
Year One
Issue #10
Oct 2014

SCREAMING FAST
AND FURIOUS

USING THE CONKY
HARMATTAN
PERFORMANCE
WEATHER MONITOR

ODROID SMART POWER
USE AND PROTOCOL ANALYSIS

THE ODROID-XU3 HETEROGENEOUS
MULTI-PROCESSING OCTA-CORE MACHINE!

Magazine

I2C communication between U3 and Arduino • Linux PSP emulation

• OS SPOTLIGHT:
 QUIET GIANT
• ANDROID
 DEVELOPMENT

CONFIGURING
XBOX 360

CONTROLLERS
ON RETROARCH

ODROIDODROID
Magazine

What we stand for.
We strive to symbolize the edge of technology,
future, youth, humanity, and engineering.

Our philosophy is based on Developers.
And our efforts to keep close relationships with
developers around the world.

For that, you can always count on having the
quality and sophistication that is the hallmark of
our products.

Simple, modern and distinctive.
So you can have the best to accomplish
everything you can dream of.

We are now shipping the ODROID U3
devices to EU countries! Come and visit
our online store to shop!

Address: Max-Pollin-Straße 1
85104 Pförring Germany

Telephone & Fax
phone : +49 (0) 8403 / 920-920
email : service@pollin.de

Our ODROID products can be found at
http://bit.ly/1tXPXwe

http://www.hardkernel.com
mailto:service@pollin.de
http://bit.ly/1tXPXwe

ODROID MAGAZINE	 3

EDITORIAL

ODROID Magazine, published monthly at http://magazine.odroid.com, is your source for all things ODROIDian.
Hard Kernel, Ltd. • 704 Anyang K-Center, Gwanyang, Dongan, Anyang, Gyeonggi, South Korea, 431-815
Makers of the ODROID family of quad-core development boards and the world’s first ARM big.LITTLE architecture
based single board computer.
Join the ODROID community with members from over 135 countries, at http://forum.odroid.com, and explore the
new technologies offered by Hardkernel at http://www.hardkernel.com.

The Hardkernel team took a trip this month to Santa Clara, Califor-
nia for the ARM TechCon convention. At the booth were several dem-

os of the current hardware, including the XU3, U3 and VU. Mauro
and Justin created an amazing version of Ubuntu 14.04 running an
Android virtual machine via KVM. You can see a picture of it in

the ARM TechCon article on page 37.
We also had a fun contest go-

ing on the exhibition floor to see if
anyone could beat us at Angry Birds.

One participant walked away with a
complete U3 kit for scoring 3 stars with
a single bird!

Thanks to everyone who stopped by the booth
to share their love of ODROIDs. Much of the

show was focused on wearables such as smart
watches and micro-controllers. Hardkernel’s powerful combi-

nation of hardware innovation and free software support (including
Ubuntu 14.04 and KitKat 4.4.4), along with a commitment to open-source when-
ever possible, make ODROIDs unique.

In this issue, we feature software tutorials for several of the Hardkernel
products, including the ODUINO Arduino and the Smart Power supply. Nanik also
continues his Android Development series with an article on building your first
custom Android application, a TicTacToe game.

We also have a great comparison between PPSSPP (a PlayStation Portable
emulator) running on both Android and Linux, step-by-step instructions on get-
ting your Xbox 360 wireless controllers working with the multi-console emulator
RetroArch, and tips on getting your favorite MSX games running again! Jussi
once again finds a way to combine the ODROID with the great outdoors, and
shows how to set up the Conky Harmattan desktop monitor in Ubuntu for display-
ing the local weather forecast.

http://magazine.odroid.com/
big.LITTLE
http://forum.odroid.com/
http://www.hardkernel.com/

ODROID MAGAZINE	 4

STAFF

ODROID
Magazine

Rob Roy,
Chief Editor

I’m a computer
programmer living

and working in San
Francisco, CA, design-

ing and building web applications
for local clients on my network
cluster of ODROIDs. My primary
languages are jQuery, Angular JS
and HTML5/CSS3. I also develop
pre-built operating systems, custom
kernels and optimized applications
for the ODROID platform based
on Hardkernel’s official releases, for
which I have won several Monthly
Forum Awards. I use my ODROIDs
for a variety of purposes, including
media center, web server, applica-
tion development, workstation, and
gaming console. You can check out
my 100GB collection of ODROID
software, prebuilt kernels and OS
images at http://bit.ly/1fsaXQs.

Bo
Lechnowsky,
Editor

I am President of
Respectech, Inc., a

technology consultancy
in Ukiah, CA, USA that I founded in
2001. From my background in elec-
tronics and computer programming, I
manage a team of technologists, plus
develop custom solutions for companies
ranging from small businesses to world-
wide corporations. ODROIDs are one
of the weapons in my arsenal for tack-
ling these projects. My favorite devel-
opment languages are Rebol and Red,
both of which run fabulously on ARM-
based systems like the ODROID-U3.
Regarding hobbies, if you need some,
I’d be happy to give you some of mine
as I have too many. That would help
me to have more time to spend with my
wonderful wife of 23 years and my four
beautiful children.

Bruno Doiche,
Art Editor

Secured his comput-
ing necromantic skills

after bringing a fiber
optics switch back to life, getting his
Macintosh back from death, getting a
PS3 back from death, getting his fian-
cee T400 back from death (that was a
old style dd data transplant), and man-
aging how to handle the cold innards of
his steady job data center.

Manuel
Adamuz,
Spanish
Editor

I am 31 years old and
live in Seville, Spain,

and was born in Granada. I am mar-
ried to a wonderful woman and have
a child. A few years ago I worked as a
computer technician and programmer,
but my current job is related to quality
management and information technol-
ogy: ISO 9001, ISO 27001, and ISO
20000. I am passionate about comput-
er science, especially microcomputers
such as the ODROID and Raspberry
Pi. I love experimenting with these
computers. My wife says I’m crazy be-
cause I just think of ODROIDs! My
other great hobby is mountain biking,
and I occasionally participate in semi-
professional competitions.

Nicole Scott,
Art Editor

I’m a Digital Strat-
egist and Trans-

media Producer
specializing in online

optimization and inbound marketing
strategies, social media directing, and
media production for print, web, vid-
eo, and film. Managing multiple ac-
counts with agencies and filmmakers,
from Analytics and Adwords to video
editing and DVD authoring. I own
an ODROID-U3 which I use to run a
sandbox web server, live in the Califor-
nia Bay Area, and enjoy hiking, camp-
ing and playing music. Visit my web
page at http://www.nicolecscott.com.

http://bit.ly/1fsaXQs
http://www.nicolecscott.com

ODROID MAGAZINE	 5

INDEX
ARDUINO I2C - 6

ANDROID DEVELOPMENT - 9

8 BIT COMPUTING - 14

LINUX GAMING - 15

OS SPOTLIGHT: QUIET GIANT - 20

ODROID-XU3 - 22

RETROARCH - 24

ODROID SMARTPOWER - 25

CONKY AND HARMATTAN - 33

MEET AN ODROIDIAN - 38

ARM TECHCON - 37

ALL ABOUT DEBIAN - 32

ODROID MAGAZINE	 6

Arduino pins
A4 (SDA), A5 (SCL), 5V, GND

U3 pins
pin 1: SCL (gpio199)
pin 3: SDA (gpio200)
pin 2: 1.8v
pin 7: GND

In order to establish the connection
between the Arduino and the U3, we
must first connect the corresponding
pins. For instance, the Arduino SDA
must be connected to the U3 SDA, and
so on. But, it is impossible to connect
the pins directly because Arduino needs
5 volts and the U3 needs 1.8 volts. So, a
logic level converter is required.

I tried both the Logic Level Convert-
er BiDirectional (http://bit.ly/1puPKJl)
and the PCA9306 Level Translator
Breakout (http://bit.ly/1BdMyZf), and
both worked great. I ultimately decided
to use the PCA9306 model because it
offers a dedicated I2C bus voltage level
translator.

SPI
- allows multiple “slave” devices.
- requires separate SS line for each

slave device.
- operates at extremely high speeds

(millions of bytes per second).
- master controls all communications

(slaves can’t talk directly to each other).
- communications must be well-

defined in advance, and you can’t send
random amounts of data whenever you
want

I2C
- allows multiple “slave” devices, with

support for up to 1008 slave devices.
- supports a multimaster system
- devices can communicate at

100kHz or 400kHz.
- requires only two wires

Because I need all my modules to
communicate with each other using one
mutual bus without adding extra wiring
when adding new devices to the system,
I decided to go with I2C. The following
two sections will explain how to estab-
lish bidirectional I2C communication
between my favorite modules.

Hardware I2C
connection

Both modules have dedicated pins
for I2C communication: SDA, SCL,
VCC, GND.

INTER-INTEGRATED CIRCUIT
COMMUNICATION (I2C)
ESTABLISHING A
CONNECTION
BETWEEN U3
AND ARDUINO
by Bennyamin Bergelson

This article describes a way to es-
tablish an I2C communication
between an ODROID-U3 and

an Arduino module. It shows what
should be done at both the hardware and
software level in order to successfully ex-
change data. I will also briefly compare
the most popular communication pro-
tocols that exist today, and explain what
data types can be transferred between
the two modules.

Communication
Protocols

Several communication protocols ex-
ist that allow different electronic mod-
ules to communicate with each other.
I will not go over all of them, but will
concentrate on the UART, SPI and I2C
protocols:

UART
- suited for communications be-

tween only two devices (one bus per
two devices)

- slow transfer speeds (9600 -
115200 bits per second, sometimes up
to 230400 bps)

- the devices must “speak” at the
same speed (baud rate)

- only one device should transmit,
otherwise the devices receive gibberish

ARDUINO I2C

The awesome Arduino peripheral for U3

http://bit.ly/1puPKJl
http://bit.ly/1BdMyZf

ODROID MAGAZINE	 7

struct S { char c, long l; };

 Structs in arduino have no pad-
ding, so the size of this struct is 5 bytes
(1 byte(char) + 4 bytes(long)). If you
check the size of this struct on a U3 us-
ing sizeof(S); you will find that its size is
8 bytes because of the padding. So, you
need wrap the definition in the follow-
ing functions in order to compensate:

#pragma pack(push, 1)

:

#pragma pack(pop)

You can read more on data structure
alignment at http://bit.ly/1pfjV8m. Be-
low is an example of the software part
of the code that I wrote. In the follow-
ing example, the U3 acts as a master and
the Arduino as a slave. The master sends
a struct to slave, then the slave prints it
on a LCD screen and sends the struct
back to the master. I attached a small
LCD screen in order to validate that the
passed numbers were received correctly.
Simply set the Arduino device as slave by
passing its address to the “Wire.begin()”
method using the following code.

