
Time

Year Two
Issue #19
Jul 2015

Diet Pi

ODROID
Magazine

• ODROID-C1 Music Stand
• GPIO Pins C1 Control

Popcorn
Watch
movies
and TV
shows
instantly
with your
ODROID

ODROID’s lightest
distribution ever

Linux kernel scripts • Android development • Linux rare gaming gems

What we stand for.
We strive to symbolize the edge of technology,
future, youth, humanity, and engineering.

Our philosophy is based on Developers.
And our efforts to keep close relationships with
developers around the world.

For that, you can always count on having the quality
and sophistication that is the hallmark of our products.

Simple, modern and distinctive.
So you can have the best to accomplish
everything you can dream of.

We are now shipping the ODROID-U3
device to EU countries! Come and visit
our online store to shop!

Address: Max-Pollin-Straße 1
85104 Pförring Germany

Telephone & Fax
phone: +49 (0) 8403 / 920-920
email: service@pollin.de

Our ODROID products can be found at
http://bit.ly/1tXPXwe

http://www.hardkernel.com
mailto:service@pollin.de
http://bit.ly/1tXPXwe
http://bit.ly/1tXPXwe

EDITORIAL

ODROID Magazine, published monthly at http://magazine.odroid.com, is your source for all things ODROIDian.
Hard Kernel, Ltd. • 704 Anyang K-Center, Gwanyang, Dongan, Anyang, Gyeonggi, South Korea, 431-815
Hardkernel manufactures the ODROID family of quad-core development boards and the world’s first ARM big.LITTLE single board computer.
For information on submitting articles, contact odroidmagazine@gmail.com, or visit http://bit.ly/1ypImXs.
You can join the growing ODROID community with members from over 135 countries at http://forum.odroid.com.
Explore the new technologies offered by Hardkernel at http://www.hardkernel.com.

One of the more popular uses of ODROIDs is for a media
center, and Popcorn Time is an all-in-one software pack-
age that can stream nearly any type of movie or television

show. It runs very well on the ODROID-U3, turning it into a very
useful, yet inexpensive, set-top box.

As usual, we feature fun gaming
options for the ODROID platform,
including creating your own video
games for the classic Amstrad com-

puter, playing Millenia: Altered Desti-
nies, and enjoying Nubs’ Adventure and

Kung Fury for the Android platform. For An-
droid enthusiasts, Nanik continues his Android

Development series with a guide to building An-
droid Studio, a Java interactive development environment.

For DIY makers, Ivan introduces his innovative electronic music stand,
which he uses as a professional musician to access his sheet music and take notes with
a modern touchscreen interface. We also detail accessing the GPIO pins of an ODROID-
C1 using a Java library called jOdro, explore a lightweight distribution called DietPi, and
learn how to compile an ODROID Linux kernel using automated scripts.

http://magazine.odroid.com
big.LITTLE
mailto:odroidmagazine@gmail.com
http://bit.ly/1ypImXs
http://forum.odroid.com
http://www.hardkernel.com
http://www.ameridroid.com/

STAFF

ODROID
Magazine

Rob Roy,
Chief Editor

I’m a computer
programmer living

and working in San
Francisco, CA, designing

and building web applications
for local clients on my network
cluster of ODROIDs. My primary
languages are jQuery, Angular JS
and HTML5/CSS3. I also develop
pre-built operating systems, custom
kernels and optimized applications
for the ODROID platform based
on Hardkernel’s official releases, for
which I have won several Monthly
Forum Awards. I use my ODROIDs
for a variety of purposes, including
media center, web server, application
development, workstation, and
gaming console. You can check out
my 100GB collection of ODROID
software, prebuilt kernels and OS
images at http://bit.ly/1fsaXQs.

Robert Cleere,
Editor

I am a hardware and
software designer

currently living in
Huntsville, Alabama. While

semi-retired from a career in embedded
systems design, including more than a
decade working on the Space Shuttle
program, I remain active with hardware
and software product design work as well
as dabbling in audio/video production
and still artwork. My programming
languages of choice are Java, C, and
C++, and I have experience with a wide
range of embedded Operating Systems.
Currently, my primary projects are
marine monitoring and control systems,
environmental monitoring, and solar
power. I am currently working with
several ARM Cortex-class processors,
but my ODROID-C1 is far and away
the most powerful of the bunch!

Bruno Doiche,
Senior
Art Editor

Hurry Bruno, we need
to package the magazine

to send it to our readers! Think of
something funny to write around here,
quick!
....
....
....
....
....
Got it!
“I don’t think of myself as an ugly
person, but rather as a beautiful
monkey!”
also:
“People say that money is not the key
to happiness, but I always figured if you
have enough money, you can have a key
made.”

Manuel
Adamuz,
Spanish
Editor

I am 31 years old
and live in Seville,

Spain, and was born in Granada. I
am married to a wonderful woman
and have a child. A few years ago I
worked as a computer technician and
programmer, but my current job is
related to quality management and
information technology: ISO 9001,
ISO 27001, and ISO 20000. I am
passionate about computer science,
especially microcomputers such as the
ODROID and Raspberry Pi. I love
experimenting with these computers.
My wife says I’m crazy because I just
think of ODROIDs! My other great
hobby is mountain biking, and I oc-
casionally participate in semi-profes-
sional competitions.

Nicole Scott,
Art Editor

I’m a Digital Strat-
egist and Trans-

media Producer
specializing in online

optimization and inbound market-
ing strategies, social media directing,
and media production for print, web,
video, and film. Managing multiple
accounts with agencies and filmmak-
ers, from Analytics and Adwords to
video editing and DVD authoring. I
own an ODROID-U3 which I use
to run a sandbox web server, live in
the California Bay Area, and enjoy
hiking, camping and playing music.
Visit my web page at http://www.ni-
colecscott.com.

James
LeFevour,
Art Editor

I am a Digital Me-
dia Specialist who is

also enjoying freelance
work in social network marketing and
website administration. The more I
learn about ODROID capabilities, the
more excited I am to try new things I’m
learning about. Being a transplant to
San Diego from the Midwest, I am still
quite enamored with many aspects that
I think most West Coast people take for
granted. I live with my lovely wife and
our adorable pet rabbit; the latter keeps
my books and computer equipment in
constant peril, the former consoles me
when said peril manifests.

http://bit.ly/1fsaXQs
http://www.nicolecscott.com
http://www.nicolecscott.com

INDEX
Amstrad - 6

android development - 16

WHITE NOISE GENERATOR - 20

Diet pi - 25

Android Gaming: Nubs’ Adventure- 9

Linux kernel - 8

android gaming: kung fury - 15

Java GPIO - 19

odroid Music - 21

popcorn time - 30

meet an odroidian - 32

linux gaming: Millenium - 10

The primary developer is Francisco Gallego (@
frangallegobr), which is an Informatics engineer, video game
developer and professor at the University of Alicante in Spain.
For more features of this framework, please refer to the links at
the end of this article.

Installing CPCtelera
First, you need to download the source code in order to

compile it on your board. To do this, download the stable
version like I did, or if you are brave, you can use the latest
version from GitHub:

$ wget http://bit.ly/1MMdUMA && \

 unzip -nq $(basename $_) && \

 rm $(basename $_) && \

 cd cpctelera-1.1/

or use the last commit:

$ git clone http://bit.ly/1IPxMOf && \

 cd $(basename $_)

For those who do not know, the AMSTRAD CPC was
an 8-bit computer that was popular between 1984 and
1990. CPCtelera is an engine that has been released

recently in its first stable version, which facilitates the creation
of games for the Amstrad computer using C or assembly code.

Introducing CPCtelera
CPCtelera is an integrated development framework for

creating Amstrad CPC games and content which includes:

• A low-level library with support for: graphics, audio,
keyboard, firmware, strings, video hardware manipulation
and memory management.

• An API for developing games and software in C and
Assembler

• Tools for content authoring (audio, graphics and level
editing)

• Multi-platform: It works on Windows, Ubuntu, Debian,
Arch, and Manjaro operating systems

Making videogames
for Amstrad CPC
HAVE FUN WITH THIS BLAST FROM THE PAST
by Jose Cerrejon

AMSTRAD

The AMSTRAD CPC is one of
those beloved 8-bit relics we will
always have room on our hearts

ODROID MAGAZINE	 6

http://bit.ly/1MMdUMA
http://bit.ly/1IPxMOf

Running ./setup.sh after resolving dependencies

AMSTRAD

You have a lot of examples to learn Scanlines alongside the best nostalgia, get ready to climb!

Next, we need to install any missing dependencies, some of
which may be already installed:

$ sudo apt-get install -y build-essential libboost-

dev flex bison

Then, invoke the installation script by running the setup
file:

$ sudo ./setup.sh.

It will warn you about the necessary packages and prepare
your system to run the engine. On an ODROID-C1, it will
take about 20 minutes to compile.

Starting the Engine
If we browse through the directories, we can see some

interesting folders such as docs/, which contains the
reference manual, or tools/, which is used to make sprites,
compose soundtracks, format converters, and more. Some
of these tools are only available for Windows.

To create a new project from Bash, type the following:

$ cpct_mkproject [folder_project]

Navigate into the directory and you will see two
subdirectories:

• src/ with the source code (the first time we just have a
main.c). You can create files and directories of your game
here.

• cfg/ contain settings to compile the game through the
build_config.mk file.

There are also examples that you can study. Just navigate
to the directory, run make, and automatically create .CDT and
.DSK files. So cool, isn’t it?!

Platform Climber
There is a complete game example included with CPCtelera

called Platform Climber. First, you’ll need to get an AMSTRAD
CPC emulator. I did not find any that were pre-compiled for
ODROID, so I had to download and compile it by myself.
Don’t worry, It’s easy:

Amstrad BASIC, time to dust out a bunch of essential books!

ODROID MAGAZINE	 7

setup.sh
setup.sh
build_config.mk

To make Linux kernel compilation
easier, I wrote a set of BASH
scripts that can be used to

download the latest version of any
kernel stored in the Hardkernel GitHub
branch, compile the source code, and
package the completed kernel into a
redistributable package. The scripts keep
the original kernel on the compilation
machine, so that the kernel for any
ODROID device may be compiled on
a different ODROID device.

The resulting package includes a
single-click installation script, and may
be shared with others, installed on any
compatible ODROID, or added to a
repository for distribution via apt-get.
The scripts will give prompts for the
next step of the process, making it ideal
for use by users who are not yet experi-
enced in kernel compilation.

