet of the build script that put the different files
together forming one single .bin file.

Android
Development
Building Android for
the ODROID-C1 - Part 2
by Nanik Tolaram

ANDROID DEVELOPMENT

Figure 1: Content of selfinstall-odroidc.bin

Figure 2: Build script packaging selfinstall-odroidc1.bin

ODROID MAGAZINE	 28

bl1.bin
selfinstall-odroidc.bin
selfinstall-odroidc.bin
recovery.img
selfinstall-odroidc.bin
selfinstall-odroidc1.bin

microSD card, how does U-Boot know what to read, and from
where? To find out, let’s take a look at how the microSD card
will look internally before any partitions are created by U-
Boot. Figure 4 shows that the card contains different types of
information such as the recovery application, bootloader, logo,
kernel and much more. Obviously, when looking at this kind
of information, U-Boot must have a similar structure stored
somewhere in the source code that it can use to read the infor-
mation, which is show in Figure 5.

Utilizing the sys_partitions[] array, U-Boot is able to deter-
mine the location of the information that it needs to use. For
example, it knows where the recovery application is located, so
that it can read it from the microSD card and put in memory
to be executed. Once all of the required files are in place, the
boot process can continue and eventually display the desktop
and become ready for user interaction.

Partition
Figure 6 shows the different partition created by U-Boot

during the 1st boot phase. As can be seen in the figure, the
different partition contains the /system, /data, /cache and vfat
storage. U-Boot also stores all the partition information inter-
nally inside the source code, as seen in Figure 7.

The fbt_partitions[] structure contains the different parti-
tion that U-Boot will create during the 1st boot phase. You
can cross reference and see that the partition size information
outlined in size_kb field outlined in the structure matches
with the log output from Table-1

Fancy Trick
To better understand the content of the selfinstall-odroidc.

bin, I will show you how to extract the .bmp file that is used
as the U-Boot logo. Remember the following step is only af-
ter you flash the selfinstall-odroidc.bin into your sdcard). To

relevant partition type and copy files to it. Once this process
completes, it will then reboot the board. On the 2nd boot
phase, if the U-Boot detects that the relevant partition exists, it
will hand over control to the kernel.

U-Boot
Table 1 shows a partial log message from the U-Boot during

the 1st boot phase of the bootup process, where it can be seen
that it created the missing required Android partitions. Once
it completes the formatting, it runs the recovery application
and copies over the images to the newly created partition.

Since in the 1st boot phase there are no partitions on the

ANDROID DEVELOPMENT

Table 1: 1st boot phase log

Figure 3: Boot flow ODROID-C1

Figure 4: SDCard content on first phase boot

Figure 5: Location in sdcard for different content

ODROID MAGAZINE	 29

selfinstall-odroidc.bin
selfinstall-odroidc.bin
selfinstall-odroidc.bin

FreeOrion is a free, open source,
turn-based space empire and ga-
lactic conquest computer game.

It’s inspired by the Master of Orion
games. You can watch a gameplay video
at http://bit.ly/1LD0x3R.

Prerequisites
First, update your kernel using the

ODROID-Utility script. Then, link the
Mali drivers (on the XU3 and XU4, use
libmali.so instead of libMali.so):

$ sudo ln -sf /usr/lib/arm-linux-

gnueabihf/mali-egl/libMali.so \

/usr/lib/arm-linux-gnueabihf/\

libGLESv1_CM.so

$ sudo ln -sf /usr/lib/arm-linux-

gnueabihf/mali-egl/libMali.so \

/usr/lib/arm-linux-gnueabihf/\

libGLESv2.so

$ sudo ln -sf /usr/lib/arm-linux-

gnueabihf/mali-egl/libMali.so \

/usr/lib/arm-linux-gnueabihf/\

libEGL.so

$ cd ~ && mkdir freeorion

$ wget http://oph.mdrjr.net/\

meveric/other/freeorion/\

libgl-odroid_20150922-1_armhf.deb

$ wget http://oph.mdrjr.net/\

meveric/other/freeorion/\

libglues-odroid_\

20140903-1_armhf.deb

$ wget http://oph.mdrjr.net/\

meveric/other/freeorion/\

libglew-odroid_1.11.0-2_armhf.deb

Ubuntu 14.04
$ wget http://oph.mdrjr.net/\

meveric/other/freeorion/\

Free
Orion
Conquer the
Galaxy
by Tobias Schaaf

FREEORION

extract the .bmp from the SD card, type
the following statement into a Terminal
window:

$ sudo dd if=/dev/sdg \

 of=logo.bmp bs=512 \

 skip=33984 count=5400

You will see a file called logo.bmp in
the current directory. Once you make
modification to the .bmp file, you can
put it back into the SD card by using the
following statement:

$ sudo dd if=./logo.bmp \

 of=/dev/sdg bs=512 \

 seek=33984

Figure 6: Different Android partitions

Figure 7: U-Boot partition information

ANDROID DEVELOPMENT

ODROID MAGAZINE	 30

http://bit.ly/1LD0x3R
libmali.so
libMali.so
libMali.so
libGLESv1_CM.so
libMali.so
libGLESv2.so
libMali.so
libEGL.so
http://oph.mdrjr.net
libgl-odroid_20150922-1_armhf.deb
http://oph.mdrjr.net
20140903-1_armhf.deb
http://oph.mdrjr.net
libglew-odroid_1.11.0-2_armhf.deb
http://oph.mdrjr.net
logo.bmp
logo.bmp
logo.bmp

Haxima Nazghul is a CRPG
(Computer Role Playing Game)
that is modeled after the popu-

lar Ultima series. It is a top-down ad-
venture fantasy game that provides a sep-
arate story line from the original Ultima
game, while providing a similar visual
and gameplay experience. It is specifi-
cally modeled after Ultima V, so if you’ve
played that game, then Haxima Nazghul
should feel very familiar.