Arduino code

#include <Wire.h> #include <Liq-

uidCrystal_I2C.h>

#define I2C_ADDRESS 0x09

LiquidCrystal_I2C lcd(0x27,20,4);

// set the LCD address to 0x27

for a 16 chars and 2 line display

struct Numbers {

char c; long l; float d;

};

Numbers numbers = {0};

int isNewData = 0;

int bytes_to_read;

int buf_size;

char str[100];

char double_str[100];

void setup() {

lcd.init(); // initialize the lcd

lcd.backlight(); lcd.clear();

Wire.begin(I2C_ADDRESS); // Start

ARDUINO I2C

I2C Bus as a Slave (Device Number

9)

Wire.onReceive(receiveEvent); //

register event

Wire.onRequest(requestEvent); //

register event

}

void loop() {

if (isNewData) {

lcd.clear();

lcd.setCursor(0,0);

sprintf(str, “%02x : %d”,

numbers.c, numbers.c);

lcd.printstr(str);

lcd.setCursor(0,1);

sprintf(str, “%08lx : %ld”,

numbers.l, numbers.l);

lcd.printstr(str);

lcd.setCursor(0,2);

sprintf(str, “%08lx : %s”,

(long)*((long*)&numbers.d),

dtostrf(numbers.d, 0, 3, double_

str));

lcd.printstr(str);

lcd.setCursor(0,3);

sprintf(str, “%d : %d”, buf_size,

bytes_to_read);

lcd.printstr(str);

isNewData = 0;

}

delay(100);

}

// function that executes whenev-

er data is received from master

// this function is registered as

an event, see setup()

void receiveEvent(int howMany) {

byte * buf = (byte*)&numbers;

buf_size = sizeof(numbers);

for (int i = 0; i < buf_size;

++i) {

buf[i] = Wire.read();

}

bytes_to_read = howMany;

isNewData = 1;

}

// function that executes when-

ever data is requested by master

// this function is registered as

an event, see setup()

void requestEvent() {

Software I2C
connection

Before going deep into the code ex-
amples, I will first explain what data
types are valid for transferring between
the modules. It is important to under-
stand that if one module sends data and
the other can’t decode it, then that data
is junk to the receiver.

By valid data types I mean that their
binary representation and sizes are the
same in both modules. With a bit of
adaptation, you can run the code from
http://bit.ly/YeO2VW on the Arduino
and see the sizes of the variables on Ar-
duino.

After comparing the output of both
modules, you can see that variables like
char, long and float have the same size.
The “char” and “long” data types are
simple integer variables that only take up
a few bytes, so it’s quite safe to say that
they can be passed without any problem,
but what about float?

Floating point numbers are divided
into two parts: mantissa and exponent.
If the sizes (in bits) of these parts are
different, then it is impossible to send
floating point numbers, in spite the fact
that they have the same size. I couldn’t
find the amount of bits that are assigned
to the mantissa on a ATmega328p, so I
simply compared the hexadecimal repre-
sentation of the variables on both mod-
ules using this method:

printf(“%08lx”,

(long)*((long*)&float_number);

Since the representations on both
modules were similar, I concluded that it
is safe to pass float numbers too.

There are two methods of sending
several number. The first is to send them
one by one, and the other is to arrange
them into a struct, and send the whole
struct as one piece. If you decide to use
the second option, you must ensure that
the padding in both modules is the same.

As an example, look at the following
struct data definition:

http://bit.ly/1pfjV8m
lcd.init
lcd.backlight
lcd.clear
Wire.begin
Wire.onReceive
Wire.onRequest
lcd.clear
lcd.setCursor
lcd.printstr
lcd.setCursor
lcd.printstr
lcd.setCursor
lcd.printstr
lcd.setCursor
lcd.printstr
Wire.read
http://bit.ly/YeO2VW

ODROID MAGAZINE	 8

// Specify the address of the

slave device

if (ioctl(file, I2C_SLAVE, SLAVE_

ADDRESS) < 0) {

fprintf(stderr, “Failed to ac-

quire bus access ‘%x’ and/or talk

to slave\r\n”, SLAVE_ADDRESS);

exit(1);

} else {

printf(“*** Acquired bus access

to a slave device adr: %x.\r\n”,

SLAVE_ADDRESS);

}

Numbers numbers;

numbers.c = 117;

numbers.l = 876543210;

numbers.d = 1234.567;

printf(“*** Send to the i2c

bus.\r\n”);

printf(“numbers.c = %d.\r\n”,

numbers.c);

printf(“numbers.l = %ld.\r\n”,

numbers.l);

printf(“numbers.d = %lf.\r\n”,

numbers.d);

// Write a byte to the slave

if (write(file, &num-

bers, sizeof(numbers)) !=

sizeof(numbers)) {

fprintf(stderr, “Failed to write

to the i2c bus adr: %x.\r\n”,

SLAVE_ADDRESS);

exit(1);

} else {

printf(“*** Wrote to the i2c bus

adr: %x.\r\n”, SLAVE_ADDRESS);

}

// Read a byte from the slave

Numbers n = {0};

if (read(file, &n, sizeof(n)) !=

sizeof(n)) {

fprintf(stderr, “Failed to read

from the i2c bus.\r\n”);

exit(1);

} else {

printf(“*** Read from the i2c

bus.\r\n”); printf(“n.c = %d.\

r\n”, n.c);

printf(“n.l = %ld.\r\n”, n.l);

printf(“n.d = %lf.\r\n”, n.d);

}

ARDUINO I2C

Wire.write((byte*)&numbers,

sizeof(numbers));

}

Next, update your U3 kernel to the
latest version (see http://bit.ly/1rhz52C).
Then, open terminal in superuser mode
and type:

modprobe gpiopca953x

modprobe i2cgpiocustom

bus0=4,200,199

Now, the U3 can use pins (200,199)
in its 8 pin header for I2C communica-
tion. Run the compiled code with root
privileges, otherwise the system blocks
the access to I2C device.

Code Example

#include <unistd.h>

#include <errno.h>

#include <stdio.h>

#include <stdlib.h>

#include <linux/i2cdev.h>

#include <sys/ioctl.h>

#include <fcntl.h>

#include <string.h>

#define SLAVE_ADDRESS 0x09

#pragma pack(push, 1) // exact fit

no padding

struct Numbers {

char c; long l; float d;

};

#pragma pack(pop) // back to

whatever the previous packing

mode was

const char * i2cDevName = “/dev/

i2c4”;

int main() {

// Open up the I2C bus

int file = open(i2cDevName, O_

RDWR);

if (file == 1) {

fprintf(stderr, “Bad device name

%s\r\n”, i2cDevName); exit(1);

} else {

printf(“*** Device ‘%s’ opened

successfully.\r\n”, i2cDevName);

}

close(file);

return 0;

}

Additional Reading

I2C
http://bit.ly/1rnjxaX
Serial Communication
http://bit.ly/1v6gHtp
SPI
http://bit.ly/1v6gJ4w
Data type size
http://bit.ly/1DAyPzs
Data structure alignment:
http://bit.ly/1ytfn7T

This robot just learned about the new XU3

Wire.write
http://bit.ly/1rhz52C
http://bit.ly/1rnjxaX%20%0D
http://bit.ly/1v6gHtp
http://bit.ly/1v6gJ4w
http://bit.ly/1DAyPzs
http://bit.ly/1ytfn7T

ODROID MAGAZINE	 9

$ sudo update-alternatives --install \

“/usr/bin/java” “java”

“/home/nanik/Downloads/jdk1.7.0_67/bin/java” 1071

$ sudo update-alternatives --install \

“/usr/bin/javac” “javac”

“/home/nanik/Downloads/jdk1.7.0_67/bin/javac” 1071

$ sudo update-alternatives --install \

“/usr/bin/javaws” “javaws” \

“/home/nanik/Downloads/jdk1.7.0_67/bin/javaws” 1071

$ sudo update-alternatives --install \

“/usr/bin/javap” “javap” \

“/home/nanik/Downloads/jdk1.7.0_67/bin/javap” 1071

$ sudo update-alternatives --install \

“/usr/bin/javadoc” “javadoc” \

“/home/nanik/Downloads/jdk1.7.0_67/bin/javadoc” 1071

If you run the command java -version from Terminal, you
will get the following output:

$ java -version

java version “1.7.0_67”

Java(TM) SE Runtime Environment (build 1.7.0_67-b01)

Java HotSpot(TM) 64-Bit Server VM (build 24.65-b04,

mixed mode)

Upon completing the Java installation, you will also need to
download the Eclipse Kepler IDE from http://bit.ly/1v5GssU.

Extract the .gz file into a directory, such as /home/nanik/
Downloads/eclipse.
Download the Android Development Toolkit (ADT) for
Eclipse. Follow the excellent steps at http://bit.ly/1vcZCMD.

Once you have entered the URL into the “Help > Install
New Software” section, and selected the Development Tool to

In this article, I discuss the process of creating your own
Android app, as well as how to set up an Android develop-
ment environment. I recommend starting with a fresh in-

stallation of Ubuntu 14.04 64bit, but feel free to use any Linux
distro that you are comfortable with, as long as you have all the
relevant development tools available. If you want to test it out
first, you can also run Ubuntu as a virtual machine. First, you
must have a basic understanding of the Java programming lan-
guage, or at least have done some coding in Java, which is the
de-facto programming language in the Android world.

This article will explain the different parts of an Android
application using the Tic-Tac-Toe example applications that are
bundled inside the Android source code. You can view many
different sample applications from Google’s Android source
code repository at http://bit.ly/1vkVLNE.

The sample app can be checked out from http://bit.
ly/1ytcbsR. There are plenty of resources on the Internet dedi-
cated to teaching about Android apps, and the best place to
start is by visiting Google’s Android Development training
website at http://bit.ly/1cB6RmA.

Development setup
For this article, I will be using Ubuntu 14.04 (64bit), and

will walk you through installing the different tools. There are
2 main Interactive Developement Environments (IDEs) that
you can use: Eclipse or Android Studio. For this article I will
be focusing on Eclipse.

Download JDK 1.7 from the Oracle website at http://bit.
ly/196ebsY. In my case, I downloaded the file “jdk-7u67-
linux-x64.tar.gz”.
Extract the .gz file into a separate directory. My file was ex-
tracted to “/home/nanik/Downloads/jdk1.7.0_67”.

Run the following command from Terminal, which in-
structs Ubuntu as to which version of the Java tools is installed:

ANDROID
DEVELOPMENT
CREATING A CUSTOM
ANDROID APPLICATION
By Nanik Tolaram

ANDROID DEVELOPMENT

ODROID MAGAZINE	 10

to work with the sample app. Checkout the sample from
Github, then follow the steps below to import it into Eclipse.

Select File -> New -> Other and select “Android Project from Existing
Code”, then click “Next”.

Select the root directory of the sample app that you checked
out from Github, and select “Copy projects into workspace”,
then click “Finish”.

show the “Available Software” screen. Click on Next, follow
the instructions, and it will complete the installation.

After restarting Eclipse, it will ask you to download and
install the Android SDK. Upon completing the download, ac-
cept the license to continue the installation.

Besides the SDK, the installer will download the Build Tool
as shown in the screenshot.

Click on “Open SDK Manager”, then select the one shown
highlighted in the screenshot while deselecting all the other se-
lections.

There are 2 libraries that need to be installed in order to
complete the installation inside Ubuntu. Open your terminal
and execute the following command:

sudo apt-get install lib32stdc++6

sudo apt-get install lib32z1

Upon completing the build tool installation restart Eclipse.
To check if the installation was successful, right click the “Pack-
age Explorer” tab, and you will see an Android selection screen
as shown in the image above.

Sample app setup
After completing the Eclipse installation, you are now ready

Android project creation wizard

Downloading the Android SDK

 Installing Developer Tools in Eclipse

Android package selection of SDK tools

Creating a new Android project

Selecting a workspace after installation

ANDROID DEVELOPMENT

Installing the Android SDK

ODROID MAGAZINE	 11

To run the app on the ODROID, plug the micro USB to
your computer USB, then right click on the project and select
“Run As > Android Application”. Eclipse will automatically
detect the ODROID (make sure there are no other Android
devices connected) and will run the app on your board.