Overview
The build scripts are located at

http://bit.ly/1U6kQcU, and may be
downloaded using wget from the com-
mand line or any web
browser. Unzip the pack-
age after navigating to the
download folder:

$ wget \

http://bit.ly/1U6kQcU

$ tar -xvzf build.tgz

The resulting “build”
folder contains the follow-
ing scripts:

download.sh is used
to download a particular
branch from the Hardker-
nel repository

build.sh is used to

launch the kernel compilation process
install.sh is copied to the resulting

kernel installation package in order to in-
stall the kernel on any ODROID device.

Download script
The script “download.sh” may be

used to download any available branch
from the Hardkernel GitHub repository
by specifying it as the first argument. For
instance, to download the most recent
version of the odroidc-3.10.y branch
for the ODROID-C1, navigate to the
“build” folder and type the following:

$ sh ./download.sh odroid-3.13.y

A list of branches may be obtained
by visiting http://bit.ly/1NvVQa1 and
inspecting the “branch” dropdown selec-
tion menu, as shown below.

After the download script completes,
the “install.sh” and “download.sh”
files will automatically be copied to
the downloaded branch directory in
preparation for the next step.

$ wget http://bit.ly/1U2RrjZ

$ unzip caprice*

$ make -f makefile.unix

RELEASE=TRUE

In a minute, you will get a binary
called cap32. The use is very simple by
obtaining any .BAS or .DSK file. To
load the game Platform Climber, run
the emulator followed with the path of
the .DSK file:

$./cap32 ../cpctelera-1.1/

examples/games/platformClimber/

pclimber.dsk

Now you are inside the AMSTRAD!
Do you feel the magic? Type cat to see
the files inside the previously mounted
disk, then run the game:

cat

run”game_name.extension

Notice that there is no end quote.
For example, to run Platform Climber,
type the following:

run”pclimber.bin

Conclusion
Now it’s your turn. I recommend

you to start studying the examples in
examples/easy/src, then modify and
compile them. Below there is a link to
the reference manual with all the info
you need to know about functions and
methods available. If you know some-
thing about SDL, everything will be a
little easier.

Happy coding!

More References:
http://bit.ly/1IPxMOf

http://bit.ly/1IpjQvV

http://bit.ly/1FMAkrQ

http://bit.ly/1IILeAT

AMSTRAD LINUX KERNEL

Linux Kernel
Build Scripts
tweak your system
by Rob Roy

The place to get the most up-to-date kernel is at the branch
dropdown menu on Hardkernel’s GitHub repository page

ODROID MAGAZINE	 8

http://bit.ly/1U6kQcU
http://bit.ly/1U6kQcU
build.tgz
download.sh
build.sh
install.sh
download.sh
download.sh
http://bit.ly/1NvVQa1
install.sh
download.sh
http://bit.ly/1U2RrjZ
makefile.unix
cpctelera-1.1/examples/games/platformClimber/pclimber.dsk
cpctelera-1.1/examples/games/platformClimber/pclimber.dsk
cpctelera-1.1/examples/games/platformClimber/pclimber.dsk
game_name.extension
pclimber.bin
http://bit.ly/1IPxMOf%0D
http://bit.ly/1IpjQvV%0D
http://bit.ly/1FMAkrQ%0D
http://bit.ly/1IILeAT%0D

LINUX KERNEL

Select your configuration files to have the best build

LINUX GAMINGANDROID GAMING

Nubs’
Adventure
challenging
AND ENJOYABLE
2D platformer
by Bruno Doiche

Working for
ODROID
Magaz ine

means that we always
access to hundreds
of 2D platformer games. After all, we
emulate many types of 8 and 16-bit con-
soles all the time. I often find myself
with a recently flashed Android image
on my trusty U3 plugged into my lap-
dock, looking for a brand new adventure
to play. Recently, I managed to discover
Nubs’ Adventure, a very pleasant plat-
former that took me to amazing inter-
wined worlds in the best ‘Metroidvania’
flavor. It has great level design, challeng-
ing bosses and excellent puzzles to keep
you wanting to spend a little more time
than you initially expected. Enjoy!

https://play.google.com/store/

apps/details?id=nubs.adventure

Build script
After the branch has been download-

ed, navigate to the downloaded branch
directory, then locate the file in the di-
rectory arch/arm/configs/ corresponding
to the ODROID platform that will use
the kernel:

$ cd odroid-3.13.y

$ ls arch/arm/configs/odroid*

For example, when using the odroid-
3.13.y branch, configuration files are
available for use with the ODROID-
Q, ODROID-Q2, ODROID-X,
ODROID-X2, and ODROID-U2 as
shown in the figure above. Other branch-
es may include configuration files for
other ODROID devices, such as the XU,
C1 and XU3. When building a kernel for
the ODROID-U2/U3 using the odroid-
3.13.y branch, the target configuration
file would be odroidu2_ubuntu_mali_de-
fconfig, which is supplied as the primary
argument for the “build.sh” script. Any
changes to the configuration file should
be made before launching the build script.
I prefer to edit the file using a text editor,
but the “make menuconfig” utility may
also be used.

The following command launches
the build process using the selected con-
figuration file, which requires superuser
privileges. Make sure to substitute the
name of the target configuration file:

$ sudo sh ./build.sh \

 odroidu2_ubuntu_mali_defconfig

It may take 10-
30 minutes for the
kernel to compile,
which will result in
a folder structure
contains the kernel
installation assets.
This folder struc-
ture is contained in
a subfolder under
the new “release”
folder using the
name of the con-
figuration file. The
build process does

not automatically install
the kernel locally, but in-

stead creates a portable package which
may then be run on the target ODROID
device.

To install the kernel on the target
machine, copy the “release” directory
structure to the ODROID, then navigate
to the subdirectory that is named after
the selected configuration file. In this
example, the installation script may be
run by typing the following commands:

$ cd release/\

 odroidu2_ubuntu_mali_defconfig

$ sudo sh ./install.sh

This process may take 3-10 minutes,
after which the new kernel will be ready
for use. Reboot the computer to use
the updated kernel. A backup of the
original kernel is saved as indicated in
the output of the installation script, so
that the kernel update may be reversed
if necessary.

If you have questions, comments, or
suggestions regarding the kernel update
scripts, please create a new thread on
the ODROID forums at http://forum.
odroid.com.

Branch reference
odroid-3.0.y: Q, U2, U3, X, X2
odroid-3.8.y: U2, U3, X, X2
odroid-3.13.y: XU
odroidc-3.10.y: C1, C1+
odroidw-3.12.y: W
odroidxu3-3.10.y: XU3
odroidxu-3.4.y: XU
odroidxu4-v4.2-rc1: XU3, XU4

ODROID MAGAZINE	 9

https://play.google.com/store/apps/details?id=nubs.adventure
https://play.google.com/store/apps/details?id=nubs.adventure
build.sh
build.sh
install.sh
http://forum.odroid.com
http://forum.odroid.com

four species that lived in the Echelon
galaxy, as well as help them to thrive until
they are strong enough to withstand the
Microids, and therefore save the galaxy.
This is also in your interest, not only
because you don’t want them to attack
our galaxy, but the moment that you
entered the Echelon galaxy 10,000 years
in the past, the technology used to bring
you to this place no longer exists, since it
was built by the four species that you are
supposed to help develop. So what you
need to do in order to get back to your
own time and galaxy is to help develop
the four species until they are able to
build the missing parts of the ship again,
and help them to defend themselves
against the Microids.

The game has very nice features
such as full voice acting of your ships
computer and AI Agnis, different movie
cut scenes of the actions, space combat
action, and more. As far as I know, this
game is not very well known, but really a
rare gaming gem for its unique style and
gameplay. It’s definitely worth playing
and you should definitely give it a try.

Installing and
starting

Since this game is a DOS game
and not made for Linux, you can’t
just download a package and run it. I
use DOSBox to start the game and
configured some options to make it work

I want to introduce some of my
favorite games that probably not
everyone has heard of, but are very

interesting and fun to play. I hope you
enjoy the games that I picked, and I
encourage you to try them and play some
awesome rare gems of gaming history.

Millennia – Altered
Destinies

This game is very unique. You are
a freighter pilot on your 6-month trip
back to Earth from Jupiter. While
you realize it might be a bad sign that
you already speak loudly to yourself on
the first day of your journey, you are
suddenly “abducted” by an alien species.
After you have been “abducted”, they
explain to you that you are in time stasis,
and that they are an alien species named
the Hood. They are time wardens that
need your help in their time and galaxy.

A galaxy called Echelon is currently
overrun by a species called Microids.
This species is very aggressive, and the
time wardens galaxy is about to be
overrun as well, and next would be “our”
galaxy that’s why we are supposed to
solve this. You are put in a new space
ship which can not only travel through
space, but through time as well, and you
are being send back 10,000 years ago,
into the Echelon galaxy, where only one
star system is occupied by the Microids.

The goal is to establish the original

Linux
Gaming
Rare Gaming Gems
Part 1
by Tobias Schaaf

LINUX GAMING

nicely. First of all, you need the CD or a
rip of it, although I would advise to use
the CD version for the best experience.

Here is a small step-by-step guide
on how to install and start the game
based on my ODROID GameStation
Turbo image, although it should work
the same with the Ubuntu image from
HardKernel if you have my all/main
and all/testing package lists activated as
well. Type the following to install the
requirements for DOSBox:

$ sudo apt-get install dosbox-

odroid libgl-odroid

Configure DOSBox
Start DOSBox once to create the

default configuration file, but then exit
it right away. Open /home/odroid/.
dosbox/dosbox-SVN.conf in a text
editor and change the following lines:

[sdl]

 fullscreen=true

 fullresolution=1920x1080

 output=opengl

[render]

 frameskip=3

[cpu]

 core=dynamic

 cputype=pentium_slow

 cycles=5000

This is the original
CD-ROM version of
Millenia - Altered
Destinies

ODROID MAGAZINE	 10

dosbox-SVN.conf

I’m going to explain the basics of the
game and hopefully, this will help you
understand it.

You have to use your ship’s abilities
in order to travel through time and
space so that you can fix things for the
four different species that you should
watch over, and help them evolve into
an advanced civilization that can help
you leave the galaxy, as well as defend
themselves against the evil Microids.
For this, you have to understand and
control your ship in order to complete
all of the tasks ahead of you.