Installation
Download the source code and game

data from http://bit.ly/1MOCvEE, then
unpack it by typing the following into a
Terminal window:

$ cd ~/Downloads

$ tar xvzf nazghul-0.7.1.tar.gz

Next, download the patch file from
http://bit.ly/1NZkTGz, move the file
to the top-level directory of the source
code, and apply the patch:

$ cd ~/Downloads

$ mv va_list_patch.txt naz-

ghul-0.7.1/

$ cd nazghul-0.7.1/

$ patch -p0 < va_list_patch.txt

freeorion-data_0.4.5-\

1~ppa1~trusty1_all.deb

$ wget http://oph.mdrjr.net/\

meveric/other/freeorion/\

freeorion_0.4.5-1~\

ppa1~trusty1_armhf.deb

Ubuntu 15.04
$ wget http://oph.mdrjr.net/\

meveric/other/freeorion/\

freeorion-data_0.4.5-\

1~ppa1~vivid1_all.deb

$ wget http://oph.mdrjr.net/\

meveric/other/freeorion/\

freeorion_0.4.5-1~\

ppa1~vivid1_armhf.deb

Debian Jessie
$ wget http://oph.mdrjr.net/

meveric/pool/main/f/freeorion-

odroid/freeorion-odroid_0.4.5-

1+deb8_armhf.deb

Installation
$ sudo apt-get install gdebi

$ sudo gdebi libgl-*.deb

$ sudo gdebi libglues-*.deb

$ sudo gdebi libglew-*.deb

$ sudo gdebi freeorion-data*.deb

$ sudo gdebi freeorion_*.deb

To play, click on the FreeOrion icon
in the Games section of the Appica-
tions menu. Note that if you’re using
the GameStation Turbo image, the only
step required is to type “apt-get install
freeorion-odroid”. For comments, sug-
gestions, and questions, please visit the
original thread at http://bit.ly/1OwEb6i,
or check out the FreeOrion beginner’s
guide at http://bit.ly/1KULQsv.

FREEORION

Finally, build the executable from
source and launch the game:

$./configure

$ make

$ sudo make install

$ haxima.sh

To learn more about Haxima Naz-
ghul, visit the home page at http://bit.
ly/1FyW7d8. For comments, questions
and suggestions, please refer to the origi-
nal thread at http://bit.ly/1NZklR0.

Haxima Nazghul
A NEW ADVENTURE FOR ULTIMA V FANS
by @petevine

HAXIMA NAZGHUL

FreeOrion has gorgeous graphics

ODROID MAGAZINE	 31

http://bit.ly/1MOCvEE
nazghul-0.7.1.tar.gz
http://bit.ly/1NZkTGz
va_list_patch.txt
va_list_patch.txt
trusty1_all.deb
http://oph.mdrjr.net
trusty1_armhf.deb
http://oph.mdrjr.net
vivid1_all.deb
http://oph.mdrjr.net
vivid1_armhf.deb
http://oph.mdrjr.net/meveric/pool/main/f/freeorion-odroid/freeorion
http://oph.mdrjr.net/meveric/pool/main/f/freeorion-odroid/freeorion
http://oph.mdrjr.net/meveric/pool/main/f/freeorion-odroid/freeorion
deb8_armhf.deb
http://bit.ly/1OwEb6i
http://bit.ly/1KULQsv
haxima.sh
http://bit.ly/1FyW7d8
http://bit.ly/1FyW7d8

fg_color(Screen.BLUE).

write(“world!”)

I also included a class named Screen-
Context in context.py that allows almost
anything to be done on the ODROID-
SHOW using Python without having to
worry about throttling input or entering
escape commands manually. Printing
text, changing background/foreground
colors, performing linebreaks and most
of the functionality can be done easily
and neatly using method chaining.

Getting started
Assuming you’ve created a .py file

in the same file as context.py and have
performed the steps described in IN-
STALL, you can start with the following
template:

from context import Screen, Scre-

enContext

import atexit

ctx = ScreenContext(“/dev/tty-

USB0”)

Make sure the cleanup routine

is called to clear the screen

when we close the script

atexit.register(ctx.cleanup)

Wait 6 seconds for the screen

to boot up before we start up-

loading anything

ctx.sleep(6).reset_lcd().set_ro-

tation(0)

This template creates a new screen
context we can use for interacting with
the ODROID-SHOW. Note that
we sleep for 6 seconds to make sure
ODROID-SHOW is done displaying
the bootup screen, after which we can be
sure that all commands are received and
handled correctly. Then, we can start
with a simple Hello World program. In-
sert the following at the end of the script:

Main loop

while True:

 ctx.fg_color(Screen.RED).

write(“Hello”).linebreak()

 ctx.fg_color(Screen.BLUE).

write(“world!”).home()

This creates a simple loop that dis-
plays the text “Hello world!” on the
ODROID-SHOW, the word “Hello”
in red on the first line, and the word

I created a Python script called
SHOWtime for displaying vari-
ous kinds of information on an

ODROID-SHOW using tabs. It may
be downloaded from my Github reposi-
tory at https://github.com/Matoking/
SHOWtime. Basically, SHOWtime uses
tabs to display information, such as disk
and RAM usage, Bitcoin price, disk us-
age. The shown tab is changed using a
set interval, with a default of 15 seconds.

Another interesting detail is that in-
stead of sending the ANSI escape com-
mands manually, I created a convenience
class that allows everything to be done
neatly using method chaining, like this:

ctx.fg_color(Screen.RED).

write(“Hello”).linebreak().