AndroidManifest.xml
An Android application does not have a “main” entry point,

but does have an XML file that describes the application con-
tent. This file is the first file that is read by Android in order
to know what is the content of an application, and how it can
start the application. This file is called AndroidManifest.xml,
and looks similar to this:

<manifest xmlns:android=”http://schemas.android.com/

apk/res/android”

 package=”com.example.android.tictactoe”

 android:versionCode=”1”

 android:versionName=”1.0”>

 <uses-sdk android:minSdkVersion=”8” />

 <application android:icon=”@drawable/icon”

android:label=”@string/app_name”>

 <activity android:name=”.MainActivity”

 android:label=”@string/app_name”>

 <intent-filter>

 <action android:name=”android.intent.

action.MAIN” />

 <category android:name=”android.in-

tent.category.LAUNCHER” />

 </intent-filter>

 </activity>

 <activity android:name=”com.example.android.

tictactoe.GameActivity” />

 </application>

</manifest>

You can read the following document to get an in depth un-
derstanding of the different element inside the file at http://bit.
ly/1msJ804. The main elements that we need to understand
are detailed below:

<uses-sdk..>

This element lets you decide which version of Android to
target. In our sample, we are targeting a minimum SDK of
version 8 (KitKat is version 20).

<activity..>
This element specifies the Activity class name that we have

declared for our application.

The TicTacToe project code in the Eclipse Project Explorer

You will see the project in Eclipse as shown in the screenshots
below:

ANDROID DEVELOPMENT

The Eclipse Import Project window

Don’t forget that in the movie Wargames, the Global Thermonu-
clear War simulation was ended with a simple game of TicTacToe

AndroidManifest.xml
AndroidManifest.xml
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
com.example.android.tictactoe
android.intent.action.MAIN
android.intent.action.MAIN
android.intent.category.LAUNCHER
android.intent.category.LAUNCHER
com.example.android.tictactoe.GameActivity
com.example.android.tictactoe.GameActivity
http://bit.ly/1msJ804
http://bit.ly/1msJ804

ODROID MAGAZINE	 12

As this code snippets shows, the GameActivity class is called
by calling the startActivity(..) method that is part of the Activi-
ty class. The startActivity(..) method is a method that instructs
Android to execute the specified Activity class that has been
declared. In our example, we have declared the Intent using
the variable “i”.

Android uses interprocess communication between same or
different apps extensively. This allows applications to ‘reuse’
other parts of an application as if it were part of its own inter-
nal libraries using the Binder infrastructure. To use this facil-
ity, any app that wants to do interprocess communication uses
an Intent object. This can be seen in our code snippet above
where we defined the variable “i” to create a new Intent class
with GameActivity as one of the parameters.

View
When you run an Android app, what is drawn on your

screen is based on a class called View. This class is the building
block of your user interface, since everything you need to put
on the screen must be put on the View. To explore further into
the UI world of Android, you can take a look at the documen-
tation available at http://bit.ly/1ss7o8p.

The standard view is not suitable for our sample app on An-
droid, since it only provides a view for a widget like a textbox

or checkbox. Con-
trolling the view
gives the app flex-
ibility with respect
to how the UI will
look.

In our sample
app we have a class
called GameView
that extends the
View class:

public class GameView extends View {

 public static final long FPS_MS = 1000/2;

}

<intent-filter..>
In Android, everything the process communicates with

one another is through Intent, which is like a message queue.
This element indicates to Android which action the Activity
is linked to. For our sample app, the android.intent.action.
MAIN is linked to our Activity, which means that this Activ-
ity class will be the first class to be executed by the framework
when the application launches.

Activity
Android app runs by subclassing the Activity class, then fol-

lowing the Activity Lifecycle in order to run an application. In

our app, we have 2 different classes (MainActivity and Game-
Activity), and as you can see in the code, both of these classes
extend the Activity class and override onCreate(..) and onRe-
sume(..).

When an app runs for the first time, it will call the onCre-
ate(..) method, and subsequently call the onStart(..) method.
When our app goes to the background when the user switches
to different app, the onPause(..) method is called, and when we
switch back to our app by bringing it to the foreground, the
onResume(..) method is called. The flow is simple and easy to
remember since the app has only 2 running states: foreground
or background.

Notice that we have 2 different elements – MainActivity
and GameActivity. The way Android decides which class to
run when the app starts up is by looking at the <intent-filter>
element. The MainActivity has an <action..> element android.
intent.action.MAIN, which tells Android that this is the main
class that will have to be run for the app.

The MainActivity class is the main entry point of the
whole app, which in turns call the GameActivity when the app
launches:

private void startGame(boolean startWithHuman) {

 Intent i = new Intent(this, GameActivity.class);

 i.putExtra(GameActivity.EXTRA_START_PLAYER,

 startWithHuman ? State.PLAYER1.getValue()

: State.PLAYER2.getValue());

 startActivity(i); }

A TicTacToe game
in progress

Android application activity lifecycle

ANDROID DEVELOPMENT

http://bit.ly/1ss7o8p
android.intent.action.MAIN
android.intent.action.MAIN
android.intent.action.MAIN
android.intent.action.MAIN
GameActivity.class
i.putExtra
GameActivity.EXTRA
State.PLAYER1.getValue
State.PLAYER2.getValue

ODROID MAGAZINE	 13

 public GameView(Context context, AttributeSet attrs)

{

 ...

 mDrawableBg = getResources().getDrawable(R.

drawable.lib_bg);

 setBackgroundDrawable(mDrawableBg);

 mBmpPlayer1 = getResBitmap(R.drawable.lib_

cross);

 mBmpPlayer2 = getResBitmap(R.drawable.lib_

circle);

 ...

}

 ...

 ...

 private Bitmap getResBitmap(int bmpResId) {

 ...

 Resources res = getResources();

 Bitmap bmp = BitmapFactory.

decodeResource(res, bmpResId, opts);

 if (bmp == null && isInEditMode()) {

 ...

 Drawable d = res.getDrawable(bmpResId);

 ...

 }

}

ANDROID DEVELOPMENT

Contents of the res/ folder

After generating the res/ folder in
Eclipse

The logic to build the cubes, along with the state of the
player, is inside the onDraw(..) function. Everytime Android
needs to refresh the view, it will call this method, so it is impor-
tant that code runs in this method are as quick and efficient as
possible, in order to avoid lag when users are interacting with
the app.

Handler

Android is designed to rely on asynchronous processing,
where messages flow back and forth easily between apps. Be-
cause of this design, apps utilize a Handler class, which acts like
a “callback”, where it processes incoming messages. The sample
app makes use of this class for blinking the cell containing the
user selection.

@Override

 public boolean onTouchEvent(MotionEvent event) {

 ...

 ...

 if (state != State.EMPTY) {

 // Start the blinker

 mHandler.

sendEmptyMessageDelayed(MSG_BLINK, FPS_MS);

 }

The handler sends a message (MSG_BLINK) at a particular
interval defined by the variable FPS_MS. The Callback class
that the app defines to receive the MSG_BLINK messages are
defined like this:

 private class MyHandler implements Callback {

 public boolean handleMessage(Message msg) {

 if (msg.what == MSG_BLINK) {

 ... }

 }

 return true;

 }

 return false;

 }

 }

Resources
(Graphics and Strings)

Android apps store strings, images and other binary resourc-
es inside a separate folder that can be referred to by the app.
All of the resources are stored inside the res/ folder. During the
compiling and packaging process, the file inside this folder will
be stored as shown in the screenshot.

The generated R.java file contains an ID for each of the de-
fined resources in our app. The way in which the app accesses
resources is by using the built-in Android API:

R.drawable.lib
R.drawable.lib
R.drawable.lib
R.drawable.lib
BitmapFactory.decodeResource
BitmapFactory.decodeResource
res.getDrawable
State.EMPTY
mHandler.sendEmptyMessageDelayed
mHandler.sendEmptyMessageDelayed
msg.what
R.java

ODROID MAGAZINE	 14

The resulting TicTacToe.apk file after building

ANDROID DEVELOPMENT

8-BIT COMPUTING
BONANZA
HAVE FUN PLAYING YOUR
FAVORITE MSX GAMES
by Bruno Doiche

Enjoy all the rage of modern computing ranging from
1983 to 1995 emulating the one and only MSX. Before
the appearance and great success of Nintendo’s Family

Computer, MSX was the platform for which major Japanese
game studios, such as Konami and Hudson Soft, produced
video game titles. The Metal Gear series, for example, was
originally written for MSX hardware, so game on!

$ wget http://sourceforge.net/projects/openmsx/\
 files/openmsx/0.10.1/openmsx-0.10.1.tar.gz
$ tar -zxvf openmsx-0.101.tar.gz && \
 cd openmsx-0.10.1
$ sudo -s ./configure && make -j4 && make install

You may need to install the following dependencies:

GLEW,
libao,
libogg,
libpng,
libtheora,
libvorbis,
libxml2,
OpenGL,
SDL,
SDL_ttf,
Tcl,
zlib

Copy your favorite MSX .rom file to~/.openMSX/share/
software/, then type openmsx <gamename.rom>.

TIPS AND TRICKS

APK
Your app will be packaged into a single APK file. If you

would like to know more about the internal workings of an
.APK, please refer to my article in the September 2014 issue.

Installation
You can run your application from Eclipse by right clicking

on the project name, then selecting Run As -> Android Ap-
plication. If you are encountering issues running the app from
Eclipse, as I sometime experience when running inside a virtual
machine, you can also run it from command line by using adb:

1.Type adb devices to make sure you have a connection to
the ODROID.
2.Use the command adb install TicTacToe.apk to install the
app once the connection has been established. The location
of the apk is normally inside the /bin folder on your Eclipse
workspace.

TicTacToe.apk
http://sourceforge.net/projects/openmsx/files/openmsx/0.10.1/openmsx-0.10.1.tar.gz
http://sourceforge.net/projects/openmsx/files/openmsx/0.10.1/openmsx-0.10.1.tar.gz
openmsx-0.101.tar.gz
gamename.rom
1.Type
2.Use
TicTacToe.apk

ODROID MAGAZINE	 15

There are many benefits to playing
games on Linux over Android,
and for this I’ll compare the per-

formance of the well-known PlayStation
Portable (PSP) emulator called PPSSPP,
available for both Andoid and on Linux.
Since I’m not experienced at using An-
droid, all the screenshots used in this ar-
ticle are captured from the Linux version
of PPSSPP..

PPSSPP settings
To establish a meaningful compari-

son between the two systems, I used the
same settings on both systems at 1080p
resolution:

Frameskipping:	 3
Auto frameskip:	 ON
Rendering Resolution:	 2x PSP
Mipmapping: 	 OFF
Hardware transform: 	 ON
Software skinning: 	 ON
Vertex Cache: 	 ON
Lazy texture caching:	 ON
Retain changed textures: 	 ON
Disable slower effects: 	 ON
Spline/Bezier curves quality: 	 Medium

Everything else is defaulted to the
standard settings, with no hacks acti-
vated. As a benchmark, I set the “Show
FPS counter” option to BOTH, which
gives a detailed view of the performance
of the emulator as a ratio and percentage:
40/60 (100%). The first number is the
current Frames Per Second (FPS), which
shows how fast the emulator is currently
rendering. The second number is the

LINUX GAMING
PSP EMULATION COMPARISON
BETWEEN LINUX AND ANDROID
by Tobias Schaaf

expected FPS, which varies from game
to game, as well as from scene to scene.
Some games only want to run at 30 or
40 FPS in a certain scenes (for example,
during video playback), while others
might always want to run at 60 FPS.