The ship
Inside your ship, tou can see Agnis,

the ship’s computer and AI, which helps
you in your task. He acts as a translator
when you talk to the different species.
He can give advice and comment on
your actions. In fact, his “I am at your
service, human” was the starting sound
of my Windows machine for a long time.

Most of the ship screens look alike.
You have a navigation panel on your left
side, which you can control by pressing
and holding the right mouse button and
moving over the different buttons. A
left-click selects the system you want to
visit, and a type of elevator moves your
cockpit to the selected station. On the
right side, you have the action buttons
of your current station. Simply move
the mouse to the action button you
want, and press the left mouse button to
activate the action.

In the main view, you can see
information about the current planet
you are visiting. The name of the planet

LINUX GAMING

and the year is shown at the scanner’s
target cross. On the right side, you can
find information about the planet and
its inhabitants. Here we can see the race
(Raptoids), their current IQ rating (80),
and we see a symbol of the current event
(war). At the top of the screen, we see
again a small information panel with the
name of the planet, the race and a clock.
The year 1600 is the current century,
and the 117.13 symbol is actually a
game time clock, which has a very odd
format. It’s counting seconds, but
reaches 100 before the number in front
of the decimal changes.

The main view is only for starting a
trip to the next century, or to a different
place in the galaxy. You can start the
engines only from this screen. The
second thing you can only do on the main
screen is space combat. Occasionally,
you have to defend yourself and the
planet’s inhabitants against invading
enemies. Since this game messes around
with time, this can sometime be rather
confusing, since you might actually end
up fighting against your own alter-ego
from a different timeline, but you also
might battle Microids that try to invade
the space where your race settles. The
Hoods themselves often try to attack
the race that you seeded from a different
timeline, and one of the other races that
you seeded might even try to invade the
planet while they attempt to expand
their territory. Therefore, your ship is
equipped with some weapons, and can
even be upgraded through some of the
inventions that you pick up from the
races that you have seeded.

In order to fight enemies, you press

The main view of your space ship: from
here you start your work

A unique twist is fighting off your alter-
ego in Millennia

 cycleup=200

 cycledown=200

First, I created a folder where I want
to place my games:

$ mkdir DOS

I also copied over the ISO that I
created from my Millennia – Altered
Destinies game, and placed them into
a folder called CDs on my ODROID
as well. To make things easier, I added
the following lines to the end of the
DOSBox configuration file, so I don’t
need to type them every time I want to
play the game:

[autoexec]

 mount c: /home/odroid/DOS

 c:

 imgmount d: /home/odroid/CDs/

Mil.iso -t iso

Now the system is completely
prepared and can launch the emulator.
The folder DOS will be automatically
mounted as my drive C:, and the CD
will mounted as D: as a CD-ROM drive.
Install the game as usual under DOS
and start it. The intro can be slightly
laggy at some scenes, but generally with
the settings above you should be able to
play the game in full speed.

To play the game, launch DOSBox
again with the following command,
so that DOSbox uses glshim (libgl-
odroid) in order to run with OpenGL
acceleration.

$ LD_LIBRARY_PATH=/usr/local/lib

dosbox

The game begins
After the introduction, you find

yourself in a distant galaxy a long, long
time ago (sounds familiar, doesn’t it?).
The game does not come with a tutorial,
which means that you are pretty much
thrown into action without knowing
what you must or can do. Therefore,

ODROID MAGAZINE	 11

Mil.iso

see what will happen in the future. Still,
the Agent is part of the race that you are
seeding and will have similar beliefs and
needs, which makes them sometimes
harder to work with, and each one needs
a different form of convincing.

Clicking on the button facing
westward in the upper navigation bar
brings you to the communication center.
Here, you can contact your agents and try
to solve their problems by guiding their
actions. Agnis will help you translate
what your agents are telling you. You
actually can see small video flicks of the
agents when they talk to you, making
it look like a video transmission. With
the help of Agnis, you try to solve their
issues. This includes topics like politics,
where you have to choose who should be
the leader of a race, plan assassinations
of rebel leaders in order to prevent
uprisings, or decide whether to help the
rebels and kill the tyrannical emperor.

However, you also have to give advice
on how they should protect themselves
from a harsh winter, how to prevent
wrong decisions that can later lead to
catastrophes, or help them come up with
new inventions to defend themselves
against aggressors. There are so many
different topics that you need to address,

planet and where you want to seed the
four different races. Each one of them
requires another habitat, but more on
that later.

Here you can set a course through
space and time in order to help the
species to develop themselves. Hint:
Traveling through time and space costs
fuel, and you can only reload fuel on gas
giants. That’s why it’s best practice to
seed your race on a planet that has a gas
giant near by as well. There’s a button

that turns on and off planets that have
no gas giant.

In the lower right corner of this
screen, you can see the histograph
button, which is your best friend. In
the histograph, you see all the events
that happen, and each step is 100 years
in development. New inventions are
marked with a green border around the
event, and a red border indicates a crisis.

This is where the game gets
complicated. You have to help the race
though crises, or even prevent crises
from happening in the first place. There
are often different solutions to a problem
with different outcomes, and this is
where the game also becomes interesting.

You have different means of
interacting with the development of a
race, and the most common way is to
communicate with a representative of
the species. This representative is called
an Agent, which is an altered being from
the species that you helped to develop.
He alone knows of your existence and
the greater plan. He knows that you
can alter events in time, and therefore

and hold the right mouse button and
move in the direction you want to go.
A small red dot shows you the direction
of the closest enemy. Hitting the left
mouse button will fire at your enemy.

Fighting your alter-ego is rather easy,
and it normally escapes after a couple
of hits. Fighting the other enemies
is somewhat harder, since they often
come in larger numbers, and while
you fight against one, another one can
come up from behind and attack you.
The red info panel on top will change
into a “back mirror”, showing you that
an enemy is behind you and attacking
you. Also, your ship will get damaged,
and if the damage is too big, you will
automatically flee from the scene and
head to the planet in the center of the
universe, which is the only planet where
you can’t seed any species. So you can’t
really die.

The main view can be reached
through the button pointing to north
on the upper left side of your navigation
bar. Navigation is probably the most
important system you have. If you
click the button facing east in the upper
navigation panel, you can get to the
galaxy map and the navigation system.

In the navigation system, you gather
all the information that you need in
order to plan your next step. The galaxy
map shows you what the galaxy looks
like and how the different species are
distributed. Since you start 10,000
years in the past, there is only one planet
inhabited with Microids, and none with
any other species. You have to choose a

Galaxy map of the navigation system,
not only for space travel but also for
time travel

The histograph shows all important
events on a races development and is
your most important tool

Two of the different species you have
to deal with in the game: are the insect-
like Entomon and the reptilian-like Rep-
toids

LINUX GAMING

ODROID MAGAZINE	 12

same invention, so it takes less time to
develop the species. This can be very
crucial, since when they hit an IQ of
300, you can give them the blueprints
for the missing part of your ship, which
may take thousands of years for them to
build. And they have to do it before they
are attacked by the Microids. Therefore,
speeding up the development is often
crucial for your goals.

Hint: If an invention gives your
people an IQ of 100, you can extract
that invention from its timeline, and can
go back to where they had an IQ of 80
and give them the invention a couple of
hundred years earlier to speed up their
development. Sometimes talking isn’t
enough to solve an issue on a planet,
and you can’t stop a dispute between
different factions and leaders by taking
an invention away. So you occasionally
have to take more drastic measures to
stop them from killing each other, or
just to make a point, even if it means
you have to go down to the planet and
blow up a building with the leader of an
enemy faction inside. Therefore, you
have a small dropship that is able to fly
directly to the planet’s surface where
you can attack a building and blow it

see how you changed the development
of the species. Hint: Since some of the
changes you invoked might turn out to
be an error a thousand years later, it’s best
to save the game before every interaction
with a species, in case you have to revert
what you did.

Another way to interact with the
species that you are trying to develop is
by using the transporter on your ship.
Similar to Star Trek, you can use the
transporter to bring objects to your ship
and back to the planet. The transporter
can be accessed through the southward
button in your upper left navigation bar.

First, you click the scan button
and watch an animation on how the
computer is searching for a temple. This
temple is used to interact with you. New
inventions will be placed there for you to

take away, or if it’s empty, you can place
an invention there yourself.

Transporting inventions can be
useful in different ways. Sometimes
an invention that looked like a good
idea, such as sonic drillers for mining
resources, can cause catastrophes later on
like earthquakes, and therefore should
be removed from society. But, you can
also speed up inventions by extracting
an invention, then going back several
hundred years and giving them the very

and this is the interesting part of the
game. Decisions that you make may
have tiny effects at first, but also may
lead to a big impact thousand years in
the future.

Should a minor mutation be
eradicated before it pollutes the “pure”
society, should it be ignored and later
be cured, or does this minor mutation
turn out to be important in the future?
Should you choose a strong leader, a
dictator, that will push development of
people through war and domination,
or should you choose to be the pacifist,
that wants peace and cooperation
with others? Will the dictator cause
stagnation once he’s satisfied and not see
room for changes, or will the thousand
years of peace with the pacifist lead to
a weak race that simply does not want
to venture out into space to conquer
new worlds? How can you prevent a
war between two sentient races on the
planet? Or should you rather encourage
it to speed development, even if it’s
through a military arms race? Is it better
to fight a climate change with big fires all
over the planet that keep a certain level
of heat, or will this permanently pollute
the environment? Or should they make
small fires and gather many people in
one space, even though this might lead
to shortage of food, cannibalism, or
simply false beliefs? Sometimes you
even have to solve some religious issues
to keep the species on track.

There are many more things you
have to decide, but you also have to deal
with the different beliefs and characters
of your agents. Some might be very
helpful and try to do whatever you say,
and others might need more convincing
at times, through logic explanations, or
through threads or using their beliefs
against them. Some might even try to
trick you.

If you are successful in whatever way,
a temporal storm will shake your ship,
and the history of the species changes.
You can then go back to the navigation
system and check the histograph again to

First get into orbit, then search for the
Temple

This is how you transport an invention
to your ship

Look at this, we now have a bow and ar-
rows

LINUX GAMING

ODROID MAGAZINE	 13

so that you can try again. I found
that the best solution is to seed one
species after another and concentrate
on finishing the development of one
species before going to the next. While
you could easily speed them all at once
and just jump through time and space
to fix their issues, it’s much easier to
concentrate on a single species, since
the different species are very different
in culture, and it can be hard to switch
your thinking between a peaceful hive
mind which only thinks of the evolving
of the species to a warrior race, which
only thrives through permanent
conflict and danger of extinction.