Using Python with
the ODROID-SHOW
SHOWTIME MAKES EVERYTHING EASIER
by @Matoking

SHOWTIME

Figures 1 - 2: SHOWTime screenshots

ODROID MAGAZINE	 32

Screen.BLUE
context.py
context.py
atexit.register
ctx.cleanup
ctx.sleep
ctx.fg
Screen.RED
ctx.fg
Screen.BLUE
https://github.com/Matoking/SHOWtime
https://github.com/Matoking/SHOWtime
ctx.fg
Screen.RED

Prince of Persia was a revolutionary
game that used rotoscoped animations

the following text as output:

Eggs 99

Spam 321

However, since we have to explicitly
write over text that has already been dis-
played to clear it, following is displayed
instead:

Eggs 995

Spam 3214

Fortunately, ScreenContext has a
convenient method that prints the given
text to the screen and fills the rest of the
line with whitespace, effectively prevent-
ing these ghosting issues. You can fix the
example by doing this:

eggs = 555

spam = 1234

while True:

 ctx.write_line(“Eggs %d” %

eggs)

 ctx.write_line(“Spam %d” %

spam).home()

 eggs = 99

 spam = 321

Note that this also removes the need
to use linebreak() to change the line.

For more information, or to post
questions, comments, or suggestions,
please visit the original threads at
http://bit.ly/1G7xAa1 and http://bit.
ly/1VfzMmW.

“world!” in blue on the second line.
The last home() method call makes

sure the cursor is placed back at the
start, otherwise the words “Hello” and
“world!” would be drawn until they were
offscreen. Now you can run the script
using the Python interpreter. Assuming
you named the file example.py, you can
just run the following in a Terminal win-
dow:

$ python example.py

Note that you don’t need to call
sleep() in order to throttle the script’s ex-
ecution to keep the ODROID-SHOW
in sync because ScreenContext already
takes care of that. However, if you do
need it for any reason, you can call ctx.
sleep(seconds) to halt the script’s execu-
tion for any amount of seconds you want.
In case you only want to use ScreenCon-
text but not the SHOWtime script itself,
you can simply copy context.py, port_
open and utils.py and place them in the
same directory as your script.

All of the methods in ScreenContext
have been commented, so you shouldn’t
have trouble checking it yourself for
what you need. There are, however,
some methods which may need some
additional demonstration in order to use
them as they were intended.

Prevent ghosting
Let’s try out the following script.

eggs = 555

spam = 1234

while True:

 ctx.write(“Eggs

%d” % eggs).line-

break()

 ctx.write(“Spam

%d” % spam).home()

 eggs = 99

 spam = 321

Looking at the
code, you would expect
the screen to display

SHOWTIME LINUX GAMING

PRINCE OF
PERSIA
rescue the
princess in this
CLASSIC DOS
SIDE-SCROLLER
by Tobias Schaaf

P rince of Persia is a much-loved
DOS game from the early
1990s. You must avoid dead-

ly traps, solve some simple jumping
and environmental puzzles, and en-
gage in sword fights with the guards.

To install Prince of Persia, down-
load the .deb file from http://bit.
ly/1LIsPLU, then type the following
into a Terminal window:

$ sudo apt-get install \

 gdebi xboxdrv

$ cd ~/Downloads

$ sudo gdebi ./sdlpop-odroid*

The game may be played with a
keyboard or joystick. To use an Xbox
360 joystick, type the following into a
new Terminal window before starting
Prince of Persia:

$ sudo xboxdrv --dpad-only

Launch the game by typing the fol-
lowing into a new Terminal window:

$ cd /usr/local/share/SDLPoP
$ prince .

Press Control-J to enable the joy-
stick, then save the princess!

ODROID MAGAZINE	 33

ctx.write
ctx.write
http://bit.ly/1G7xAa1
http://bit.ly/1VfzMmW
http://bit.ly/1VfzMmW
example.py
example.py
ctx.sleep
ctx.sleep
context.py
utils.py
ctx.write
ctx.write
http://bit.ly/1LIsPLU
http://bit.ly/1LIsPLU

SEGA made a lot of mistakes and devel-
opers were annoyed with SEGA’s rapid
announcement of new consoles (SEGA
CD, SEGA 32x, etc.). Therefore, when
the SEGA Dreamcast was announced,
SEGA actually had trouble finding de-
velopers that would support the device,
and ended up producing most of the
games for the console themselves.

The console was the best you could
get in it’s time with impressive graphics
and even Microsoft Windows CE sup-
port. It had a build-in modem and ac-
tually was the first console that allowed
multiplayer online games, and even fur-
ther, the first Massive Multiplayer games.
Phantasy Star Online was the first game
that offered an online community where
you could meet other people, form a
party, and go on quests together. Even
better, it was the first game that came
out for different platforms where you
could play together with other players.

Soon after the Dreamcast came out,
the PlayStation 2 was announced with
far superior hardware and worst of all
(for SEGA and Nintendo), DVD sup-
port. However SEGA and the Dream-
cast still had more than a year to estab-
lish a market for its games and services
before the PlayStation 2 would show
up on the market and the rest is pretty
much history.

As I mentioned previously, Dream-
cast was the last console from SEGA,

The SEGA Dreamcast is one of my
favorite consoles of all time. And
it runs quite well on ODROID

devices. Therefore I couldn’t help myself
but to honor the SEGA Dreamcast by
creating an ODROID article about this
awesome console, and to give a closer
look on what you can expect by playing
it on your ODROID device. The SEGA
Dreamcast is next to the PlayStation
Portable as the most graphically impres-
sive system that ODROID devices can
emulate at the moment, with beautiful,
stunning graphics and fast-paced action
gameplay.

Dreamcast – a little
bit of history

The SEGA Dreamcast was the last
of the big consoles created by SEGA.
Around the 80s and 90s, SEGA and
Nintendo were the two major players
in the console market and always tried
to compete with each other. Nintendo
had its Nintendo Entertainment Sys-
tem (NES) which SEGA countered
with the Master System. Nintendo had
its GameBoy and GameBoy Color, and
SEGA had its GameGear. Super Nin-
tendo Entertainment System vs. Gen-
esis/MegaDrive. The battle was tough,
and although Nintendo normally had
a somewhat a better market, the SEGA
systems were often superior when it
came to hardware specs. Still in the end,

and afterward they announced they
would stop producing any Hardware at
all, and instead would create games for
other consoles.