The last number in % gives the cur-
rent speed of the emulator, compared to
the required speed. 100% means the
game is running in full speed. This is
possible even if the emulator is only able
to render 40 out of the 60 FPS which
it really wants to have, because the
frameskip option is enabled. If the value
drops significantly (80% or less) you will
experience lagging in the game.

Overview
I used my ODROID GameStation

Turbo image to test the games on Linux
and Android, running with the latest
4.4.4 KitKat version provided by Hard-
kernel. The settings are not very dif-
ferent from the default settings, except
with some speedup options activated,
which are probably not even needed,
and frameskip, which mostly increases

performance.
I noticed that the resolution at which

games are rendered is primarily responsi-
ble for how well the emulator performs.
The default settings only use 1x PSP res-
olution for rendering, which is the low-
est setting. This means that the games
will be rendered in 480x272, which as
you can imagine, looks blocky when
stretched to a 1920x1080 screen resolu-
tion. With the 2x setting, you can get
920x544 resolution, which looks nice at
1080p. Some games are even able to run
in 3x PSP resolution under Linux at a
decent speed.

Just to see the difference, try running
a game in 1x PSP, followed by chang-
ing the settings to 2x and 3x resolution,
and you’ll understand why this is also
responsible for the performance impact.
If you choose “1:1 Auto” as a resolution,
PSP will be rendered in a resolution clos-
est to the native screen resolution,which
is very resource intensive.

Games
I chose 4 games to compare Linux

LINUX GAMING

Asphalt: Urban GT2 (PSP) is one of many great games available using a PPSSPP emulator

scene.Some
scene.Some

ODROID MAGAZINE	 16

You’ve earned it if you can win against Ling Xiaoyu in Tekken 6 - she is not easy to beat!

and Android performance on PSP:

Tekken 6 – a representative of a fight-
ing game, since many people seem to
like it
Ultimate Ghosts ‘n Goblins – a plat-
former / jump and run, which was one of
the harder Arcade games
Asphalt Urban GT2 – a racing game,
because of its high resource usage
Naruto Shippuuden: Kizuna Drive –
another fighting game with missions
instead of personal combat

I decided to try out Tekken 6 first,
since it’s very popular, and is constantly
mentioned in the ODROID forums.
Although the 3D graphics are not out-
standing, it tends to be laggy and use a
lot of resources, which makes it a good
test for comparison between Android
and Linux.

Tekken 6 - Android
The Android version of Tekken 6

works without any major issues, and the
game can be fuly enjoyed at a playable
speed. The introduction is slightly laggy,
and jumps between 20 and 40 FPS (out
of 60 FPS), since it’s using frameskip.
There are some horizontal lines during
the movie playback which means the
game is a little out of sync during play-
back.

The menu is running at 30 out of 60
FPS, which is noticeable when moving
around quickly in the menu, and sound
sometimes stutters. Gameplay varies be-
tween 12 and 20 FPS, with the overall
speed between 95 and 100%, with rare
cases of lag. The overall experience on
Android is acceptable, and with some
tweaking of the emulator, it should be a
good enough to play normally.

Tekken 6 - Linux
Tekken runs noticeably better on

Linux than on Android. The intro runs
at a steady 60 FPS, with no horizontal
lines or other issues during movie play-

back. Menu speed remains at 60 FPS as
well, with no sound issues and very flu-
ent reactions. The graphics look great,
the shadow and light effects are there,
and it runs at full speed. Framerates
during gameplay remain between 15
and 25 FPS. The action is very fluent,
and gives a feeling of a fast fighting style.
Overall the experience of Tekken 6 on
Linux is better than on Android.

Tekken 6 is a nice fighting game for
PSP, although I prefer games like Soul
Calibur over Tekken or Street Fighter.
Both the Android and Linux versions are
fully playable, with only minor graphical
issues. Both run fast enough to elimi-
nate any slowdown and lag in gameplay,
although the Linux version is a little

faster than the Android version, particu-
larly during video playback and menu
navigation.

Overall I would give compatibility
on ODROID for Tekken an 8 out of 10
for Android and a 9 out of 10 for Linux.
This game is definitely a WIN.

Ultimate Ghosts ‘n
Goblins

As a platformer, this game is more of
a 2D than a 3D game without using a lot
of fancy graphics. As a result, the game
makes very efficient use of the CPU and
GPU, and is a good example of a light-
weight game running on PPSSPP.

Ultimate Ghosts ‘n Goblins is a re-
make of the old arcade game Ghosts ‘n

Tekken 6 (PSP) gameplay is very fast, and the graphics show off the power of the ODROID

LINUX GAMING

ODROID MAGAZINE	 17

Ultimate Ghosts ‘N Goblins (PSP) is one of the hardest arcade games of all time

LINUX GAMING

Goblins, which was one of the hardest
games of its time. The new version is
not much easier than its predecessor, but
is a rather fun game to play. It’s worth
noting that the original game had an is-
sue with a bloom effect in the first level
which made the screen glitch, and the
performance dropped dramatically un-
til level 2 was reached. This issue was
actually fixed within the PPSSPP emu-
lator code, and since version 0.9.8, the
game can be played without experienc-
ing bloom issues.

UG’nG - Android
Similar to Tekken 6, the intro runs

at 30/60 FPS, but at least it doesn’t have
horizontal lines or other graphical ab-
normalities. This game is hard, and you

should use a gamepad with Android,
since playing it with a keyboard is nearly
impossible. Menu control works great,
and so do the sound and music.

However, the actual gaming experi-
ence on Android is nearly unplayable.
PPSSPP for Android is only able to
render about 8 to 13 FPS, which makes
the game very laggy. This is odd, since
the game is not that demanding, and
was even running on older versions of
PPSSPP on Linux very well, even when
it still had the bloom issue, even though
it wasn’t optimized for hardfloat images.

UG’nG - Linux
The Linux experience with Ultimate

Ghosts ‘n Goblins is perfect, with abso-
lutely no problems. The intro, menu,

and music are all in full speed (60/60
FPS), and the game runs without any
noticeable speed drop. There isn’t much
else to say about the Linux version, ex-
cept that it’s very fun to play!

I don’t understand why the Android
experience is so bad with this game.
Still, the intro, music and menu seems
to work well, and with some tweaking,
the Android version can probably run
UG’nG at 15/30 FPS. On Android, I
give UG‘nG 5 out of 10 points, while
the Linux version gets 10 out of 10 for
compatibility and user experience.

Asphalt Urban GT2
This was one of the first racing games

that I played on the PSP. It’s not that
hard as a racing game, but you also don’t
have many options compared to Need
for Speed or Midnight Club. However,
you still have plenty of different cars and
tracks to play. You start with a very high
amount of nitro, and it’s really fun to
kick your opponents (and the cops) out
of the way for some extra cash.

Although this game is rather small
(a 400 MB .cso rom file), it’s one of the
hardest games to get running well on the
ODROID. Ever since I got my first ver-
sion of PPSSPP working, this game has
been far from running at full speed. It
was always a performance test for me,
since sometimes not even my laptop,
which has a modern NVIDIA gaming
graphics card, is able to play it at full
speed.

Asphalt Urban GT2 is a very nice
racing game with a wide variety of tracks
and cars. However, the gaming experi-
ence can vary a lot depending on your
settings and the version of the emulator
that you’re using. A wrong setting can
cause a previously working version to
run at less than 10 FPS.

It also seems to use a lot of special ef-
fects that aren’t completely supported on
PPSSPP yet, so it’s a really useful game
to check for improvements and bug fixes
as developers release new versions of
PPSSPP.

The G’n’G sequel includes graphical and sound improvements, and is very fun to play!

ODROID MAGAZINE	 18

Asphalt Urban GT lets you drift cars around corners, and acts like a real car

sometimes: for example, when you
turn on multi-threading, it actually gets
slower, and frameskip can also have a
negative effect on the performance of the
game. Light effects also often seem as if
they are misplaced.

Although this game is rather small
in size, it offers some nice features, has
a very good soundtrack and the game is
fun to play. However, it runs slowly, and
has a lot of glitches. It will be nice to see
how the emulator evolves, and I’m look-
ing forward to playing this game at full
speed on the ODROID soon.

Naruto Shippuuden:
Kizuna Drive

Naruto Shippuuden: Kizuna Drive
is another fighting style game where you
complete missions rather than fighting
against single enemies, like Tekken. You
often fight multiple enemies at the same
time, and you can fight in teams instead
of personal combat. It has attractive
comic-style graphics, and since the game
is rendered in 30 FPS (rather than 60
FPS), it is rather easy on the hardware.

Boss fights are very interesting, and
you often need your entire team to beat
an enemy. In so-called “free missions”,
you can fight as any character you like,
and are not restricted to only using the
Naruto character.

Kizuna Drive -
Android

The game, menu and opening movie
run well on Android at 30FPS. Game-
play varies between 20 to 30 FPS, but is
most of the time above 25 FPS with no
slowdowns.

Kizuna Drive - Linux
Kizuna Drive runs at full speed with-

out any issues. The Linux version is, in
fact, so well-performing that it looks
amazing when played in 3x PSP resolu-
tion or even in 1:1 Auto modes.

Naruto Shippuuden – Kizuna Drive
is one of the best running games on the
PPSSPP emulator. It works perfectly

Asphalt Urban GT2 -
Android

As expected because of the graphical
intensity, Android has performance is-
sues when running this game. Even the
2D logos during the introduction are
not rendered in full speed (30/60 FPS).
The menu runs surprisingly well on the
start screen (between 25 and 40 FPS),
and if you go into a submenu (for exam-
ple, “Arcade - Single Race”) or preview a
car, it drops to a steady 15 FPS but is still
running at full speed.

However, the gameplay on Android
is not as good as the menu. Although
the benchmark varies between 20 FPS
down to 7 FPS, it doesn’t even feel like

it’s running at full speed when it hits 20
FPS and 100%. It’s playable, but As-
phalt Urban GT2 on Android is not re-
ally a nice experience.

Asphalt Urban GT2 -
Linux

The overall experience with Asphalt
Urban GT2 is slightly better on Linux:
logos are at 60 FPS, the menu is about
40-50 FPS, and submenus are at 15-20
FPS. During gameplay, the framerate
drops to 10 to 25 FPS as well, but feels
slightly faster than Android. Unless you
use your nitro, it actually performs like
an authentic PSP console.

The game has some odd behavior

Asphalt Urban GT (PSP) features lots of cars and challenging tracks

LINUX GAMING

ODROID MAGAZINE	 19

on either Android or Linux, while on
Linux, it performs extraordinarily well,
and allows you to really push the graph-
ics to make the game look beautiful in
1080p resolution.

Summary

General speaking, PPSSPP runs
faster and with less issues on Linux than
with Android, even though PPSSPP was
never intended to run on hardfloat sys-
tems. However, when using PPSSPP on
Debian Wheezy (such as my ODROID
GameStation Turbo image), games will
stop for a few seconds every now and
then during play.

I’m not quite sure what causes the
pausing behavior, but I think it is an I/O
issue that happens when accessing the
.cso images.

The lag only seems to happen with
Debian Wheezy, and doesn’t happen
when using Ubuntu. Some games do it
more often. Overall, PPSSPP is a well-
written emulator which runs very well
on ODROID devices using either Linux
or Android. It has the advantage of us-
ing OpenGL ES 2.0, which enables the
full graphics power of the ODROID.