Try to empathize with the beliefs of
a species. An aggressive species might
not follow your orders if you ask them
nicely to do what you want, but if you
threaten to kill them all if they don’t
comply, they might be persuaded.
Or with a rather religious species,
you might have to think about how
to guide their beliefs to achieve your
goals, or give them a gentle reminder
as to why you sent them to that planet.

If possible, extract inventions and
place them earlier into the timeline
so that the species will develop faster.
Moving a handful of inventions one
or two hundred years earlier each time

facing button on the lower panel on the
left side. Jumping through time and
space will deplete your fuel supplies,
and you have to refill them on a gas
giant. Therefore, you do a fly-by where
you collect fuel from the gas giant
itself. Fuel is used to jump through
time and space, but also to repair the
ship if it was damaged in combat.
There are different sizes of gas giants,
which will refill different amounts of
fuel on a fuel fly-by. This might even
exceed the maximum capacity of fuel
you can have in your tanks, and also
slightly damage you ship if you collect
more than you can load. Also, flying
close by a gas giant will damage your
heat shields, and depending on the size
of the gas giant, this will be more or
less dangerous.

Hint: It’s very practical to settle
your species on a Planet that has its
own gas giant. On the galaxy map,
you can choose to only see planets that
have gas giants. That way, you don’t
have to fly to another system when you
have to refill or repair your ship.

Strategy advice
The most important thing to do

is to save often and at different save
slots, in case something goes wrong,

up with the weapons of your dropship.
This might be necessary to kill an
enemy leader which is unreachable for
your agent, or to kill an aggressor of a
different species that lives on the planet
as well and threatens to kill your people.

Sometimes it’s even necessary to make
a point so that your Agent will actually
do as you request.

Hint: Attacking the planet with the
dropship is very rare. If you attack
any building without “the need” to do
so, you will kill the entire species, no
matter how unimportant the building.
Which means you instantly know if
attacking the planet is the right thing
to do, or if you have to find a different
solution. The dropship is launched
from the eastward facing button on
the lower left panel of your ship.

The last system of your ship is the
refill and damage repair station, which
can be reached using the northward

Sending the dropship to the planets
surface is one of the best render videos
in the game, and changes depending on
the planet you visit

An important task is refilling your ship on a gas giant: the bubbling liquid is the amount
of fuel in your tanks

LINUX GAMING

ODROID MAGAZINE	 14

will still give you a thousand years of earlier development,
which might be the thousand years that you need in order to
finish the device for exiting the galaxy before the Microids
try to attack that species.

Take a close look at all events in the histograph, since
not all events or inventions seem to be important or have
any major influence, but may later cause serious issues. Try
to seed the different species as far apart as possible from
the Microids, but also from one each other as well. One
species might develop spacecrafts earlier than another race,
and when they start to expand their territory, they might
actually attack the species that you are currently attempting
to develop, and you will be forced to fight against your own
creation. So, make sure they do not “meet” each other too
soon.

Conclusion
I really like this game, and it’s one of my all time favorites,

although it might not be known to the majority, which is
why I call it a rare gaming gem. The game is fascinating,
and you have to develop an understanding of political
decisions as well as to cope with religious beliefs and other
aspects of a society. The different species are very unique,
and an approach that works with one species might fail with
another. The game is rich in variety, and often captivated
me for many hours trying to get a certain species just where
I wanted them to be.

The video cut-scenes were very good for the time, and I
feel a little pity for the person who had to wear the costumes
for each of the species, but it really fits the settings. If you
haven’t played this game yet, you should really give set aside
the time for it, and if you already played it, why not go and
give another play through on your ODROID with a giant
TV right in your living room?

When you finish that game, you will miss your dropship so much
that you will start playing it all over again!

LINUX GAMING

Kung Fury:
Street Rage
The best worst movie ever
made on youtube is now the
best worst ripoff game ever
by Bruno Doiche

If you managed to strand
yourself in an island with-
out your ODROID and

without access to Youtube,
you may have missed the
trash phenomenon that was
Kung Fury.
	 If you still don’t know
what I’m talking about, go to:
https://www.youtube.com/watch?v=bS5P_LAqiVg. I’ll wait for
you to watch and continue to read this. I know! Awesome,
right? Imagine if there was a game about this movie!? Well,
there is! Go get it!

https://play.google.com/store/apps/details?id=se.

hellothere.kungfurygame&hl=en

ANDROID GAMING

ODROID MAGAZINE	 15

https://www.youtube.com/watch?v=bS5P_LAqiVg.
https://play.google.com/store/apps/details?id=se.hellothere.kungfurygame&hl=en
https://play.google.com/store/apps/details?id=se.hellothere.kungfurygame&hl=en

As programmers and developers,
we generally use multiple
different tools to create

applications, and it’s not much different
with Android. We need tools that will
allow us to speed up the code, debug
and test cycle, while at the same not to
drive us nuts with debugging! Since the
beginning of this year, I personally have
switched to Android Studio for doing
Android development because Google
has stop maintaining the ADT (Android
Development Toolkit) for Eclipse. The
ADT was a plugin for Eclipse that was
contributed by Google to allow easy
development as it was the de facto IDE
(Interactive Development Environment)
for Java development. Now anyone that
is doing Android development will have
to use Studio as their primary tool.

Like any other software, Studio
sometimes contains bugs which get
fixed in subsequent releases. Because
it is an open source project, developers
don’t have to wait very long for the
next release, since as soon as patch or
new features are added into the source
repository, we can just download and
build it locally and start using it. In this
article, I will walk through the process
of building Studio from source under
Linux so you can use it as your day-
to-day IDE as well. I’m using Ubuntu
14.04 64-bit, however, you can use any
Linux distro or Mac OS for the task.

Prerequisites
You need to have the Oracle JDK

installed, which you can download from
http://bit.ly/196ebsY. Use the following

ANDROID DEVELOPMENT
Building Android Studio
by Nanik Tolaram

ANDROID DEVELOPMENT

command to create the relevant symlinks
to point the java, javac and the other
tools to the correct location of the JDK:

$ sudo update-alternatives

--install “/usr/bin/java” “java”

\

 “/home/nanik/Downloads/

jdk1.7.0_79/bin/java” 1071

$ sudo update-alternatives

--install “/usr/bin/javac”

“javac” \

 “/home/nanik/Downloads/

jdk1.7.0_79/bin/javac” 1071

$ sudo update-alternatives

--install “/usr/bin/javaws”

“javaws” \

 “/home/nanik/Downloads/

jdk1.7.0_79/bin/javaws” 1071

$ sudo update-alternatives

--install “/usr/bin/javap”

“javap” \

 “/home/nanik/Downloads/

jdk1.7.0_79/bin/javap” 1071

$ sudo update-alternatives

--install “/usr/bin/javadoc”

“javadoc” \

 “/home/nanik/Downloads/

jdk1.7.0_79/bin/javadoc” 1071

The following tools must also be
installed. After downloading, extract
the Apache Ant and place it in any local
folder.

• git
• Apache Ant (downloaded from ant.

apache.org)

Checkout Source
The source code for Studio is hosted

in the same place as the Android code
at http://bit.ly/1GWeQwC. The
step to checkout code is the same as
Android, using the repo tool, which
may be downloaded using the following
command:

$ curl https://storage.

googleapis.com/git-repo-

downloads/repo > \

 ~/bin/repo

$ chmod 777 ~/bin/repo

Then, use the following commands
to checkout the code:

$ mkdir studio-1.4-dev

$ cd studio-1.4-dev

ODROID MAGAZINE	 16

http://bit.ly/196ebsY
jdk1.7.0_79/bin/java
jdk1.7.0_79/bin/javac
jdk1.7.0_79/bin/javaws
jdk1.7.0_79/bin/javap
jdk1.7.0_79/bin/javadoc
ant.apache.org
ant.apache.org
http://bit.ly/1GWeQwC
https://storage.googleapis.com/git-repo-downloads/repo
https://storage.googleapis.com/git-repo-downloads/repo
https://storage.googleapis.com/git-repo-downloads/repo

ANDROID DEVELOPMENT

Figure 1 : Android Studio package for 3 platforms

Change the directory to studio-1.4-dev/tools/ideas and
make sure the /bin directory of the Apache Ant is included in
your PATH environment variable. For example, mine resides
in /home/nanik/apache-ant-1.9/bin. Once you are inside the
directory, start the build process by executing the ant command:

$ ant

You will see log similar to the one below when you complete
the build process.

Buildfile: /home/nanik/studio-1.4/tools/idea/build.xml

cleanup:

init:

 [mkdir] Created dir: /home/nanik/studio-1.4/

tools/idea/out

 [mkdir] Created dir: /home/nanik/studio-1.4/

tools/idea/out/tmp

build:

 [java] Buildfile: /home/nanik/studio-1.4/tools/

idea/build/gant.xml

 [java]

 [java] doGant:

 [java] ‘home’ is not defined. Defaulting to ‘/

home/nanik/studio-1.4/tools/idea’

 [java] default:

 [java] compile:

 …..

 …..

 [java] Build log (info) will be written to /

home/nanik/studio-1.4/tools/idea/out/tmp/system/

build-log/build.log

 [java] Loaded project /home/nanik/studio-1.4/

tools/idea: 264 modules, 80 libraries

 [java] [mkdir] Created dir: /home/nanik/

studio-1.4/tools/idea/out/dist.win.ce

$ repo init -u https://android.googlesource.com/

platform/manifest \

 -b studio-1.4-dev

$ repo sync -j4 --no-clone-bundle

Building
Building Studio is straightforward since it uses Ant as its

build process, and the snippets of the build.xml are shown
below. The build.xml file may be found inside the studio-1.4-
dev/tools/idea directory.

<!--

 This build script compiles IntelliJ IDEA. Options

include:

 -Dout=/path/to/out/dir, defaults to ${basedir}/

out

 -Dbuild=123, defaults to SNAPSHOT

 -Dtestpatterns=com.foo.*, defaults to empty

string

 -Dproduct=foo, defaults to studio

 -->

<project name=”IntelliJ IDEA Community Edition”

default=”all”>

 <property name=”project.home” value=”${basedir}”/>

 <condition property=”out.dir” value=”${out}”

else=”${project.home}/out”>

 <isset property=”out” />

 </condition>

 <condition property=”build.number” value=”${build}”

else=”SNAPSHOT”>

 <isset property=”build” />

 </condition>

 <condition property=”test.patterns”

value=”${testpatterns}”

 else=”org.jetbrains.android.*;com.

android.tools.idea.*;com.google.gct.*;com.intellij.

android.*”>

 <isset property=”testpatterns” />

 </condition>

 …..