In the end, SEGA even produced
titles for their big rival Nintendo, and
nowadays you can actually play games
with Sonic on the Wii or Wii U.

More details
Let’s talk more about what you can

expect:
The Dreamcast came out between the

Sony PlayStation 1 and PlayStation 2,
and that pretty much describes what the
Dreamcast is capable of doing. It was
far better than a PlayStation 1, but really
not as good as a PlayStation 2.

In fact, there was a project to play
PlayStation 1 games on the Dreamcast
(called Bleemcast) which made the Play-
Station 1 games actually look better than
on a real PlayStation 1 due to higher
resolution and superior graphics powers.
This was not a REMAKE of the games,
but instead was the game running in an
emulator, so the Dreamcast actually had
to emulate the games and was still able
to improve the graphics.

Games
Besides this, you might want to know

what kinds of games you could play on
the Dreamcast.

The Dreamcast offered a wide range

Linux Gaming: DREAMCAST
sega’s last big
console comes
to the odroid
PLATFORM
by Tobias Schaaf

LINUX GAMING

ODROID MAGAZINE	 34

started a new series of fighting games.
While Soul Calibur is now available for
many different consoles (including PS3,
Xbox 360, and even Android and iOS),
most of these games probably wouldn’t
even exist if it weren’t for the success of
the Dreamcast version. I personally pre-
fer Soul Calibur over most of the other
fighting games, especially over the Tek-
ken series which in my opinion is rather
blunt in comparison to the Soul Calibur
games. Having swords, staffs, axes, and
other weapons to fight each other, and
have actually buttons to block an ene-
my’s attack makes the game much more
attractive to me then other games of the
same genre.

But there are plenty more fighting
games on Dreamcast, Power Stone 2 for
example, which is a very nice brawler
game for up to four players, or the many
famous Capcom games like Marvel vs.
Capcom 2: New Age of Heroes, King
of Fighters, Last Blade 2, Street Fighter
games, Dead or Alive 2 (which also had
wonderful graphics), Mortal Kombat,
and many many more.

But the Dreamcast has more Arcade
games to offer than just fighting games

of games of all genres. In total, over 600
games were released for Dreamcast for
different regions (US/Europe/Japan),
and some Dreamcast fans are still creat-
ing their own games today.

Arcade Games
The Dreamcast is probably most fa-

mous for the wide range of Arcade games
which were made available for Dream-
cast. Prior to the Dreamcast, many con-
soles aimed to bring arcade games to the
people “at home”, however Dreamcast
actually made this a reality, and in fact
turned out to be better than the arcade
machines themselves.

Dreamcast brought many games that
existed in the Arcades into your home
and onto your TV screen, with stunning
graphics, great sound, and with up to
four players on one console.

Fighting and Brawler
games

One of the most famous games on
Dreamcast is Soul Calibur, which ac-
tually turned out to be superior to the
arcade version, and on the Dreamcast

LINUX GAMING

and brawlers.
There are many very good arcade side

scrollers and shoot ‘em ups like Ikaruga
or Giga Wing.

Ikaruga is a Japanese arcade shooter
for up to two players where you can
switch the color of your ship to do ex-
tra damage and avoid being hit by the
enemy. This shooter has stunning 3D
graphics and lighting effects.

Ridge Racer Type 4, running natively on
the PlayStation (top), and under the
Bleemcast! emulator (bottom)

Soul Calibur (top) and Power Stone
2 (bottom) on the ODROID-U3 played
through reicast emulator Side Scrollers

Ikaruga

GigaWing

ODROID MAGAZINE	 35

videos were played over the game layer
creating a very deep atmosphere and
awesome special effects for the “mega at-
tacks”. It also offered a very interesting
fighting style that allowed you to break
an enemies attack before they got to hit
you.

Evolution 2 is more of a cute kind of
JRPG, with very funny and cute charac-
ters. And although RPG games are rare
on Dreamcast, the few that are available
are quite nice and can keep you busy for
many hours. Still with the very impres-
sive CPU and GPU power I wonder
what a Final Fantasy game or something
similar would have looked like.

Racing games
I don’t want to go too deeply into the

details of racing games on Dreamcast.
Just enough to say that they definitely
exist! There are games out there such as
Metropolis Street Racer, Monaco Grand
Prix, F335 Challenge, Sega GT, Hydro
Thunder, Sega Rally, Test Drive 6, Star
Wars Racer, and even the RC car racing
game Re-Volt (one of my favorite racing
games, not only on Dreamcast). Racing
games are fun on the Dreamcast, but the
genre is not my personal favorite, so I

like PS2 and GameCube. It was the first
of its kind, incorporating real-time 3D
backgrounds instead of simply 2D pic-
tures.

But this was not the only game of
its kind on Dreamcast. There was also
Alone in the Dark: The New Nightmare,
Blue Stinger, Carrier, D2, Nightmare
Creatures II, and the list goes on and on.
If you are a fan of horror survival games,
Dreamcast has plenty of games to offer.

Role Playing Games
(RPGs)

Although not the most common
games on Dreamcast, they still had
some nice RPG games. Sadly none of
the “big players” had their games made
for Dreamcast, so you won’t find games
like Final Fantasy, Tales Saga, or Dragon
Quest Saga on Dreamcast. But there are
still a few good RPG games for Dream-
cast such as the famous Grandia II,
Evolution 1 and 2, and Time Stalkers.
They might not be the best known RPG
games, but nonetheless are really good
RPGs mostly found only on Dreamcast
(except for Grandia II).

Grandia 2 is a very nice RPG that ac-
tually came on two discs, and in order to
make the special effects more impressive

Giga Wing is an “old school” arcade
shooter which is also for up to two play-
ers. There was even a successor: Giga
Wing 2, and both play perfectly fine on
the ODROID-U3.

There are a lot more games like these,
and they are certainly not the only ar-
cade games that were ported to Dream-
cast. There is a huge list of Arcade games
that were made for Dreamcast including
games like House of Dead 2, Virtua Cop
2, Virtua Fighter and so on.