Naruto Shippuuden: Kizuna Drive(PSP) is like Mortal Kombat with combat missions
and a 3D world to explore

LINUX GAMING

The winner between Linux and Android versions of PPSSPP is clearly Linux, which
boasts high frame rates and fluid movements

The boss fights in Naruto Shippuuden: Kizuna Drive will challenge you for hours, and
take lots of practice

He found my copy of GameStation Turbo,
and has been up for three days trying to
beat the last boss in Kizuna Drive

ODROID MAGAZINE	 20

350MB of RAM is used when all 8 serv-
ers are running, leaving 1.65GB free for
server use.

Although Quiet Giant includes the
Blackbox desktop, it’s more common to
access the machine to perform upgrades
in headless mode using an Secure SHell
(SSH) client. File transfers are done via
File Transfer Protocol (FTP) to specified
directories, where they may be picked up
by scheduled processes running on the
server. Alternatively, the Samba protocol
is also available for sharing files with oth-
er computers on the network, and can
be used to create a simple media server.

SSH
Secure Shell (SSH) is the most ba-

sic communication service available on

Quiet Giant, a downloadable im-
age for the X, U and XU series
based on Ubuntu Server, of-

fers several different servers including
Apache, Tomcat, MySQL, FTP, Samba
and Minecraft. It’s intended as an easy-
to-use development sandbox LAMP
server, but can also serve as a lightweight
platform for an embedded system requir-
ing long-term stability. LAMP, which
stands for Linux, Apache, MySQL and
PHP/Perl, is a popular choice for Inter-
net applications, and Quiet Giant works
great as an affordable learning platform
for web developers.

Once booted, the username and pass-
word are both “odroid”, which opens
onto the Blackbox desktop. Right-click
on the desktop and select “xterm” from
the menu to open a Terminal window.
Most Linux server maintenance is done
from the command line, and any servers
that aren’t needed may be removed with
the tasksel command. There are many
other application bundles available us-
ing tasksel, including desktop packages
such as Kubuntu and Unity. However,
the image is pre-tuned for high perfor-
mance by including the minimal Black-
box desktop, which has a sparse interface
and low memory usage. Approximately

OS SPOTLIGHT

OS SPOTLIGHT:
QUIET GIANT
A LIGHTWEIGHT LAMP, SAMBA,
AND MINECRAFT SERVER

by Rob Roy

Quiet Giant
for the X, U and XU

series may be down-
loaded from http://bit.

ly/1rhHymu

Tasksel Command

Blackbox is set as the default desktop for
Quiet Giant

http://bit.ly/1rhHymu
http://bit.ly/1rhHymu

ODROID MAGAZINE	 21

Quiet Giant. SSH projects a Terminal
command window over Ethernet so that
commands may be launched remotely.

HTTP/Apache
I use Quiet Giant as a web server on

my local home network, which allows
me to develop websites without exposing
them to the Internet. However, it’s also
possible to use Quiet Giant as a public
server, with some modifications.

When choosing to make the server
available publicly, it’s critical to install a
router between the server and the Inter-
net, so that the router’s firewall can pro-
tect the ODROID server from random
hacking. It’s only safe to use a computer
as public Internet server if important
private data is not stored on the same
network as the server. Also, make sure
that the passwords for each service are
secure before configuring the router.

Internet web server
To create a publicly available web

server, first uninstall all other services
except for Apache and MySQL, for se-
curity. Then, configure the local router
to forward incoming web requests to the
Quiet Giant server, as detailed in the fol-
lowing steps.

- Note the web server’s local (private)
IP address by typing the following into
the server’s Terminal window or SSH:

$ ifconfig | grep inet | grep Bcast

inet addr:192.168.1.10

Bcast:192.168.1.255

Mask:255.255.255.0

- Assign a permanent IP address,
which is 192.168.1.10 in this example,
to the web server using the router’s ad-
ministration panel.

- Once the IP address has been re-
served, port 80, which is standard for
HTTP, should be forwarded to that IP
address, again using the router’s Port
Forwarding adminsitrative panel.

- After the router has been properly

configured, type the following into a
Terminal window on the server in order
to discover its public IP address:

$ curl -s checkip.dyndns.org|sed

-e ‘s/.*Current IP Address: //’

-e ‘s/<.*$//’

79.211.83.113

In this example, the server’s address is
79.211.83.113, which may be accessed
from any browser worldwide using
“http://79.211.83.113” whenever the
ODROID and router are connected to
the Internet. Similar services, including
File Transfer Protocol (FTP) and SSH,
may also be publicized with the same
port-forwarding technique, using the
corresponding port for those services,
such as Port 21 for FTP.

MySQL
MySQL uses Port 3306 by default,

and enables websites and other applica-
tions to access information from a data-
base using a special programming lan-
guage called Structured Query Language
(SQL). When paired with another pro-
gramming language such as PHP, user
input, log data, and other information
may be recorded, retrieved and archived.

The version of MySQL installed on
Quiet Giant comes with a blank admin
password. For security, the default pass-
word should be changed immediately.
The procedure for updating the password
is described on http://help.ubuntu.com:

- First, stop the mysql process by typ-
ing the following into Terminal:

sudo /etc/init.d/mysql stop

- Then, type this to restart the
mysqld daemon:

sudo /usr/sbin/mysqld --skip-

grant-tables --skip-networking &

- Next, restart the mysql client
process:

OS SPOTLIGHT

mysql -u root

- From the MySQL prompt, execute
this command in order to reset the root
password:

FLUSH PRIVILEGES;

SET PASSWORD FOR root@’localhost’

= PASSWORD(‘password’);

FLUSH PRIVILEGES;

exit;

- Finally, stop the mysql process and
relaunch it:

sudo /etc/init.d/mysql stop

sudo /etc/init.d/mysql start

Samba
Samba is a Windows-based file shar-

ing protocol, and Quiet Giant has pre-
configured Samba shares located at /
var/www/ (Apache), /var/lib/tomcat7/
webapps/ROOT (Tomcat), and /home/
odroid/Documents (general use). Con-
nect to Samba by typing the local IP ad-
dress of the Quiet Giant server into a file
explorer from any other computer on the
network, and supplying the default user-
name and password of “odroid”. This
will gives access to the shared directory.

To configure Samba, edit the file /
etc/samba/smb.conf in a Terminal win-
dow. An intuitive GUI for managing
users and folders is also available when
using the Blackbox desktop:

sudo system-config-samba

Tomcat
Tomcat is a Java-based open-source

web server that can be used to build
nearly any type of web application. An
installed application may be accessed by
visiting http://127.0.0.1:8080 from the
server, or by typing the internal (private)
IP address of the server, followed by
“:8080”, from any computer on the local
network. If setting up a public Internet
server, Port 8080 should be forwarded to
the ODROID as described above. For

checkip.dyndns.org
http://79.211.83.113
help.ubuntu.com
init.d/mysql
init.d/mysql
init.d/mysql
smb.conf

ODROID MAGAZINE	 22

more information on programming and
contributing to the Tomcat project, visit
http://tomcat.apache.org/.

Spigot (Minecraft)
Everyone loves Minecraft! Quiet Gi-

ant comes with an optimized version of
the Minecraft server called Spigot ver-
sion 1.6.4 is installed in /home/odroid/
Public/, and can be started by typing the
following commands in Terminal:

cd ~/Public/spigot

./spigot.sh

Virtual memory
Swap is enabled in the kernel, which

extends memory beyond 2GB by writ-
ing blocks of memory to disk, either as a
single file on the root file system, or on
a separate dedicated partition. To learn
more about setting up a swap file, refer
to http://bit.ly/1pYfWSY. For informa-
tion on creating a swap partition, visit
http://bit.ly/1rdONWu.

Clock
synchronization

When the image is booted without a
wired LAN plugged in, the clock time
may become out-of-sync, unless you are
using a clock battery. With Linaro, this
time difference can cause the root file
system to be mounted as read-only. If
this happens, type “fsck /” while logged
in as root, then reboot with the LAN
properly attached. This will unlock the
file system and re-synchronize the clock
with Internet time via NTP.

The ODROID-XU3 is an 8-core ARM big.LITTLE Single Board Computer

ODROID-XU3

ODROID-XU3
THE FASTEST COMPUTER MADE
BY HARDKERNEL SO FAR!
by Justin Lee

OS SPOTLIGHT

Make sure to keep your server up-to-date
with the latest patches from Ubuntu

The ODROID-XU3 is a new
8-core micro Single Board Com-
puter (SBC) powered by ARM®

big.LITTLE™ technology and utiliz-
ing a Heterogeneous Multi-Processing
(HMP) solution. It’s a member of a new
generation of computing devices with
more powerful, energy-efficient hard-
ware and smaller form factor. Offering
open source support, the board can run
various flavours of Linux, including the
latest Ubuntu 14.04 and the Android
4.4. By adopting eMMC 5.0 and USB
3.0 interface, it boasts fast data trans-
fer speed, a feature that is increasingly
required to support advanced process-
ing power on ARM devices that allows
users to fully experience an upgrade in
computing such as faster booting, web
browsing and 3D game experience.

•	 Samsung Exynos 5422
Cortex™-A15 2.0Ghz quad core
and Cortex™-A7 quad core CPUs

•	 Mali-T628 MP6 (OpenGL ES
3.0/2.0/1.1 and OpenCL 1.1
Full profile)

•	 2Gbyte LPDDR3 RAM at
933MHz (14.9GB/s memory

bandwidth) PoP stacked
•	 eMMC5.0 HS400 Flash Storage
•	 USB 3.0 Host x 1, USB 3.0

OTG x 1, USB 2.0 Host x 4
•	 HDMI 1.4a and DisplayPort1.1

for display
•	 Integrated power consumption

monitoring tool

Integrated power
monitoring

The ODROID-XU3 has an integrat-
ed power analysis tool, with 4 current/
voltage sensors measuring the power
consumption of the Big A15 cores, Little
A7 cores, GPUs and DRAMs individu-
ally. Professional developers can moni-
tor CPU, GPU and DRAM power con-
sumption using the included on-board
power measurement circuit.

With the integrated power analysis
tool, the XU3 can reduce the need for
repeated trials when debugging with
relation to power consumption, and us-
ers get the opportunity to enhance and
optimize the performance of their CPU/
GPU compute applications by keeping
power consumption as low as possible.

Using the power analysis tool, fre-

http://tomcat.apache.org
spigot.sh
http://bit.ly/1pYfWSY
http://bit.ly/1rdONWu
big.LITTLE
big.LITTLE

ODROID MAGAZINE	 23

ODROID-XU3
THE FASTEST COMPUTER MADE
BY HARDKERNEL SO FAR!
by Justin Lee

quency, voltage, amperage and power in-
formation shows as an on-screen overlay
in the Android platform. You can moni-
tor 4 big cores and GPU temperature as
well, as shown in the screenshot.

Heterogeneous
Multi-Processing
(HMP)

The ODROID-XU3 is equipped with
four big cores (ARM® Cortex® -A15™ up
to 2.0GHz) and four small cores (ARM®
Cortex® -A7™ up to 1.4 GHz), providing
improved processing capabilities while
maintaining the most efficient power
consumption imaginable. With the big.
LITTLE™ HMP solution, Exynos-5422
can utilize a maximum of all eight cores
to manage computationally intensive
tasks.