 …..

 …..

 <target name=”all” depends=”cleanup,build,fullupda

ter”/>

</project>

ODROID MAGAZINE	 17

studio-1.4-dev/tools/ideas
apache-ant-1.9/bin
studio-1.4/tools/idea/build.xml
studio-1.4/tools/idea/out
studio-1.4/tools/idea/out
studio-1.4/tools/idea/out/tmp
studio-1.4/tools/idea/out/tmp
studio-1.4/tools/idea/build/gant.xml
studio-1.4/tools/idea/build/gant.xml
studio-1.4/tools/idea
studio-1.4/tools/idea/out/tmp/system/build-log/build.log
studio-1.4/tools/idea/out/tmp/system/build-log/build.log
studio-1.4/tools/idea
studio-1.4/tools/idea
studio-1.4/tools/idea/out/dist.win.ce
https://android.googlesource.com/platform/manifest
https://android.googlesource.com/platform/manifest
build.xml
build.xml
studio-1.4-dev/tools/idea
studio-1.4-dev/tools/idea
com.foo
project.home
out.dir
project.home
build.number
test.patterns
org.jetbrains.android
com.android.tools.idea
com.android.tools.idea
com.google.gct
com.intellij.android
com.intellij.android

instructions for locating your JDK and SDK when prompted.
Complete the screen shown in Figure 5 with the correct
location.

Enabling yourself to build the IDE yourself will allow you
to always stay up-to-date to the latest changes, which will give
you that extra tool or feature to assist you in developing your
application much faster.

 [java] [mkdir] Created dir: /home/nanik/

studio-1.4/tools/idea/out/dist.all.ce

 …..

 …..

 …..

 [java] [tar] Building tar: /home/nanik/

studio-1.4/tools/idea/out/artifacts/android-studio-

SNAPSHOT.tar

 [java] [gzip] Building: /home/nanik/

studio-1.4/tools/idea/out/artifacts/android-studio-

SNAPSHOT.tar.gz

 [java] [delete] Deleting: /home/nanik/

studio-1.4/tools/idea/out/artifacts/android-studio-

SNAPSHOT.tar

 …..

 …..

 [java] [jar] Building jar: /home/nanik/

studio-1.4/tools/idea/out/___tmp___/_0/updater.jar

 [java] [copy] Copying 1 file to /home/nanik/

studio-1.4/tools/idea/out

 [java] ------ default

 [java]

 [java] BUILD SUCCESSFUL

Running
When the build completes successfully, you will get Studio

packaged nside /studio-1.4/tools/idea/out/artifacts for 3
different platforms: Windows, Mac and Linux, as shown in
Figure 1.

Since I’m using Linux, I extracted the file android-studio-
SNAPSHOT.tar.gz, which yielded the contents shown in
Figure 2. To run Studio, just run the studio.sh inside the bin/
directory.

If you have the SDK installed, it will be automatically
detected by Studio. Otherwise, you will see a screen that tells
you it will need to download the SDK as shown in Figure 3.

Once the download completes, you will be presented with
a screen similar to Figure 4. All you have to do is follow the

Contents of android-studio-SNAPSHOT.
tar.gz

Download the SDK
Setup the SDK

Setting up the correct location of the SDK and JDK

Ready to create your awesome Android application

ANDROID DEVELOPMENT

ODROID MAGAZINE	 18

studio-1.4/tools/idea/out/dist.all.ce
studio-1.4/tools/idea/out/artifacts/android-studio-SNAPSHOT.tar
studio-1.4/tools/idea/out/artifacts/android-studio-SNAPSHOT.tar
studio-1.4/tools/idea/out/artifacts/android-studio-SNAPSHOT.tar.gz
studio-1.4/tools/idea/out/artifacts/android-studio-SNAPSHOT.tar.gz
studio-1.4/tools/idea/out/artifacts/android-studio-SNAPSHOT.tar
studio-1.4/tools/idea/out/artifacts/android-studio-SNAPSHOT.tar
studio-1.4/tools/idea/out/___tmp___/_0/updater.jar
studio-1.4/tools/idea/out
studio-1.4/tools/idea/out/artifacts
android-studio-SNAPSHOT.tar.gz
android-studio-SNAPSHOT.tar.gz
studio.sh
android-studio-SNAPSHOT.tar.gz
android-studio-SNAPSHOT.tar.gz

// Constructor without default

state (set to LOW)

public GPIOPin(OdroPin pin,

PinMode mode)

jODRO
Java Library for controlling
the GPIO Pins of the ODROID-C1
by @ChromoDev
edited by Rob Roy

Figure 1 - GPIO mappings

 led.shutdown();

 in.shutdown();

 }));

 while(true){

 led.toggle();

 System.out.

println(in.read());

 try {

 Thread.

sleep(delay);

 } catch

(InterruptedException ex) {

 Logger.

getLogger(Main.class.getName()).

log(Level.SEVERE, null, ex);

 }

 }

 }

}

First, you have to define a GPIO
pin, which is a software representation
of a hardware pin. For this pin, you
have to define which hardware pin you
want to select, for example (such as
OdroPin.GPIO_24), in which direction
the pin should work (such as PinMode.
OUT) and optionally the default value
(such as PinState.LOW). Then you can
manipulate or read the pin according to
Figure 1.

At the end of the program, you have
to shut down the pins, which resets them
to default (low and input) and unexports
them.

GPIOPin class
The GPIOPin class represents the

hardware pin in the code.

I started writing this Library because
I wasn’t able to find a Java Library
like Pi4j for the ODROID-C1. This

project is in development, when you
have some ideas for changed or new
features please contact me via the link at
the end of this article.

Installation
Download the project from http://

bit.ly/1RROajs and add the jOdro.jar
from the dist folder to your project.
Run the following command on your
Odroid to give the library the necessary
permissions:

$ sudo chmod 222 /sys/class/gpio/

export /sys/class/gpio/unexport

Usage
At the moment you can set and read

a pin. Here is an example project to get
you started with using jOdro:

public class Tester{

 private static final int delay

= 500;

 GPIOPin led;

 GPIOPin in;

 public void startTest() {

 led = new

GPIOPin(OdroPin.GPIO_24, PinMode.

OUT, PinState.LOW);

 in = new GPIOPin(OdroPin.

GPIO_23, PinMode.IN);

 Runtime.getRuntime().

addShutdownHook(new Thread(() ->

{

JAVA GPIO

ODROID MAGAZINE	 19

led.shutdown
in.shutdown
led.toggle
System.out.println
System.out.println
in.read
Thread.sleep
Thread.sleep
Logger.getLogger
Logger.getLogger
Main.class.getName
Level.SEVERE
OdroPin.GPIO
PinMode.OUT
PinMode.OUT
PinState.LOW
http://bit.ly/1RROajs
http://bit.ly/1RROajs
jOdro.jar
OdroPin.GPIO
PinMode.OUT
PinMode.OUT
PinState.LOW
OdroPin.GPIO
OdroPin.GPIO
PinMode.IN
Runtime.getRuntime

JAVA GPIO

public string toString()

PinMode
The PinMode class represents mode

of the pin in the code.

// Constant for input

PinState.IN

//Constant for output

PinState.OUT

// Returns the value which is

used to control the GPIOs

public string getCode()

// Returns the mode state as a

boolean

public boolean toBool()

// Returns the mode as a int

public int toInt()

// Returns the mode as a String

public String toString()

OdroPin
The OdroPin class represents the

address of the pin in the code.

// Returns the value which is

used to control the GPIOs

public int getOdroidCode()

// Returns the function of a

pin. If there is no function, it

returns the number.

public string getLabel()

// Returns the GPIO number in the

WiringPi Protokol

public int getWiringPin()

For questions, comments, or sugges-
tions, please visit the jOdro repository
on GitHub at http://bit.ly/1HweC2B.

// Constructor with default State

public GPIOPin(OdroPin pin,

PinMode mode, PinState state)

// Sets the state of the pin to

low

public void low()

// Sets the state of the pin to

high

public void high()

// Reverses the state of the pin

public void toggle()

// Reads the state of the pin

public PinState read()

// Shuts down the pin

public void shutdown()

// Returns the constant for the

pin

public OdroPin getPin()

// Returns the mode of the pin

public PinMode getMode()

PinState
The PinState class represents value of

the pin in the code.

// Constant for a low value

PinState.LOW

// Constant for a high value

PinState.HIGH

// Returns the value which is

used to control the GPIOs

public string getCode()

// Returns the state state as a

boolean

public boolean toBool()

// Returns the state as an

integer

public int toInt()

// Returns the state as a string

EXPERIENCE
PEACE
white noise
generator
by Bruno Doiche

Do you have insensitive cowork-
ers who think that noisy key-
boards are fashionable in 2015?

Is a roomba robot sweeping your floor
automatically while you are trying to
manage a couple of spreadsheets? If
this is the case, get a hold of a white-
noise generator!

$ sudo apt-get install sox

White noise

$ play -n synth 60:00 whitenoise

Brown noise

$ play -n synth 60:00 brownnoise

Pink noise

$ play -n synth 60:00 pinknoise

Enjoy your own personal space back
for an entire hour. If you like it and
want to keep it indefinitely, just adjust
the 60 minute timer, but mind your
eardrums once in a while!

TIPS AND TRICKS

ODROID MAGAZINE	 20

PinState.IN
PinState.OUT
http://bit.ly/1HweC2B
PinState.LOW
PinState.HIGH

Odroid-C1 Music Stand
Jamming with Style
by Ivan Reede

B eing part of a few music bands and an orchestra, I
have to carry around many binders of sheet music.
I got really tired of toting around all these binders,

figuring out which binders I needed for each event, and not
forgetting the specific binders required for each specific
band practice. To me, paper is a primitive media for sheet
music with many attached difficulties. Since I am both an
engineer and a musician, I decided to build an electronic
music stand.

I first tried using a 10” tablet to replace the paper sheets,
but found the screen to be too small. I had a nice app on
the tablet that was geared to music playing, but the screen
still wasn’t large enough. What I wanted was something
that would allow me to display two side by side pages,
like my music stand. Since I play the saxophone, both of
my hands are occupied, and using a touch screen to flip
pages was a problem.I tried a foot pedal, but that was just
another thing to tote around.