Original Dreamcast
games

Arcade games were not the only games
SEGA (and other companies) brought
to the Dreamcast. There are many titles
for the console that were not taken from
Arcade machines, or that simply look a
lot better on the Dreamcast.

Horror Survival
The Dreamcast had games in every

genre, including Horror Survival games
like the Resident Evil series. On Dream-
cast, this was the famous game “Resident
Evil - Code: Veronica”, which first came
out on Dreamcast, and later on systems

Resident Evil: Code Veronica in-game
rendering. Claire Redfield facial details
(top), first Zombie encounter (bottom) Grandia

Evolution

LINUX GAMING

ODROID MAGAZINE	 36

was born on Dreamcast and really was
a showcase for the Dreamcast console.
The graphics were really impressive, but-
ter smooth, and showed just what this
console was capable off. It was a port
from the Arcade machine to a home
console and even exceeded the original
Arcade machine version. It still counts
as one of the best games in gaming his-
tory.

Another game that was really made
for the Dreamcast is Sonic Adventure
and it’s successor Sonic Adventure 2.
There were some attempts to bring Son-
ic to the 3D world, but only Dreamcast
was really able to produce a game that
had everything that you would expect
from a Sonic game: Sonic, Rings, awe-
some music, and most important of all
SPEED! The game gives you really that
feeling of speed, especially when you
get spun around in looping or flying
through the air. You find everything you
are used to from the 2D game back here
in 3D: the checkpoints, the extra boxes
with rings, shields, faster running, and
so on. The second game even allowed
you to play as the bad guys (how awe-

of stunts, a really colorful game.

Honorable mentions
The Dreamcast has many awesome

games that I do not want to put into
different genres. For example, it actu-
ally has a version of Grand Theft Auto 2
(GTA2), and Half-Life was even ported
to Dreamcast (together with its expan-
sions Half-Life: Blue Shift and Half-
Life: Opposing Force). Several Disney
games came out for Dreamcast including
Donald Duck Goin’ Quackers and Toy
Story 2. Quake 3 Arena, Unreal Tour-
nament, Railroad Tycoon 2, Worms Ar-
mageddon, and Worms World Party can
even be found on Dreamcast. The list
of games is very impressive considering
the fact that the console was only was on
the market from late 1998 until 2002, at
which time SEGA announced that they
would stop producing new devices.

Games that defined
Dreamcast

There were a few games on Dream-
cast that really defined gaming history
and were outstanding for the Dreamcast.
One of these games I already mentioned:
Soul Calibur, and this series for consoles

won’t point out the “best” of them.

Sports Games
Although also not my favorite genre,

Dreamcast has quite a number of sports
games to offer. Starting with titles from
Ready 2 Rumble, NFL, NHL and NBA
games, to games like Virtua Tennis 2 and
Golf games. There are plenty of sports
games available, but the only one that
I personally enjoyed playing was Vir-
tua Tennis 2. And although I normally
don’t like sports games that much, this
one was really fun to play, and I played it
for many hours on my Dreamcast.

Platformers
Every console has this style of game,

and platformers (also called Jump ‘n
Run) is one of the first type of games to
come out for every console. The Dream-
cast has some really nice platformers
such as the famous Rayman 2 and Jet
Grind Radio, a game where you play a
skating graffiti artist that can do all types

Virtua Tennis 2: One of the few sports
games I actually enjoy playing and it’s
for Dreamcast

Rayman 2 and Jet Grind Radio two very
fun to play Platformer on the Dreamcast

GTA 2 on the Dreamcast: Movement is
somewhat difficult however

Sonic Adventure 2: Surfing around the
corner catching rings, or running fast
enough to run along a wall are just two
of the things you can do.

LINUX GAMING

ODROID MAGAZINE	 37

some is that?!).
Another game that is known as one

of the best games on Dreamcast is Crazy
Taxi and Crazy Taxi 2. Both came out as
Arcade games first as well, but the ports
to Dreamcast are really good and also
had some extra content. The soundtrack

was simply amazing, and the game really
fast and fun to play. Where else do you
get to drive with your car through the
park, or jump over cars and your fare ac-
tually like that crazy sh*t?

But fast action and racing were not
the only great Dreamcast games. The
few RPGs that actually were on Dream-
cast are quite impressive as well. Skies
of Arcadia is one very impressive RPG
where you play as Vyse, an “Air Pirate” in
a universe inspired by Jules Verne. You
travel between flying islands, and fight
against monsters and the soldiers of the
Valuan Empire. This game has it all:
good characters with a nice background
story, character progression, upgradeable
weapons and ships, air to air combat
between ships, impressive spells, a very
deep story, and oh did I mention AIR
PIRATES?!

But this is not where it stops when it
comes to the Dreamcast. I mentioned
earlier that Dreamcast had an integrated
modem that allowed you to play some
games online with friends. And this also
opened up the world of consoles for the

first MMO games. Phantasy Star On-
line was the first cross-platform multi-
player game where you could meet up
in a lobby with your game character, and
then venture into the wild to solve quests
together with friends. It even offered a
bank for you to store your money and
items. For it’s time, this game was very
good and had decent graphics, and some
people still play it today on private serv-
ers. It’s a very nice RPG where you
don’t have to concentrate on how to
set your character points (like strength
and agility), but rather can concentrate
on leveling your skills by using them in
combat. Level up your weapons and
your abilities to use them. The job you
choose defines how your character will
progress. This game was a major suc-
cess on the Dreamcast, and opened up
the market for MMOs on consoles and
other platforms. It had several succes-
sors like Phantasy Star Online v2 (also
on Dreamcast), or Phantasy Star Blue
Shift (on Windows), and some years lat-
er the Phantasy Star Universe series for
PC, PS2 and Xbox360.

The last title (or better yet, series)

Crazy Taxi: Grab a fare and bring it to the
desired destination in any way possible

Sonic Adventure 2: Sliding down a rail-
ing and running through looping things
that really make your feel the speed.