The ODROID-XU3 running the Power
Monitor application

OpenGL
ES 3.0
and
OpenCL
1.1

The ARM®
M a l i ™ - T 6 2 8
MP6 GPU offers
key API support
OpenGL ES 1.1,
OpenGL ES 2.0
and OpenGL ES
3.0, OpenCL

1.1 Full Profile and Google Render-
Script. The Mali-T628 chip is the GPU
of choice for use in the next generation
of market-leading devices, optimized to
bring breathtaking graphical displays
to consumer applications such as 3D
graphics, visual computing, augmented
reality, procedural texture generation
and voice recognition. You can down-
load the full featured OpenGL ES and
OpenCL SDK from the ARM Mali de-
veloper website at no charge.

eMMC 5.0
eMMC uses intelligent flash memory

technology that not only offers the ca-
pacity to store digital content, but also
meets even stricter high sequential and
random performance requirements to
ensure a strong user experience. This en-
ables fast OS booting, quick application
launching, seamless multi-tasking, and
quick access to the cloud.

In October 2013, JEDEC pub-
lished the latest version of its popular

eMMC standard
called JESD84-
B50: Embedded
M u l t i M e d i a -
Card, Electrical
Standard (5.0).
eMMC v5.0
defines several
new function-
alities and en-
hancements for

embedded mass-storage flash memory
widely used in smartphones and other
mobile devices; and matches the chal-
lenging performance targets required by
the next generation of mobile systems
by introducing an HS400 mode that of-
fers additional improvement in terms of
interface speed (up to 400 MB/s vs 200
MB/s in the prior version). JESD84-
B50 is available for free download
from the JEDEC website at http://bit.
ly/1uQKfZC.

For a demonstration of the XU3’s
capabilities, please watch the video at
http://bit.ly/1CvJBWv.

Specifications

Processor
Samsung Exynos5422 ARM®
Cortex™-A15 Quad 2.0GHz/
Cortex™-A7 Quad 1.4GHz

Memory
2Gbyte LPDDR3 RAM PoP
(933Mhz, 14.9GB/s memory band-
width, 2x32bit bus)

3D Accelerator
Mali™-T628 MP6 OpenGL ES 3.0 /
2.0 / 1.1 and OpenCL 1.1 Full profile

Energy Monitor
Measure the power consumption of
big.LITTLE cores, GPU and DRAM

Audio
On-board Audio codec / Standard
3.5mm headphone jack with HDMI
Digital audio output
SPDIF optional USB optical output

USB
USB 3.0 Host SuperSpeed USB stan-
dard A type connector x 1 port
USB 3.0 OTG SuperSpeed USB Mi-
cro A-B type connector x 1 port
USB 2.0 Host High Speed standard A
type connector x 4 ports

An ODROID-XU3 running Ubuntu 14.04
LTS and the latest version of Kernel 3.10.
It’s so fast!

ODROID-XU3

big.LITTLE
big.LITTLE
http://bit.ly/1uQKfZC
http://bit.ly/1uQKfZC
http://bit.ly/1CvJBWv
2.0GHz/Cortex
2.0GHz/Cortex

ODROID MAGAZINE	 24

Display
HDMI, DisplayPort

Storage
eMMC 5.0 Flash Storage (up to
64GB)
MicroSD Card Slot (up to 64GB)

LAN
Fast Ethernet LAN 10/100Mbps
Ethernet with RJ-45 Jack (Auto-
MDIX support)
Gigabit Ethernet LAN (Option)
USB 3.0 to Gigabit Ethernet
adapter (optional USB module)
WiFi USB IEEE 802.11b/g/n
1T1R WLAN with Antenna (op-
tional USB module)

Storage
HDD/SSD optional SATA interface
SuperSpeed USB (USB 3.0) to
Serial ATA3 adapter for 2.5”/3.5”
HDD and SSD storage

Power Supply
(included)

5V 4A Power

System Software
Ubuntu 14.04 + OpenGL ES +
OpenCL on Kernel LTS 3.10
Android 4.4.2 on Kernel LTS 3.10
Full source code is accessible via our
Github

PCB
Size: about 94 x 70 x 18 mm

ODROID-XU3

dpad overlay. Use the dpad on the over-
lay to highlight “Settings”, then press
“A” again. Select “Input Options” and
press “A” one more time, which displays
the controller configuration menu.

Use the on-screen dpad to match the
options shown in the screenshot, mak-
ing sure to set “Analog D-pad Mode” to
“Left Analog” so that the joystick move-
ments are recognized. Finally, click on
“Configure All” and press the requested
buttons on the Xbox 360 controller. Re-
peat this process for each player’s con-
troller.

After the controllers are configured,
press the right button (B) on the Xbox
360 controller. Select “Resume Con-
tent”, use the mouse button to minimize
the RetroArch overlay, and you’re ready
to play!

In the most recent development ver-
sions of RetroArch for Android
(1.0.0.2r34 and above), the way in

which Xbox 360 controllers are config-
ured has changed. Instead of using the
options menu on the first screen, the
setup is done inside the game itself us-
ing the RGUI interface. The Xbox 360
controller (wireless and wired) works na-
tively with the Android operating system
without additional drivers, but other
USB controllers can also be connected
with the same method.

To begin, download the latest de-
velopment version of RetroArch from
http://bit.ly/1uP6ejM. The APK works
with any recent version of Android, in-
cluding KitKat. Make sure that an Xbox
360 controller is connected and able
to control the Android desktop, then
launch RetroArch. If using the wireless
version of the controller, use the button
on the USB receiver to connect the joy-
sticks first.

At the initial RetroArch options
screen, select “Settings”, click the “In-
put” tab, and make sure that the On-
screen Overlay is enabled. Click the
right mouse button and use the “Load
Content (Detect Core)” option to start
your favorite emulator.

Once inside the game, click the Ret-
roArch symbol with the left mouse but-
ton, then press the “A” button on the

RETROARCH
CONFIGURING XBOX 360 CONTROLLERS
WITH RETROARCH V1.0.0.2+
by Rob Roy

RETROARCH

http://bit.ly/1uP6ejM

ODROID MAGAZINE	 25

9. SmartPower Ver. 1.1.0 monitoring application source code
from Hardkernel
10. MinGW 0.6., QT 4.8.6, and Qwt 6.1.0 library for Windows
(if using a Windows host machine)

Device setup
Ensure that the main power is stabilized and surge-protect-

ed, and that all devices are grounded properly. Connect the
host PC or U3 to a functional wired network that can access
the Internet. Attach the provided 12V 3A power supply to
the Smart Power and turn on the device. Wait for the display
to show the power parameters such as the voltage. Adjust the
output voltage regulator to ~5.01V (slightly higher than 5V),
since we will be examining the power requirements of a U3.

Attach the microUSB data cable to the host PC or the U3
itself, then attach the HDMI display to the U3, if available.
Connect the exposed red and black terminals of the DC plug
cable (2.5mm/0.8mm for U3) to the Smart Power device and
the power jack to the barrel on the U3. Turn on the AC power
and ensure the U3 goes through its boot-up process properly.
If a dedicated HDMI monitor is unavailable, access the U3 via
the vnc-viewer or SSH to examine its progress.

Monitoring
Application for Windows

Hardkernel has developed an open source monitoring ap-
plication called SmartPower that works with the Smart Power
device. Although they have provided a pre-built executable bi-
nary, I’ll describe the process of building the application from
its source code. Follow the list of steps to create the build

One of the principal areas of embedded system develop-
ment is System Power Requirement Analysis. Along
with many validation tests, it is essential to ensure that

the overall system is performing within the design parameters,
power wise. The ODROID Smart Power solution is an ideal
tool for this purpose. It is essentially an adjustable smart pow-
er supply that can periodically collect/display/forward voltage,
current and power load of the system, for analysis and energy
consumption optimization.

This article walks you through, the use of this solution
(Hardkernel-developed hardware & software), both under
Windows (7+) and Lubuntu (3.8.13 kernel), and

the use of the popular open source protocol analyzer Wire-
shark (and the command line equivalent Tshark) software with
USB protocol analysis module, specifically Lubuntu. Sniffing
the USB data traffic is useful to study the communication
protocol, enhance the firmware and debug issues, if need be.
Several protocol analysis tools are also available for Windows.

Requirements

1. The entire Smart Power v1.0 package.
2. An ODROID single board computer, such as a U3, whose
power requirements are to be analyzed. The power supply
and cables provided with the Smart Power package should be
sufficient to drive the U3.
3. An adapter may be required to use the device in your spe-
cific region.
4. A bootable 8+ GB MicroSD card or eMMC module contain-
ing the latest Lubuntu image available from the Hardkernel
website at http://www.hardkernel.com.
5. A microUSB to USB cable for data transfer between the U3
and the host computer.
6. A host computer to gather the power data transmitted by
the Smart Power, such as a Windows 7+ PC. The host com-
puter can also be an ODROID-U3 (possibly even the one being
analyzed) running Lubuntu.
7. A compatible HDMI monitor to be used with U3 or VNC ac-
cess to the U3 via utilities like the TightVNC vnc-viewer from
the host PC.
8. Wireshark and tshark Ver. 1.10+ software, available for
both Ubuntu and Debian operating systems

RETROARCH
CONFIGURING XBOX 360 CONTROLLERS
WITH RETROARCH V1.0.0.2+
by Rob Roy

RETROARCH

ODROID
SMART POWER
USE AND PROTOCOL ANALYSIS
Edited by Venkat Bommakanti

SMART POWER

http://www.hardkernel.com

ODROID MAGAZINE	 26

Watt view

SMART POWER

Win 8.1 environment PATH settings

Ampere view

environment and build the monitoring application.
MinGW is a minimalist (GNU) development environment

for native Windows applications. Access the http://www.min-
gw.org/ website and click on the Download Installer button on
the top right of the webpage to download and run the mingw-
get-setup.exe utility. Select the default options where applica-
ble, and MinGW will be installed to C:\MinGW. Finally, add
C:\MinGW\bin to the environment PATH variable, which is
the location of the mingw32-make.exe tool.

Qt is a cross-platform application and UI framework for
developing C++ applications. Download the latest 4.8.x ver-
sion from http://bit.ly/1ru4Jsk. Install it to C:\Qt and add C:\
Qt\4.8.4\bin to the environment PATH variable so that the
qmake.exe tool may be found.

The Qwt library contains GUI Components and utility
classes which are primarily useful for programs presenting tech-
nical data. The latest 6.1.0 Version can be downloaded from
http://bit.ly/1quAoaY and extracted to C:\qwt-6.1.0. Add C:\
qwt-6.1.0\lib to the environment PATH variable, which should
match the PATH variables shown in the screenshot.

Build qwt-6.1.0 from within a new cmd instance, using the
following commands:

> cd C:\qwt-6.1.0

> qmake

> make

> make install

> qmake -set QMAKEFEATURES C:\qwt-6.1.0\features

Download the SmartPower monitoring PC Application
source code from http://bit.ly/1DKSGw0. Extract it to C:\
smartpower_source, then build it from within a new cmd in-
stance, using the following commands:

> cd smartpower_source\HIDAPI

> qmake

> make -f MakeFile.Release

> cd ..\smartpower_source\smartpower

> qmake

> make -f MakeFile.Release

After a successful build, the monitoring application that
was just created can be found at the following location:

C:\smartpower_source\smartpower\windows\SmartPower.

exe

Since the Smart Power device has already been set up, this
monitoring application can now be started. Notice the loca-
tions in the Ampere View screenshot where the initialization
status and firmware version are displayed. Checking the log
check box will start the logging of the data being captured.

Clicking the Watt Graph button takes you to the Watt
view, as shown in the screenshot.