My tablet adventure came to an end when my flimsy
music stand was jarred and the tablet went crashing down
on a cement floor, cracking the screen. I definitely needed
something better. I started by writing a specifications
for the music stand. I envisioned using a standard stand,
a monitor, a computer and rechargeable batteries, all
mechanically fixed together as a single, functional unit.

Stand Specifications
Backplate: 13.5” x 19” back plate with 2” shelf with

safe round edges. Holes for a microphone clip holder. Tilt
adjustment knobs for customizable viewing angles.

Midpoint clutch adjustment system: Friction locking
knob, adjustable height anywhere from 24” (sitting) to
45” (standing)

Base: Sturdy tripod with non-slip rubber feet and
variable leg spread which fold easily for travel.

Monitor Specifications
I wanted to be able to display at least 2 pages of music

at a time, at close to normal 8.5” x 11” size. The monitor
had to fit nicely on to the stand and be firmly mounted
to the stand. It needed an anti-glare screen to avoid
reflection from stage lighting projectors and sunlight. It’s
image had to be visible outside, in broad daylight, and the
monitor had to be able to run on batteries for at least 6
hours between recharges.

Computer Specifications
The computer had to be small and light, with enough

storage to hold a large amount of music, with an HDMI
output to connect to the monitor and USB inputs to
allow easy data transfer, and be able to support WiFi and
Bluetooth peripherals. Like the monitor, it also needed

ODROID MUSIC

ODROID MAGAZINE	 21

to be able to run on batteries for at least 6 hours between
recharges.

I found a 22-inch HMDI monitor with an external 20V
DC power supply that was about the same width as the
music stand backplate. In order to secure the monitor to
the music stand, I removed its pedestal, removed all of its
plastic parts, and kept the metal frame inside it. I checked
and made sure that the monitor would clip in a sturdy
fashion to the pedestal frame without the plastic pieces.
With some patience, I drilled the music stand backplate
to accept the monitor’s base. That was quite easy, as the
pedestal frame uses screws to hold the plastic that normally
hides the frame, which was one problem solved. I then had
a music stand with an LCD screen.

The tablet OS was a limiting factor in practice. Tablet
operating systems are oriented toward information
consumption rather than information production.

Therefore, I set about finding a
suitable replacement. Linux seemed
like an interesting OS for this, and I
have used Linux for many years now.
Mostly, it’s open-source, and given
some time, you can make it do what
you want rather than what the OS
people want.

Initially, I tried using a Raspberry
Pi computer, which didn’t work very
well. It ran out of memory quite fast,
and, after loading about ten music
parts, it would slow down to a crawl.
I would take me approximately 20
minutes to load the music sheets I
needed for a concert and switching
pages could take up to 30 seconds.
It was good enough to practice my

parts at home, but surely unusable at a concert venue.
Still I tried, with my fellow musicians smiling at my slow
contraption with tons of wires, power supplies and a really
slow computer. They wondered how this could ever be
better than the good old paper music sheets.

Then came along a new candidate, the ODROID-C1.
It had twice the memory, four CPU cores, about twice the
clock rate, and a nice rectangular casing, so I bought three
of them and gave them a try. Suddenly, my electronic
music stand became much more viable. The 20 minutes
need for loading my music parts for a concert dropped
down to 45 seconds, which was great. The music stand
finally began making practical sense. I indeed could afford
45 seconds of set up time in a show. The pages could be
flipped around quite fast, but not fast enough yet.

After a few tries, I finally found a good PDF viewer
that was so fast and easy, I could just put all my music
in a folder, open that folder and chose my music live

from the folder with a simple double
click. I then added one desktop icon
per concert. I prefixed the file names
with a 2 digit number (00, 01, 02) so
that my music could be put in playing
order, and it was really starting to be
fun. Using a mouse, however, proved
to be a problem at concerts.

I still had a mobility problem,
which was how to power the unit.
I had to carry power packs, wires,
and more. Running around at each
concert venue to find power, string
extensions, taping them down to the
floor to avoid people tripping on them

ODROID MUSIC

Ivan’s choice of control is an awesome integrated keyboard with trackball.

Ivan surely made a great setup and managed the power supply

ODROID MAGAZINE	 22

was really inconvenient. I had to have a better solution,
so I bought a simple USB battery power pack, 10Ah, 2.1
amp output. Tests showed that the ODROID-C1 would
run 19 hours on that. Great! Now for the monitor, which
proved to be an unexpected challenge.

The monitor needed 20 volts, so I thought to use four 5
Volt USB batteries in series, but I was wrong. The monitor
can pull a quite impressive amount of inrush power when
it powers up, when it lights up, and when switching pages.
However, when the image is still and nothing changes,
the power drain goes down to a very minimal value. The
USB power packs turned off at random times while I was
playing a part, even though nothing changes on the screen.

ODROID MUSIC

The end result was that the USB
power packs would go off while I was
playing or while I was flipping pages. I
discovered that it could shut off either
because it wasn’t sensing a load at all
or, because it was sensing an overload.

The solution was to bypass the
USB battery regulating electronics
altogether. So, I tore apart the USB
power packs and removed the Li-ion
batteries. I ganged cells in parallel
in order to achieve a battery with
the required amp-hour capacity.
Connecting 5 of these batteries in
series gives 21 volts full charge and 17

volts when discharged. The monitor’s internal regulator
can work with that. Finally, I made a casing for the
batteries and bolted it to the music stand back plate. This
gave me a really functional set up with well over 6 hours of
autonomy, and no more pesky power cables. Better still,
most connections can stay in place, so setting up the music
stand is very similar to a normal paper based music stand.

As an emergency backup, I extended the bottom shelf
with a clip-on plate, so now, if I want, I can still put
paper sheets on the stand. It’s also very useful to hold my
keyboard. My fellow musicians are starting to find this set
up pretty useful. Better still, with a WiFi dongle in the
USB port and my cell phone as a hot spot, I can go get any
piece of sheet music I need from my home server, even if
I don’t have it preloaded on the stand. The C1 can house
the band’s entire music library stored on it with no more
printers needed, with no papers flying away in the wind on
outside performances. This is really, really cool!

By adding Lilypond and Frescobaldi applications, I can
even write music and make corrections to the music on the
fly. The music stand can play back music for practice and
record sound in performances and practice, which allows
me to listen later on and examine where to improve. It
also acts as tuning meter.

All in all, thanks to Hardkernel for this little technical
marvel! You made my music stand possible and soon,
it will be ready to go to production as a commercially
available, full size electronic music stand. With my latest
experiment, using VNC, an assistant operator can now
place sheets and music parts and messages directly on
my screen. I can finally concentrate on playing music,
rather than flipping pages. The next step is to add a bit of
software to the C1 in order to have a wireless network of
music stands for band and orchestra.

All his partitures at his fingertips in pdf format.

And the lighted charging ports are a great styling plus,

ODROID MAGAZINE	 23

What is DietPi?
At its core, DietPi is the “goto image” for a minimal Ubuntu installation:
We’ve stripped down and removed everything from the official Hardkernel image

to provide a bare minimal image that we call DietPi-Core.
With the additions of Ramlog, Dropbear SSH server, and tweaks to reduce

memory/cpu usage, the DietPi image comes pre-optimized and ready to run.

Core stats
Automatic filesystem expansion

DietPi will automatically expand your filesystems on the first run. This ensures
that you have access to the full capacity of your MicroSD card.

Ramlog
Reduces Filesystem IO and saves SDcard writes by moving /var/log to ram.

Dropbear
Lightweight SSH server installed by default. Can be

swapped with OpenSSH-Server by using DietPi-Software if
you require SFTP/SCP.

Wifi Support
By using DietPi-Config, you can quickly and easily connect

to your Wifi network.

Low Ubuntu memory footprint
< 98MB RAM usage on boot.

Low resources
11 total processes on boot.

Swapfile
100mb with swapiness setting 1 (to prevent out of memory errors).

Optional USB dedicated drive
If you plan on using a USB drive with your installation, DietPi will set up your

OS Spotlight
DietPi for ODROID-C1
by Daniel Knight

DIET PI

97 Used Megabytes, 12 process with HTOP, this is super slim

ODROID MAGAZINE	 24

DietPi has its own optimized software library selection

USB drive and automatically configure all future software installed with DietPi-
Software to utilize your USB device instead of the MicroSD.

Capabilities
Built from the ground up, DietPi-Software allows for popular, optional install

choices. All of which are preconfigured and “ready to run” with all the optimizations
and configurations done for you.

If you’re looking for a LAMP webserver stack (Nginx/MySql/Php), BitTorrent
server and Kodi combo installation, DietPi-Software will install, configure and
optimize them all. The optimizations applied include everything from php opcache
size, bittorrent server cache size, Nginx/php5-fpm thread counts, and many more.

By automatically applying unique optimizations specific to your hardware, DietPi
ensures you get the maximum performance from your ODROID device and the
software you choose to install.

The full list of DietPi’s software choices can be found online, please goto http://
fuzon.co.uk/phpbb/viewtopic.php?f=8&t=11#p11

Configuration
From inside DietPi-Config, you can easily change display options, connect to a

wifi network, set static IP address, modify CPU governor settings and many more
options. With the integration of Samba client, NoIp and CurlFtpFs, you can easily
connect to network file shares or give your device a permanent website address with
ease. DietPi-Config is a tweaker’s paradise.

Setup
Download the DietPi image, setup an optional dedicated USB hard drive, and

install the following DietPi optimized software with DietPi-Software:

• Owncloud - Your own personal backup system

• Transmission - BitTorrent server with web interface

• Kodi - The pinnacle media center

• LAMP webserver - Apache2, MySql, PHP-5 (used by Owncloud)

• Samba server - To access your BitTorrent downloads on this device remotely

DIET PI

ODROID MAGAZINE	 25

http://fuzon.co.uk/phpbb/viewtopic.php%3Ff%3D8%26t%3D11%23p11%0D
http://fuzon.co.uk/phpbb/viewtopic.php%3Ff%3D8%26t%3D11%23p11%0D

Installation
We will also cover the optional setup of NoIp with DietPi-Config and give your

ODROID-C1 some lightweight justice. What you’ll need:

• ODROID-C1.
• 2GB or greater MicroSD card.
• Internet Access (Ethernet or Wifi, required to complete the DietPi setup)
• A dedicated USB hard drive is recommended for BitTorrent Transmission server

and Owncloud installations. DietPi will automatically move your data to the USB hard
drive if installed.