Skies of Arcadia: Very nice graphics,
round based fights with a complex skill
and energy system, as well as ship to
ship combat make this a really awe-
some RPG game on the Dreamcast.

Skies of Arcadia: Really nice effects for
all of these special attacks, right from
the start of the game.

LINUX GAMING

ODROID MAGAZINE	 38

that is really worth mentioning is the
Shenmue series. Although not 100% an
“open world” game, this is as close as you

can get with something like this back in
the year 1999. Shenmue was an very im-
pressive title. It’s was basically p*rn for
all the game freaks out there that loved
really deep RPG and Adventure games.
This game was so deep that it’s hard to
grasp all the things that you can do in
the game.

You are Ryo Hazuki, a martial art
student on a quest for revenge of your
father’s murder. This game is extremely
deep. The Story is huge and was actu-
ally designed to be a trilogy. The game
offers day and night cycles as well as dif-
ferent weather. You have to manage
your life: go working to earn money,
attend to your social contacts, you can
gamble, have tons of mini games, or
simply go shopping. Eating, drinking,
and talking to people to ask them for
directions. There is almost nothing you
can’t do in this game. Even tasks like
feeding a little kitten have to be done in
this game. While the game progresses,
you have to fight against other people,
learn new combat moves from strangers

and friends, and have to perform quick
events when you fight or follow some
people. This game is one of the most
expensive games in the history of game
production (an estimated 47~70 million
USD), and you can see that the money
was well used in this game. The places
feel alive: you always have many people
around you doing their daily business,
you can talk to them, ask for directions,
and interact with them in many ways.
This series was praised by critics, and can
be found on many of the “greatest video
games of all time” lists. The series was
actually stopped after Shenmue 2, leav-
ing the ending open. , but was recently
announced to finally get a finish with the
Kickstarter financed successor Shenmue
3 from the maker of Shenmue 1 and 2.
It’s suppose to be released for PS4 and
PC in December 2017.

However it was recently announced
that the series would finally be com-
pleted with the Kickstarter financed suc-
cessor ‘Shenmue 3’ from the maker of
Shenmue 1 and 2. It is expected to be
released for the PS4 and PC in Decem-
ber 2017.

Phantasy Star Online: Character cre-
ation screen (top) first visit on Pioneer
1 space station (bottom). PSO has a lot
of interesting things to offer, some of
which made gaming history.

Phantasy Star Online: Weapon and item
shop on the space station (top) fighting
monsters on a mission (bottom). PSO
had really good graphics for an MMO of
the year 1999.

Shenmue 2: Facial details are very im-
pressive, and some hair is even indi-
vidual rendered (top). A lively plaza is
seen here (bottom), it is not rare to see
places like this, with birds and many
people in the same place. Dreamcast
could manage all of this.

Shenmue 1: Lan Di (the murderer of
Ryo’s father) holding Ryo up in the air
in the the opening of the game (top).
Keeping your money together is not al-
ways easy (bottom).

LINUX GAMING

ODROID MAGAZINE	 39

Dreamcast on
ODROID

Lots and lots of people are talk-
ing about SEGA Dreamcast, but you
might wonder: how well does it work on
ODROID devices?

All the pictures in this article (except
the ones about PS1 and Bleemcast) are
directly taken from a ODROID-U3
running reicast as an emulator. Lots of
games are running fine, some have some
issues, and others won’t run at all. But
the ratio is still rather good. If I would
have to take a guess, I would say that
60% to 75% of all SEGA Dreamcast
games are working on reicast, and there-
fore on ODROID devices.

The most common issues I encoun-
tered where graphics glitches. It seems
that fog and LOD is not always work-
ing correctly. Far away objects showing
strange patterns instead of a fog slowly
letting them disappear. Some games
have a few sound issues. And nearly
all games have issues playing the videos
at full speed, which is actually rather
strange since the videos are very low
resolution.

Holzhaus from the ODROID com-
munity takes a major part in developing
reicast, and actually was able to integrate
ODROID support in the upstream ver-
sion of reicast.

Together with
some other fixes, the
current version of rei-
cast runs really well
on our ODROIDs (I
only had to make mi-
nor changes to get it to
work the way I wanted
it).

I’m looking for-
ward to further im-
provements of the
emulator and will up-
date the packages in
my repository as often
as possible to keep all
“the good stuff” com-
ing to our ODROIDs.

Next to the PSP emulator, this has
become one of my favorite emulators for
the ODROIDs that allows me to replay
my favorite Dreamcast games without
my having to get the old console out of
the basement and try to figure out how
to attach it the my current TV. It also
allows me to play these awesome games
with my friends, which makes it even
better than the PSP, because now I can
fight in Soul Calibur or Power Stone
against my friends and have a friendly
competition match with them.

Dreamcast games are a nice addition
to the already impressive number of em-
ulators and games that run on ODROID
devices and I can only suggest to every-
one that likes playing games that they
check out these awesome Dreamcast
games on the ODROID platform.

LINUX GAMING

ODROID Talk
Subreddit

 http://www.reddit.com/r/odroid

ODROID
Magazine is

now on
Reddit!

ODROID MAGAZINE	 40

Please tell us a little about yourself.
My name is Bill, and I am addicted to robotics & electron-

ics. I live in Langley, a suburb of Vancouver, in beautiful Brit-
ish Columbia, Canada, with my lovely wife Agnes, otherwise
known as “Wifey”. I am the owner, CEO, CTO and chief bot-
tle washer of Mikronauts (http://www.mikronauts.com), which
is a consultancy specializing in custom software and hardware
solutions largely for industrial control clients, which is not very
surprising, as I have over 30 years experience in industrial con-
trol as a programmer/analyst, systems analyst, systems architect
and technical project manager. I also design and sell robotics
and educational products. We have a whole passel of “stinky
boys” (nephews, named as such by wifey) and one “non-stinky”
niece in the family, whom we love to spend time with.