When an error situation is encountered during initial setup,
you will see a status message indicating why the error occurred:

- The USB data cable between Smart Power and host computer is
disconnected

- Using a defective USB data cable

http://www.mingw.org
http://www.mingw.org
mingw-get-setup.exe
mingw-get-setup.exe
C:\MinGW
C:\MinGW\bin
mingw32-make.exe
http://bit.ly/1ru4Jsk
C:\Qt
C:\Qt\4
C:\Qt\4
qmake.exe
http://bit.ly/1quAoaY
C:\qwt-6
C:\qwt-6
C:\qwt-6
C:\qwt-6
C:\qwt-6
http://bit.ly/1DKSGw0
C:\smartpower_source
C:\smartpower_source
MakeFile.Release
MakeFile.Release
C:\smartpower_source\smartpower\windows\SmartPower

ODROID MAGAZINE	 27

SMART POWER

$ make

$ cd ../smartpower

$ uic smartpower.ui > ui_smartpower.h

$ qmake

$ make

Create the relevant udev file using the following command
and values. Make sure to follow the hints in the comments.

$ sudo vi /etc/udev/rules.d/99-hiid.rules

This is a sample udev file for HIDAPI devices which

changes the permissions

to 0666 (world readable/writable) for a specified

device on Linux systems.

If you are using the libusb implementation of hi

dapi (hid-libusb.c), then

use something like the following line, substituting

the VID and PID with

those of your device. Note that for kernels before

2.6.24, you will need

to substitute “usb” with “usb_device”. It

shouldn’t hurt to use two lines

(one each way) for compatibility with older

systems.

HIDAPI/libusb

SUBSYSTEM==”usb”, ATTRS{idVendor}==”04d8”,

ATTRS{idProduct}==”003f”, MODE=”0666”

If you are using the hidraw implementation, then do

something like the

following, substituting the VID and PID with your

device. Busnum 1 is USB.

HIDAPI/hidraw

KERNEL==”hidraw*”, ATTRS{busnum}==”1”,

ATTRS{idVendor}==”04d8”, ATTRS{idProduct}==”003f”,

MODE=”0666”

Once done, _optionally_ rename this file for your

device, and drop it into

/etc/udev/rules.d and unplug and re-plug your

device. This is all that is

necessary to see the new permissions. Udev does

not have to be restarted.

Note that the hexadecimal values for VID and PID

are case sensitive and

must be lowercase.

If you think permissions of 0666 are too loose,

then see:

- The USB port on the host computer or Smart Power is not func-
tioning properly

- Running defective firmware or OS.

The use of Wireshark like utilities (discussed later) may help
narrow down some of these types of error causes.

Monitoring application for
Lubuntu

The SmartPower monitoring application needs an appropri-
ate build environment, which can be installed by running the
following command (one line) in a terminal window:

$ sudo apt-get install qt4-default qt4-designer

libqwt-dev libusb-1.0-0-dev

Download and unpack the SmartPower source code using
the following commands:

$ cd ~ && mkdir src && cd src && mkdir sp && cd sp

$ mv ~/Downloads/smartpower_source.zip .

$ unzip smartpower_source.zip

$ cd smartpower_source

The versions of the installed build tools can then be checked
by typing the following:

$ uic -version

Qt User Interface Compiler version 4.8.6

$ qmake -version

QMake version 2.01a

Using Qt version 4.8.6 in /usr/lib/arm-linux-gnueabi-

hf

$ make -version

GNU Make 3.81

Copyright (C) 2006 Free Software Foundation, Inc.

This is free software; see the source for copying

conditions.

There is NO warranty; not even for MERCHANTABILITY or

FITNESS FOR A

PARTICULAR PURPOSE.

This program built for arm-unknown-linux-gnueabihf

The SmartPower application can then be built:

$ cd HIDAPI

$ qmake

smartpower.ui
rules.d/99-hiid.rules
smartpower_source.zip
smartpower_source.zip

ODROID MAGAZINE	 28

http://reactivated.net/writing_udev_rules.html for

more information on finer

grained permission setting. For example, it might

be sufficient to just

set the group or user owner for specific devices

(for example the plugdev

group on some systems).

Change the privileges of this rules file using the command:

$ sudo chmod 0666 /etc/udev/rules.d/99-hiid.rules

After rebooting the system, the SmartPower monitoring ap-
plication can be run using the commands:

$ cd ~/src/sp/smartpower_source/smartpower/linux/

SmartPower

The monitoring tool for Lubuntu has an user-interface iden-
tical to that of the Windows version. The images shown for the
Windows example are applicable in this case too.

The USB device information and details of the Smart Power
device can be reported using these commands (presuming bus
1, device 19):

$ odroid@u3-2:/etc/udev/rules.d$ lsusb

Bus 001 Device 019: ID 04d8:003f Microchip Technol-

ogy, Inc.

Use Bus/Device information from previous command

$ lsusb -D /dev/bus/usb/001/019 output:

Device: ID 04d8:003f Microchip Technology, Inc.

Device Descriptor:

 bLength 	18

 bDescriptorType 	 1

 bcdUSB 	 2.00

 bDeviceClass 	 0 (Defined at Interface

level)

 bDeviceSubClass 	 0

 bDeviceProtocol 	 0

 bMaxPacketSize0 	 8

 idVendor 	 0x04d8 Microchip Technology,

Inc.

 idProduct 	 0x003f

 bcdDevice 	 0.02

 iManufacturer 	 1 Microchip Technology

Inc.

 iProduct 	 2 Simple HID Device Demo

 iSerial 	 0

 bNumConfigurations 	1

 Configuration Descriptor:

	 bLength 	 9

	 bDescriptorType 	 2

	 wTotalLength 	 41

	 bNumInterfaces 	 1

	 bConfigurationValue 	 1

	 iConfiguration 	 0

	 bmAttributes 	 0xc0

 	 Self Powered

	 MaxPower 	 100mA

	 Interface Descriptor:

 	 bLength 	 9

 	 bDescriptorType 	 4

 	 bInterfaceNumber 	 0

 	 bAlternateSetting 	 0

 	 bNumEndpoints 	 2

 	 bInterfaceClass 	 3 Human Interface Device

 	 bInterfaceSubClass 	 0 No Subclass

bInterfaceProtocol 	0 None

iInterface 	0

HID Device Descriptor:

bLength 	9

bDescriptorType 	 33

bcdHID 	 1.11

bCountryCode 	0 Not supported

bNumDescriptors 	1

bDescriptorType 	 34 Report

wDescriptorLength 	 28

Report Descriptors:

** UNAVAILABLE **

Endpoint Descriptor:

bLength 	7

bDescriptorType 	5

bEndpointAddress 	 0x81 EP 1 IN

bmAttributes 	3

Transfer Type 	Interrupt

Synch Type 	None

Usage Type 	Data

wMaxPacketSize 	 0x0040 1x 64 bytes

bInterval 	1

Endpoint Descriptor:

bLength 	7

bDescriptorType 	5

bEndpointAddress 	 0x01 EP 1 OUT

bmAttributes 	3

Transfer Type 	Interrupt

Synch Type 	None

Usage Type 	Data

wMaxPacketSize 	 0x0040 1x 64 bytes

bInterval 	1

Device Status: 	 0x0001

Self Powered

SMART POWER

http://reactivated.net/writing_udev_rules.html
rules.d/99-hiid.rules

ODROID MAGAZINE	 29

Wireshark installation
The prebuilt wireshark and the tshark command-line pack-

ages can be installed by typing the following commands, then
rebooting the system:

$ cd ~/

$ sudo apt-get install build-dep wireshark

$ sudo dpkg-reconfigure wireshark-common

$ sudo apt-get install tshark

The installed version of these utilities should be checked af-
ter rebooting:

$ wireshark --version

wireshark 1.10.6 (v1.10.6 from master-1.10)

Copyright 1998-2014 Gerald Combs <gerald@wireshark.

org> and contributors.

This is free software; see the source for copying

conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR

A PARTICULAR PURPOSE.

Compiled (32-bit) with GTK+ 3.10.7, with Cairo

1.13.1, with Pango 1.36.1, with

GLib 2.39.91, with libpcap, with libz 1.2.8, with

POSIX capabilities (Linux),

without libnl, with SMI 0.4.8, with c-ares 1.10.0,

with Lua 5.2, without Python,

with GnuTLS 2.12.23, with Gcrypt 1.5.3, with MIT Ker-

beros, with GeoIP, with

PortAudio V19-devel (built Feb 25 2014 21:10:47),

with AirPcap.

Running on Linux 3.8.13.27, with locale en_US.UTF-8,

with libpcap version 1.5.3,

with libz 1.2.8, GnuTLS 2.12.23, Gcrypt 1.5.3, with-

out AirPcap.

Built using gcc 4.8.2.

$ tshark --version

TShark 1.10.6 (v1.10.6 from master-1.10)

Copyright 1998-2014 Gerald Combs <gerald@wireshark.

org> and contributors.

This is free software; see the source for copying

conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR

A PARTICULAR PURPOSE.

SMART POWER

Compiled (32-bit) with GLib 2.39.91, with libpcap,

with libz 1.2.8, with POSIX

capabilities (Linux), without libnl, with SMI 0.4.8,

with c-ares 1.10.0, with

Lua 5.2, without Python, with GnuTLS 2.12.23, with

Gcrypt 1.5.3, with MIT

Kerberos, with GeoIP.

Running on Linux 3.8.13.27, with locale en_US.UTF-8,

with libpcap version 1.5.3,

with libz 1.2.8.

Built using gcc 4.8.2.

For the selected Lubuntu version, usbmon driver is already
present, and can be explicitly loaded and checked:

$ sudo mount -t debugfs none_debugs /sys/kernel/debug

mount: none_debugs already mounted or /sys/kernel/

debug busy

mount: according to mtab, none is already mounted on

/sys/kernel/debug

$ sudo modprobe usbmon

$ sudo ls /sys/kernel/debug/usb/usbmon

0s 0u 1s 1t 1u 2s 2t 2u

Access privilege
Access to usbmon devices is typically possible only for su-

perusers such as root. However, it is not advisable to run pro-
tocol analyzers using root privileges. To ensure safe access of
usbmon interfaces to wireshark and tshark, one should give the
user the proper privileges using the following commands:

$ sudo addgroup -system wireshark

$ sudo usermod -a -G wireshark odroid

$ sudo chgrp wireshark /dev/usbmon*

$ sudo ls -lsa /dev/usbmon*

0 crw------- 1 root wireshark 248, 0 sep 14 15:23 /

dev/usbmon0

0 crw------- 1 root wireshark 248, 1 sep 14 15:23 /

dev/usbmon1

0 crw------- 1 root wireshark 248, 2 sep 14 15:23 /

dev/usbmon2

$ sudo chmod g+r /dev/usbmon*

$ sudo ls -lsa /dev/usbmon*

0 crw-r----- 1 root wireshark 248, 0 sep 14 15:23 /

dev/usbmon0

mailto:gerald@wireshark.org
mailto:gerald@wireshark.org
en_US.UTF
mailto:gerald@wireshark.org
mailto:gerald@wireshark.org
en_US.UTF

ODROID MAGAZINE	 30

0 crw-r----- 1 root wireshark 248, 1 sep 14 15:23 /

dev/usbmon1

0 crw-r----- 1 root wireshark 248, 2 sep 14 15:23 /

dev/usbmon2

Wireshark usage
The wireshark utility can be directly launched (without

sudo) using the following command to display the usbmon in-
terfaces as shown below.