The online guides and documentations are available here:
http://fuzon.co.uk/phpbb/viewtopic.php?f=8&t=9#p9

Download DietPi for ODROID-C1 at the following link:

http://goo.gl/UF6I0f

Write the image to your MicroSD card:

• Unzip/extract the DietODROID.7z image.
• Write the DietODROID_vxx.img image file to your MicroSD card.

The online documentation covers the methods for writing the image with
Windows and Linux.

• Plug the MicroSD card into your ODROID-C1 device and power it on.

• DietPi will automatically expand your filesystem and reboot twice when completed.

• When the login screen appears, enter username ‘root’ and password ‘raspberry’.

DietPi also comes preinstalled with a lightweight SSH server (Dropbear). Simply
use the IP address of your ODROID device and the login details above.

DietPi will now check for updates. If updates are applied, a system reboot prompt
will appear, press enter. When the login screen reappears, log back in.

USB drive
DietPi will prompt you to answer questions regarding your installation, so press

enter to continue.

• The USB dedicated hard drive screen will now appear. If you have a USB hard drive
available, select USB Install, press enter, and follow the onscreen instructions.

If your USB hard drive is already formatted with ext4 or NTFS, you will be given
the option to keep the existing data or format to ext4.

Software
From the main menu, select the DietPi Optimized Software option and press

enter.

DIET PI

ODROID MAGAZINE	 26

http://fuzon.co.uk/phpbb/viewtopic.php%3Ff%3D8%26t%3D9%23p9%0D
http://goo.gl/UF6I0f%0D
DietODROID_vxx.img

DIET PI

• Use the spacebar to select Kodi, Transmission, Owncloud. Then press enter.
• You do not need to select LAMP, as DietPi will automatically install LAMP for

Owncloud.
• When the “File Server Recommended” prompt appears, press enter.
• When the “Boot Options” prompt appears, select Yes and press enter. From here,

you can choose which software will automatically start on bootup. Select Kodi from
the list and press enter. When you’re done, press ESC to return to the main menu.

Selecting a file server
From the main menu, select the File Server option and press enter.

• Select Samba from the list of available file servers and press enter. Confirm when
the prompt appears to return back to the main menu.

Both SSH Servers and File Servers can be changed easily at any time by simply
running dietpi-software from the terminal. DietPi will automatically install your
new choice and remove your previous choice.

Starting the installation

When you are ready to install your selections:

Simply select Go Start Install from the main menu and press enter.

DietPi will now begin the installation process and automatically install, configure,
and optimize your choices.

Once DietPi has finished installing your installation choices the system will
reboot. This completes the installation of your software.

Using the installed software
Obtaining your IP address:

In this guide, we are using the IP address of 192.168.0.100. This will need to be
replaced with the IP address of your ODROID device.

You can obtain your IP address by running dietpi-config. Select the networking
options menu, then select either ethernet or wifi.

Using Kodi:
As we selected Kodi for the autoboot option with DietPi, this will load

automatically. If you didn’t select Kodi to boot from startup, you can run Kodi by
typing startkodi. You can also change the autoboot choice by running dietpi-config
from the terminal and selecting the AutoBoot option.

Accessing mounts / USB drive:
All of DietPi’s mounts can be found in the root filesystem under the folder /mnt/.

If you wish to browse your USB drive, simply browse to /mnt/usb_1.

Using Transmission (BitTorrent):

url = http://192.168.0.100:9091
username = root
password = raspberry

ODROID MAGAZINE	 27

http://192.168.0.100:9091%0D

Access downloaded data:
Since we installed the Samba server, we can access the downloads remotely.

From a Windows based OS, simply hold the Windows key and press R, then
enter the address below.

address = \\192.168.0.100\dietpi or \\dietpi\dietpi
username = root
password = raspberry
directory = downloads

Using Owncloud:
Access web interface:

url = http://192.168.0.100/owncloud

The first time you connect:

Create your admin account by typing in a new username and password.
Click Storage & Database to expand the submenu.
Database type = Select MySQL
DataFolder = Change to /var/lib/owncloud/data
Database User = root
Database Password = raspberry
Database Name = owncloud
Click Finish Setup to complete the Owncloud setup.

Using LAMP Webserver:
Access website:
url = http://192.168.0.100
local directory = /var/www

Access phpinfo:
url = http://192.168.0.100/phpinfo.php
Access PHP cache info:
url = http://192.168.0.100/apc.php

MySql Details:
username = root
password = raspberry

Installing Nolp:
Using NoIp will allow you to point a web url address (eg: http://MyWebsite.noip.

biz) to your ODROID device, regardless of your Internet IP address.

Registering for NoIp:
Create your free NoIp account by going to https://www.noip.com/sign-up and

select a web address for your account.

Activating your account with DietPi:
DietPi-Config is a feature rich configuration tool for your device. One of its main

features is the ability to easily setup and install NoIp client, Samba client, and, FTP
client.

DIET PI

ODROID MAGAZINE	 28

http://192.168.0.100/owncloud%0D
http://192.168.0.100
http://192.168.0.100/phpinfo.php
http://192.168.0.100/apc.php
http://MyWebsite.noip.biz
http://MyWebsite.noip.biz
https://www.noip.com/sign-up

DIET PI

Figure 1 - “DietPi - Figure 1 - DietOdroid_htop.png”

Figure 1 - “DietPi - Figure 1 - DietOdroid_htop.png”

From the terminal, run dietpi-config
Select the Networking Options menu
Select NoIp from the list and select Install to install it. DietPi will now automatically

install NoIp.
When the installation is completed, select NoIp from the menu again.
From here you can enter your NoIp email address and password. Press enter on all

the remaining options.

If you entered your details correct, the NoIp current status will change to Online.

Open router ports:
If you want to access your website outside of the local network, you will need

to enable port forwarding on your router. This will allow external access to your
website. Simply enable TCP port 80 and point it to your ODROID device.

ODROID MAGAZINE	 29

DietOdroid_htop.png
DietOdroid_htop.png

media players.
Being an ODROID-U3 owner when

I found out about this application,
the first thing I did was check to see
whether it was available on armhf
platform. On the Popcorn Time and
ODROID forums however, I found
that Popcorn Time is not supported on
armhf Linux devices. After some small
researching on the Internet, I figured
out that theoretically there is no reason
why this application could not run on
my ODROID-U3. All I needed was
to find the nw.js (aka node-webkit)
application runtime binaries for armhf.
This task was quite challenging because
none of the binaries I found were able
to run hardware
a c c e l e r a t e d
WebGL (or in
other words to use
OpenGL ES 2.0),
demo applications,
nor decode video
and audio files.
So I tried to build
my own node-
webkit framework
binaries based

The original Popcorn Time
application was a multi-
platform, open-source

BitTorrent client which included an
integrated media player. The program,
and its forks of the same name are
free alternatives to subscription-
based video streaming services such as
Netflix. Popcorn Time uses sequential
downloading to play copies of films
listed by the website yts.to (earlier
yify-torrent.com & yts.re), also known
as YIFY (although other trackers can
be added and used manually).

Following its inception, Popcorn
Time quickly received positive media
attention, with some comparing the
application to Netflix due to its ease of
use. After this increase in popularity,
the program was abruptly taken down
by its original developers on March 14,
2014 due to pressure from the MPAA.
Since then, Popcorn Time has been
forked by several other development
teams to maintain the program and
produce new features. One of this forks
is available at https://popcorntime.io/.
The officially supported platforms are
Mac, Windows, Linux (32 and 64 bit)
and Android.

Thanks to its modern and easy
to use graphical user interface, the
application became very popular
around the world. Newer versions of
Popcorn Time are able to download
and play content provided by other
trackers, and are also also to use the
media players installed on the system
for playing the content. You can also
set the application to keep the deleted
files for watching later, even with other

on tutorials that I found on different
forums, but each attempt failed
because some dependencies were
not satisfied, or some error occurred
during the build process.

NW.js is an application runtime
based on Chromium and node.js.
You can write native applications in
HTML and JavaScript with NW.js.
It also lets you call Node.js modules
directly from the DOM and enables
a new way of writing native applica-
tions with all Web technologies. It was
created in the Intel Open Source Tech-
nology Center.

Popcorn Time
A MEDIA LOVER’s DREAM
by László Leonard

POPCORN TIME

Playing a video using HTML 5 with
NW.js

Popcorn TIme not only
have a cute logo, but also
is a revolutionary way to get
your media

ODROID MAGAZINE	 30

nw.js
yts.to
yify-torrent.com
yts.re
https://popcorntime.io/
NW.js
node.js
NW.js
Node.js
NW.js

in the Chromium
installation direc-
tory. Beside re-
placing this file I
also had to replace
icudtl.dat file too
in the node-web-
kit archive.

This time
the node-webkit
framework was
able to play videos

with HTML 5’s video tag as the pic-
ture below illustrates:

At this point I had the framework
needed for running the Popcorn Time
application with hardware acceleration,
and was able to decode some video
and audio files. All I needed to do
now was to port the project to the
armhf platform. After downloading
the project from the Git repositories I
tried to build it, but the build failed
due to the unknown architecture. To
get it to work, I had to add the arm
support to the Popcorn Time desktop
project and to its dependency Node-
webkit-builder project. To do this,
fortunately I only had to modify two
files in my Git Project.

The result was a working instance of
Popcorn Time for my ODROID-U3.
Due to the lack of codecs for
Chromium, some videos can’t be
decoded yet, or the decoding is slow
and the video lags especially when I play
Full HD videos. I hope that updated
drivers for the Mali GPU will solve
these issues and that the next releases

of Chromium will
implement more
codecs. Beside
these issues, I
found out that
opening torrent
files from other
trackers did not
function correctly,
but I am working
on this problem.
I really hope that

Since NW.js is Chromium based
and my Chromium browser is able
to run hardware accelerated WebGL,
I thought that the way to get the
framework to use OpenGL ES 2.0
instead of OpenGL 2.0 on NW.js
would be similar to Chromium. So I ran
my demo applications with the --use-
gl=egl flag and the magic happened.
Suddenly my application was running
with hardware acceleration. I was able
to run some games developed with
WebGL on my ODROID.

Although my framework was run-
ning in hardware accelerated mode, I
was not able to decode video and audio
files so I kept pursuing my research.
As one of the Popcorn Time develop-
ers pointed out, the problem was in
the libffmpegsumo.so file which didn’t
have most of the codecs implemented.
Since my Chromium browser was able
to decode a lot of videos, I tried to
use the libffmpegsumo.so file located

POPCORN TIME

this issue will be fixed before you read
this article.