How did you get started with computers?
I started with an HP mini-computer/calculator with a

punched card reader, tape drive and line printer, running an
HP basic in grade 10. Later, the school bought some original
Apple][computers for the lab. I wire-wrapped a Z80 board,
and used a Cosmac-Elf, Kim-1 and other single board comput-
ers of the time. We had a great physics/electronics teacher!

After getting some part-time jobs, I saved my pennies and
bought an Atari 400 at first, then an Apple][clone with a Z80
card. I went to Simon Fraser University for Computer Sci-
ence, where I also worked for the Department of Education,
and bought one of the first Amiga 1000 computers in Vancou-
ver. I was blown away by the graphics demos, and the graphi-
cal desktop with multi-tasking in 512KB with a floppy drive.
Shortly after that, I wrote a caching driver for the “Wedge”,
which was a pc/xt RLL controller interfaced to the Amiga by
another Amiga user. I also ported a Valgol compiler to the
MC68000, and generally had a ton of fun with it.

Later, I wrote the software to drive the laser disc players
and video genlock devices for the “Amiga Theatre” at Expo 86
in Vancouver. It was a blast to see a whole wall of TVs run-
ning synchronized video shows from laser discs controlled by
an Amiga.

In 1984, I started working for Pan-Abode, a log home man-
ufacturer in Richmond, BC, where I started my career in indus-
trial control. I wrote software for controlling the drying of logs

Meet An ODROIDian
William Henning (@mikronauts)
ROBOTICS AUTHORITY AND
PROLIFIC TECH BLOGGER
edited by Rob Roy

MEET AN ODROIDIAN

in large kilns, designed voice controlled “Smart House” soft-
ware, and wrote Lisp extensions for AutoCad, including solar
energy modelling of the heat gain and loss of log homes de-
pending on window sizes, orientation, and home design plans.

Later, I worked for Universal Dynamics, designing software
and hardware solutions for large industrial clients in North
America, such as power utilities, mills, grain terminals, smelt-
ers and more. In the late 1990s, I became a consultant and
also started two web sites, that later became extremely popular:

CPUReview.com, where I reviewed PC processors, moth-
erboards, video cards and experimented with overclocking. I
used to write launch reviews for new Intel and AMD proces-
sors by getting them under NDA from Intel and AMD early
in order to have the reviews be ready in time for the product
launch.

AboutLinux.com, where I reviewed new Linux distribu-
tions, Linux software, and wrote how-to guides.

After the .Bomb collapse of internet advertising, I stopped
updating both of the sites, and unfortunately I lost both do-
main names in 2001. I never received renewal notices, and
since I ran my own web and DNS servers, I did not notice
that domain squatters had snapped them up. I then taught
an advanced networking lab at the British Columbia Institute

Our man William inspires us to do more with our ODROIDs!

ODROID MAGAZINE	 41

http://www.mikronauts.com
CPUReview.com
AboutLinux.com

of Technology, where I later did research on industrial control
network security, and consulted for a startup on a network se-
curity appliance.

In 2006, I read about a new microcontroller called the Par-
allax Propeller that had a very interesting architecture, and was
way ahead of its time. With eight 32 bit RISC cores, local
memories and a 32KB shared memory, it was far more power
than the original mini computers, in a handy 40 pin dip pack-
age. I started Mikronauts.com to blog about the Propeller
and my electronics experiments. I had a vision of running a
stripped-down, small version of Unix on the Propeller, but the
architecture limited programs to at most 506 instructions in
length. To get past this limitation, I came up with a “Large
Memory Model” for the Propeller (LMM was a tongue-in-
cheek nod to the large memory model of 8086 compilers) that
used a self-modifying fetch-execute loop containing as little as
four instructions in a cog in order to implement a virtual ma-
chine to allow executing programs from the shared memory.
32KB allowed for 8192 instructions, a factor of 16 increase in
size over what could run in a cog! I started writing an operating
system for LMM code, and an LMM assembler, but unfortu-
nately I did not have time to port a C compiler to fulfill my
idea of running a small Unix on the Propeller.

I did, however, design several single board computers
around the propeller, including Morpheus, which was a dual
Propeller machine. One Propeller was used primarily for I/O,
and the second was used for high resolution bitmapped graph-
ics. It had 512KB of external SRAM, expandable to 16MB,
and swap space. Another project was called PropCade, which
was used for VT100 emulation and retro-gaming.

Later, I consulted for Parallax for their GCC port to the
Propeller, which uses LMM. When the Raspberry Pi came out,
I gave up on designing full-fledged computers based on the
Parallax Propeller, as there was no way to come even close to
the price/performance ratio of the Raspberry Pi. I knew that
the Propeller would make an excellent hard real time I/O ex-

pander for the Raspberry Pi, so I designed the Propeller based
RoboPi advanced robot controller board for the Raspberry Pi.

As I started to really get involved with the low-cost ARM
based single board computers that were appearing in ever great-
er numbers on the market, I decided to re-position Mikronauts
as a site that reviews single board computers, and began to
publish articles on robotics and electronics projects featuring
single board computers, robots, and Mikronauts products.

What attracted you to the ODROID platform?
I found a thread about the ODROID-W on the Raspberry

Pi forums. The ODROID-W looked like it would make a
great embedded module for robotics and industrial control.
Due to its Raspberry Pi compatibility, it seemed like a great
match for RoboPi. Unfortunately, shortly after I received my
order of ODROID-W goodies (three W’s, two LCD’s, other
expansion modules), it was discontinued, well before I could
write a review of it.

Fortunately, Hardkernel announced the ODROID-C1
shortly thereafter, and I immediately ordered six of them along
with a bunch of accessories. This was well before the Raspberry
Pi Model 2 came out, and how could you go wrong with a
quad core ARM SBC for $35? This time, I finished the review!
I found that the ODROID-C1 greatly outperformed the origi-
nal Raspberry Pi’s.