Two projects can be found on my
Git repository for enthusiasts. One
of the projects contains the necessary
files and tutorial for installing the
application, and the other contains a
tutorial for building the project.

These repositories are available at
the following locations:

https://git.popcorntime.\

io/laslaul/popcorn-time-\

installation-guide-armv7

https://git.popcorntime.io/\

laslaul/popcorn-time-\

building-guide-armv7

This build was only tested on
an ODROID-U3 running Ubuntu
14.04.2 and I would really appreciate
feedback from users, especially from
those who are running the application
on a different device or operating
system version.

Before downloading and installing
Popcorn Time you should check your
country’s policy on proprietary con-
tent, or make sure that the content you
are downloading or uploading is free
and legal. Note that Popcorn Time is
frequently referenced as the pirate ver-
sion of Netflix.

References

Wikipedia, Popcorn Time,
http://en.wikipedia.org/

wiki/Popcorn_Time (2015. may)
GitHub, Nw.js project,

https://github.com/nwjs/

nw.js/ (2015. may)

Popcorn Time’s front page

 Popcorn Time playing a video

ODROID MAGAZINE	 31

icudtl.dat
NW.js
NW.js
libffmpegsumo.so
libffmpegsumo.so
https://git.popcorntime.io/laslaul/popcorn-time-installation-guide-armv7%0D
https://git.popcorntime.io/laslaul/popcorn-time-installation-guide-armv7%0D
https://git.popcorntime.io/laslaul/popcorn-time-installation-guide-armv7%0D
https://git.popcorntime.io/laslaul/popcorn-time-building-guide-armv7%0D
https://git.popcorntime.io/laslaul/popcorn-time-building-guide-armv7%0D
https://git.popcorntime.io/laslaul/popcorn-time-building-guide-armv7%0D
http://en.wikipedia.org/wiki/Popcorn_Time
http://en.wikipedia.org/wiki/Popcorn_Time
Nw.js
https://github.com/nwjs/nw.js/
https://github.com/nwjs/nw.js/

Please tell us a little about yourself.
I am a robotic perception engineer,

university instructor, and maker from
Texas. I have worked on a wide range
of robotic platforms (aerial, ground,
underwater, aquatic surface, and
industrial) and embedded systems
(ODROID, Raspberry Pi, Intel Atom,
and microcontrollers). Most of my
experience comes from research and
development, both in academia and
industry. I am always interested in the
evolving world of robotics, and the
computational approaches required to
make them do useful work.

My main focus right now is engineering
education, particularly at the university
level for students who are nearing the
start of their professional career. I enjoy
teaching practical, multidisciplinary,
high-demand skills that students may not
necessarily learn in their core classes. I
also work on outreach projects in order
to get kids interested in engineering at
a young age. The best way that I know
of to do this is to show students a robot
that does something really cool, and then
explain all of the mechanical skills that
it takes to design a robot platform, the
electrical skills that it takes to establish
communication and control, and the
computer science skills that it takes to
add intelligence and decision making
capabilities.

How did you get started with computers?
I grew up with Oregon Trail. Most of

my friends died of dysentery.
Seriously, all of the computers that

I had while growing up were always
second-hand machines that someone

Meet An ODROIDian
Chris McMurrough,
Robotics Expert
edited by Rob Roy

MEET AN ODROIDIAN

else was getting rid of. I had to upgrade
half of the components just to get them
to be usable, and I was always running
into problems that I had to solve myself.
The first “new” computer that I ever
bought was a PC running Windows ME,
which was the worst OS ever made. It
also had a design flaw that would cause
it to overheat and lock-up randomly, so I
was forced to find my own workarounds
and tweaks to run the original Starcraft.
Basically, I learned a lot about computers
just to play Starcraft.

What drew you to the ODROID platform?
I do a lot of computer vision and

robotic perception work. Basically, I need
Linux and a bunch of computationally
intensive libraries to do my work. The
ODROID platforms really give you the
most “bang for the buck” compared to
everything else that I am aware of. All
embedded Linux boards have problems
when you are porting code developed
on a desktop or laptop computer, but I

have been able to solve any significant
problem I have ever encountered by
taking advantage of the wealth of
information on forums.

Which ODROID is your favorite?
My all-time favorite is the

ODROID-U3. It is small, fast, and
offers the highest value when compared
to everything else that is currently
available on the market. I am also
partial to the X2, because I had such a
good experience working with it as my
first ODROID board.

How did you become so proficient in robotics?
The very first robot that I built was

a simple maze solver using the original
Lego Mindstorms kit in my high school
computer science class. This really was
my first experience doing any sort of
embedded programming, sensor data
acquisition, and motor control. After
that, I was hooked. When I started
my undergraduate degree, I joined a

Although Chris is not yet involved with the creation of the Iron Man armor, he surely is
the guy among us that is the closest to get it done

ODROID MAGAZINE	 32

university robotics team and built a
simple ground robot with students from
other engineering majors. I enjoyed
the interdisciplinary and competitive
experience that these competitions
provided, and to this day I believe that
“right” way to learn robotics is to jump
in and start building.

Towards the end of my undergraduate
studies, I started working in a control
systems research laboratory as an intern.
I gained valuable experience in control
theory and electronic systems and
decided to stick around and work on
a master’s degree. For the next couple
of years, I ended up building a flapping
wing micro air vehicle as a proof of
concept for a theoretical control law
that some people much smarter than
me invented. This is where I picked up
mechanical and electrical engineering
skills, which together with computer
engineering, sort complete the robotic
“triad”.

So at this point, I really enjoyed what
I was doing and decided that another
4 or so years of this stuff wouldn’t be a
bad idea. I went right into a PhD after
completing my master’s degree and
continued to work on robotic platforms.
Around this time, a close family member
of mine was diagnosed with ALS, a
neuro-degenerative disease that renders

patients unable to move or speak.
They were given a medical eye tracking
computer, which at the time required a
lot of intervention to calibrate and keep
in good working order. I learned a lot
about the device’s shortcomings, and
started to develop my own prototypes
and algorithms hoping to drive down
cost and improve performance and
usability. Towards the end of my PhD,
I was experimenting with controlling
ground robots (wheelchairs and small
UGVs) with eye gaze, which was when
I bought an ODROID-X2!

After graduating, I developed
perception software for industrial
material handling robots. I then accepted
a faculty position at my university, and
now I teach. I really love my job, and
it gives me reason to continue to learn
new skills and experiment with new
commercial products. After all, no
student wants to learn the inside-out
workings of an embedded system that
was popular 10 years ago.

What motivated you to create the popular
Robotics edition image on the ODROID
forums?

Most of my research work required
Linux, OpenCV, Point Cloud Library,
and ROS. When I bought the X2, I
quickly realized that setting up my base

Chris enjoys sightseeing in the world, and here he is at the
Parthenon in Greece

environment was more complicated
than what I was used to while working
on my x86 development machines. I did
a lot of research and found solutions to
each of the compilation and installation
problems I was encountering along the
way, and finally had a nice stable image
with everything set up just how I like
it. I made a backup image of the SD
card “just in case” and one day I decided
to post it to the forums to give back
to the community that had generously
helped me with tips and ideas. I started
getting a lot of replies on the original
thread, and kept answering questions
as they would come in. Shortly after I
posted the X2 image, I bought a U2 and
modified my same image, then posted
as I did before. The folks at Hardkernel
kept making new, innovative products,
and before long I was getting requests to
release images for other boards.

I was surprised that my images grew
in popularity the way that they did.
Hardkernel sent me some free stuff as
part of their monthly giveaway, and
the whole thing sort of took off from
there. Hardkernel and the ODROID
community in general have been very
supportive of my work, and I try to
release new images as official Ubuntu
releases and new products are made
available.

What hobbies and interests do you have apart
from computers?

MEET AN ODROIDIAN

ODROID MAGAZINE	 33

I am an amateur machinist and
rapid prototyping enthusiast. Recently,
I have been working on various CNC
machines (3D printers, routers, milling
machines, and lathes). I am very excited
by the maker movement happening
right now, and having a garage full of
automated manufacturing equipment is
becoming more and more realistic every
day. I am also experimenting with less
technologically advanced manufacturing
methods, such as woodworking and
metal casting. Basically, all I do is make
stuff.

Are you involved with any other computer
projects unrelated to the ODROID?

I have made a few minimal
contributions (a couple of minor bug
fixes) to Point Cloud Library. As part
of my job as a university instructor, I
assign and mentor our senior capstone
projects. These change each semester,
and I tend to push a lot of robotics
and embedded systems based projects.
I place a strong emphasis on practical
skills in my classes, and I spend about
half of the lecture time giving demos and
tech talks about exciting new gadgets
(ODROIDs, 3D printers, and computer
vision). I enjoy seeing the concepts that
my students learn become implemented
in their final projects, and I continue to
make and tinker in my personal time so

that I always have
something new to
teach.

What type of
hardware innovations
would you like to see
for future Hardkernel
boards?

I would like to
see some progress
made in the GPU,
particularly with
Linux. One of my
interests is parallel

programming with
multicore GPUs,
but my only real

experience in this area is with the
NVIDIA CUDA toolkit. Hardkernel
has made good progress in this area, and
I am excited to see how this develops.

What advice do you have for someone who wants
to learn more about programming?

Start with a programming language
that has lots of examples online, and
maybe something with some nice
GUI tools. Most people who start
programming want to make a simple
GUI app as their first program after
the quintessential “Hello World”
console app, but this can be tricky and
cumbersome to set up for someone who
is not familiar with IDEs, makefiles,
compilers, etc. I really like the .NET
framework with C#, making a GUI
and doing most tasks in a Windows
environment is pretty simple. Python
is also a good starting language, but
personally, I think a good background
in C++ is something that separates the
professionals from the rest.

The most important thing is not to
worry about breaking things. When
you are starting out in programming or
even embedded development, you will
break stuff. Sometimes you break code,
sometimes you break your hardware, but
if you aren’t breaking something, you
aren’t learning anything!

MEET AN ODROIDIAN

ODROID Talk
Subreddit

 http://www.reddit.com/r/odroid

ODROID
Magazine is

now on
Reddit!

And across the world he went, as we can find our robotics
expert chilling on a great skyline in Shanghai

ODROID MAGAZINE	 34

http://www.reddit.com/r/odroid