Months later, after the Raspberry Pi Foundation released
the Raspberry Pi 2 Model B, the ODROID-C1 still kept its
performance advantage. When Hardkernel released the XU3,
I was very tempted to get one. Unfortunately, the price was too
high to be considered as a low cost ARM board, when com-
pared to the ODROID-C1, Raspberry Pi 2, Banana Pi and
many other ARM boards. I loved the feature set, but the less
costly SBC’s met my needs.

Recently, when Ameridroid asked if I’d be interested in re-
viewing the new ODROID-XU4, I was definitely interested.
Based on what I had been reading about the eight core big.
LITTLE ARM chips, and with a price less than half of the
XU3, I thought the XU4 might have had the price/perfor-
mance ratio needed to justify its higher price, and I was right.
The performance is outstanding.

How do you use your ODROIDs?
Right now, I use my C1s as small desktop replacements and

media players. I keep meaning to make a C1 + RoboPi based
robot, however, I am concerned with the current consumption
when the C1 is powered off. I recently received a suggestion
for how to control that from one of the administrators on the
ODROID forums, but have not tested it yet.

(Figure 4 - My CAD and software development worksta-
tion, shown while working on HexPi)

RoboPi being tested on an ODROID-C1 for a C1 Review

MEET AN ODROIDIAN

ODROID MAGAZINE	 42

Mikronauts.com
big.LITTLE
big.LITTLE

I have switched my RoboPi C library development to the
XU4, since it provides a much faster compile test cycle then
a Raspberry Pi, and the libraries and executables compiled
on it work on my other ARM v7-based boards. I have a few
other uses in mind for my C1s, which you will see over the
coming months at www.mikronauts.com, and perhaps here in
ODROID magazine.

Which ODROID is your favorite?
Currently the XU4 is my favourite ODROID. It is the fast-

est ARM board I have for compiling and testing ARM v7 code,
and there’s no need to bother cross-compiling from a PC. It
also makes a great desktop replacement, and it does extremely
well with Kodi as well. The C1 is a close second, and perhaps
a better choice for applications that don’t need as much speed,
and need more miserly power consumption.

Are you involved with any other computer projects unrelated to the
ODROID?

Yes. I work with many micro-controllers, SBCs and com-

puters. You can expect many more IoT, Robotics and electron-
ics projects from Mikronauts, including projects for ODROID
boards. I am developing more products aimed at the robotics
and educational markets, and will be testing them for compat-
ibility with the ODROID-C1 and ODROID-XU4.

I have a number of projects in the Raspberry Pi section of
my site that should work on the ODROID-C1 and ODROID-
XU4 with Shifter shield simply by changing GPIO numbers.
If there is enough interest, I would be happy to publish C1 and
XU4 adaptations of the following:

20x04 and 16x02 LCD interfacing (with Python library)
4x4 matrix keyboard interfacing with I2C I/O (with Python
library)
24 channel 12 bit data acquisition board (with Python library)
expandable to 64 channels

RoboPi being tested on the ODROD-XU4 for an XU4 review

William’s CAD and software development workstation, shown
while working on HexPi

Interfacing 20x4 and 16x2 LCD’s, complete with Python library

4x4 matrix keyboad interface project using I2C I/O expanders

Some Mikronauts products are not fully compatible with
the C1 and XU4 due to the differences in a few pins of the 40
pin GPIO connector, such as the 1.8V analog inputs. Some
also depend on software that is not available on the C1 and

MEET AN ODROIDIAN

ODROID MAGAZINE	 43

www.mikronauts.com

except at the elementary level. If you get hooked, and want
to learn more, I think C is still easier to learn than C++ and
its alternatives. Of course, if you really want to understand
computers, at some point you should learn assembly language
and electronics. Learn to solder, then build your own boards
from scratch.

Don’t believe anyone who tells you that you do not need to
understand low-level programming. If you don’t understand
assembly language and pointers, no amount of C++ templates
and libraries will help you understand why your embedded
code is not working right. You will need oscilloscopes, logic
analyzers and a good understanding of how it all works to re-
ally be able to debug embedded code. And make sure to have
fun!

MEET AN ODROIDIAN

XU4, like the pigpio library and servoblaster kernel driver.
Don’t get me wrong, because I like having the analog inputs on
the ODROID boards, and intend to use them in some projects
“Real Soon Now”!

What hobbies and interests do you have aside from computers?
Wifey – I mention her because I am not an idiot!
Travelling – my favorite trip is flying to Hawaii, staying on
Waikiki beach for a week, and cruising around the islands
Photography – I even went professional for a while earlier
this millennium
Reading - mostly science fiction, because I do a lot of reading
on my trips
Movies and TV - I am a big fan of science fiction, action/ad-
venture and comedies
Family – catching up, playing with and teaching the rug rats
in the family about robots and computers
Food – eating the goodies that wifey makes for me!

What type of hardware innovations would you like to see for future
Hardkernel boards?

I’d like to see USB3.0, SATA, DPI, MPI, better Gig-E,
more memory and GPIO, and dual-head support. I don’t ask
for much.

What advice do you have for someone want to learn more about
programming and/or hardware?

Find a project you want to do, then pick a language, dive
in and do it! Remember that Google is your friend, and use it
to find other similar projects to what you want to do, and fol-
low their examples on how to actually make your project work.
There are a lot of excellent examples out there, and some not
so great ones too.

For beginners, I’d recommend Python to start with. I don’t
think flowchart and graphical tools are very useful for teaching,

24 channel Data Acquisition project using 3 GPIO, de-multi-
plexer and 1 SPI chip select

SchoolBoard][development board with ODROID-XU4 Shifter
Shield and five superbright LED’s

Check out Williams’ Mikronauts eBay or Tindy Stores by visiting
www.mikronauts.com

ODROID MAGAZINE	 44

mikronauts.com

ODROID MAGAZINE	 45

http://www.armtechcon.com
http://www.hardkernel.com