$ wireshark

To ascertain the usbmon interface associated with the
Smart Power device, click on the Interface List option under
the Capture section of the wireshark main screen. One can
immediately observe that one of the usbmon interfaces shows a
high transfer (USB) rate. As can be seen in the screenshot, this
happens to be the usbmon1 interface, which is associated with
the Smart Power device (presuming that no other highly active
USB device is attached to the host computer).

Click on the Start button to begin the capture process.

Note that the high capture process can very quickly result in
a very large output file. Scroll through the top section, where
one line corresponds to one data-set capture. As you scroll, you
can see that some of the lines correspond to the Volts, Amps,
Watts and Watt-Hours data.

After about 100 data points, you can stop the capture pro-
cess and save the data to a file for continued future analysis.
Further study will give details about the protocol. This knowl-

Wireshark main screen

Wireshark with data captured from Smart Power

Wireshark interfaces

SMART POWER

edge can be useful to understand the functioning of the Smart
Power device and debug firmware updates if need be.

Tshark
The command-line equivalent of wireshark, called tshark,

can be invoked using the command:

$ tshark -D

1. eth0

2. nflog

3. nfqueue

4. usbmon1

5. usbmon2

6. any

7. lo (Loopback)

Note that the sudo based invocation was not required to
display the usbmon interfaces, due to the proper access privi-
lege setup.

Tshark can be used to capture data via the usbmon2 inter-
face (see wireshark notes above) using the following command
so that the 1.pcap file can be viewed in wireshark directly.

$ tshark -i usbmon2 -w 1.pcap

Other monitoring applications
Community member @muehlbau has provided a useful

command-line utility to monitor the Smart Power device,
which can be installed by typing the following series of com-
mands into a Terminal window:

$ sudo apt-get install build-dep pkg-config libusb-

1.0-0-dev

$ cd ~/src && mkdir mu && cd mu

$ git clone https://github.com/muehlbau/odroid-smart-

power-linux

Build the utility:

1.pcap
1.pcap
https://github.com/muehlbau/odroid

ODROID MAGAZINE	 31

SMART POWER

$ cd odroid-smartpower-linux

$ make

It can then be launched using the smartpower command

(which requires root privileges) and the results are written to
a log file:
$ sudo ./smartpower capture-logfile

Community member @pcat provides yet another useful
command-line tool to monitor the Smart Power device. The
source code for it can be obtained and built from github using
the commands:

$ cd ~/src && mkdir sp-cl1 && cd sp-cl1

$ git clone https://github.com/polarcat/smartpower

$ cd smartpower

$ make

It is beneficial to detect the hidraw devices using the com-
mand:

$ sudo find /dev/hid*

/dev/hidraw0

/dev/hidraw1

/dev/hidraw2

/dev/hidraw3

The above command can run with or without the Smart
Power device attached. In the test here, indicated that hidraw3
corresponds to the Smart Power device. It can be checked with
the following command:

odroid@u3-2:~/src/sp-cl1/smartpower$ cat /sys/class/

hidraw/hidraw3/device/uevent

DRIVER=hid-generic

HID_ID=0003:000004D8:0000003F

HID_NAME=Microchip Technology Inc. Simple HID Device

Demo

HID_PHYS=usb-s5p-ehci-3.2.6/input0

HID_UNIQ=

MODALIAS=hid:b0003g0001v000004D8p0000003F

The generated smartpower binary can be launched using
one of the commands to observe the periodically captured out-
put:

$ cd ~/src/sp-cl1/smartpower

$ sudo ./smartpower

$ sudo ./smartpower -v -d /dev/hidraw3

Options can be listed using the help command:

$ sudo ./smartpower --help

To address an output delimiter bug and some other minor
output formatting issues, I created a patch so that the Smart
Power is autodetected, eliminating the need for the hidraw de-
vice-path (-d option) specification. The patch, which lists the
changes to smartpower.c, is listed below:

85d85

< static char detected_dev[32] = {‘\0’, };

97c96

< 		 printf(“0.%06u%c%s\n”, 0, sep, data);

> 		 printf(“0.0%c%s\n”, sep, data);

169c168

< 	 printf(“Version: %s\n\n”, buf);

> 	 printf(“Version: %s\n”, buf);

188,191d187

< 	 if (errno == 22) {

< 		 printf(“(=) Check invocation

syntax\n”);

< 		 exit(errno);

< 	 }

294a289

> 	 i++;

302,303c298

< 		 i++;

< 	 	 snprintf(detected_dev, sizeof(detected_

dev), “%s”, name);

> 		 fprintf(stderr, “Detected smartp at

%s\n”, name);

309,312c304,305

< if (i == 0) {

< 	 printf(“(=) Smart Power device is disconnect-

ed. Please connect and retry\n”);

< 	 exit(1);

< 	 }

> if (i == 0)

> 	 printf(“(=) smart power device is not

connected\n”);

371c364

< printf(“ -d, --dev <dev>	 path to hidraw

device node (/dev/hid*) \n”);

> printf(“ -d, --dev <dev>	 path to hidraw

device node\n”);

387,389d380

< csv = 0;

https://github.com/polarcat/smartpower
usb-s5p-ehci-3.2.6/input

ODROID MAGAZINE	 32

ALL ABOUT
DEBIAN
AN EPIC
INFOGRAPHIC
edited by Nicole Scott

Check out an amazing infographic of the inner workings of
the Debian operating system at http://bit.ly/1vJHXgB. It
illustrates everything about the development process, as

well as how to get involved in the Debian project yourself!

< sep = ‘ ‘;

<

416,418c406,410

< 		 continue;

< 	 }

< 		 if (opt(arg, “-c”, “--csv”)) {

> 		 csv = 0;

> 		 sep = ‘ ‘;

> 		 continue;

> 	 }

> 	 if (opt(arg, “-c”, “--csv”)) {

430,438c422,430

< fd = smartp_probe();

< if (dev) {

< 	 fd = smartp_open(dev);

< 	 if (fd < 0)

< 		 return fd;

< }

<

< if (verbose == 1) {

< 	 printf(“Detected dev: [%s], requested dev:

[%s]\n”, detected_dev, dev);

> if (dev)

> 	 fd = smartp_open(dev);

> else

> 	 fd = smartp_probe();

>

> if (fd < 0)

> 	 return fd;

>

> if (verbose == 1) {

For additional information or questions, please visit the
original information sources at:

http://bit.ly/1vpEdkh

http://bit.ly/1oomVis

http://bit.ly/1uwjVaP

http://www.mingw.org

http://www.qt-project.org

http://qwt.sourceforge.net

http://code.wireshark.org

http://bit.ly/1BriMjG

http://bit.ly/1lh6G8v

SMART POWER TIPS AND TRICKS

http://bit.ly/1vJHXgB
http://bit.ly/1vpEdkh
http://bit.ly/1oomVis
http://bit.ly/1uwjVaP
http://www.mingw.org
http://www.qt-project.org
http://qwt.sourceforge.net
http://code.wireshark.org
http://bit.ly/1BriMjG
http://bit.ly/1lh6G8v
 http://bit.ly/1vJHXgB

ODROID MAGAZINE	 33

ture, cluster in use, and utilization. The
scaling governor can be fetched easily
from the kernel files. The native freq_g
conky function is used to get the cur-
rent frequency, although it could also be
fetched directly from file.

To show temperature at the correct
magnitude, we need to divide the result
by 1000. We can use the binary calcula-
tor bc to do the division:

${exec echo “scale=1; $(cat /

sys/class/thermal/thermal_zone0/

temp)/1000” | bc}

We had to install bc in Debian sepa-

rately with apt-get, since it wasn’t in-
stalled by default. As an alternative, one
could also use awk to divide by 1000 to
get te correct temperature.

For the ODROID, we added our
special definitions to display the utiliza-
tion of all 4 cores. Each core utilization
can be shown separately as a bar with the
following tweak:

core1 ${cpu cpu0}% ${cpubar

cpu0}

With the XU especially, we also want
to know which core cluster is in use (big

weather monitoring with Conky on two
ODROIDs and three operating systems,
as shown in the following table:

OS version ODROID

Xubunu 13.10 XU

Debian 7, Ezy

Wheezy

U3

Lubuntu 14.04 U3

Installation
Conky can be downloaded and

launched by typing the following com-
mand into a Terminal window:

$ sudo apt-get install conky &&

conky

After the program loads, the default
Conky monitor is shown, where one can
define what to show and how items to
be monitored are shown. The configura-
tion file is saved to the home directory
at ~/.conkyrc. To find out more about
.conkyrc, visit http://bit.ly/1CSX6Qd.

Performance
monitor

When we watchthe CPU in an
ODROID, we are interested in frequen-
cy, frequency scaling governor, tempera-

It’s important for many applications
to monitor system resources such as
processor usage, disk activity, storage

space, and network traffic. The latter is
especially important when large files are
being transferred, such as downloading
an operating system image or system
update. Although the Gnome System
Monitor can be used for this purpose, if
one wants to measure statistics on net-
work traffic on both wireless and wired
network individually, it is not possible.
The System Monitor consumes compu-
tation resources, so it would be good to
have a lightweight, more configurable
alternative, such as Conky. We also
may want to measure ODROID-specif-
ic characteristics such as big.LITTLE
cluster usage. In this article we describe
our experience with using Conky on
Linux with both an ODROID-XU and
ODROID-U3 computers.

Introduction
Conky has been around already for

several years, as can be seen by review-
ing the development logs at http://
bit.ly/1mk0gHu. One can find many
screenshots on the Internet where Conky
is included as part of the desktop. In our
experiments, we tuned performance and

TUNE YOUR LINUX DESKTOP
TO MONITOR PERFORMANCE
AND WEATHER
USING CONKY AND
HARMATTAN
by Jussi Opas

CONKY

http://bit.ly/1CSX6Qd
big.LITTLE
http://bit.ly/1mk0gHu
http://bit.ly/1mk0gHu

ODROID MAGAZINE	 34

there is a tricky part, which requires
looking up the weather code for the de-
sired city. This involves visiting a Yahoo
URL and copying the city code.

One must first go to http://weather.
yahoo.com, search for the city, then copy
the code from the address bar. For in-
stance, the following address contains
the number 44418, which is the code
required for Harmattan.

https://weather.yahoo.com/united-

kingdom/england/london-44418/

The other tricky part in configuring
Harmattan is how to make the widget
appropriately colored and visible in each
Linux distribution. As we had no explic-
it instructions, we used a trial-and-error

tor is defined to be transparent, then
the wallpaper defines whether the used
font is readable and distinguishable. To
reasonably change used colors, they can
be defined in conky configuration file as
follows

color8 888888

Because color may vary in different
locations in wallpaper, this does not still
guarantee that text would always be eas-
ily readable. Instead, when an own win-
dow is used, then its defined background
is always same and the content of the
monitor is always visible as well.

Weather Monitor
On the Internet, there are plenty of

examples of how to use Conky as part of
a desktop. Often, there is also current
weather or some weather forecast shown.
We experimented with Conky Harmat-
tan, and tuned it to work on Xubuntu,
Lubuntu and Debian images.

For variety, the Harmattan Conky
Pack offers 15 different flavors with vari-
ous modes, which can be downloaded
from http://bit.ly/1rrxV20.

The Harmattan weather monitors
come in various sizes, and the back-
ground weather image changes dynami-
cally by temperature and weather type.
If something goes wrong, or one can not
get Harmattan to work with the first at-
tempt, it is better to uninstall and install
again.

During the first time installation,

or LITTLE). The following instruction
decides which core cluster is in use:

${if_match ${exec cat /dev/bL_

status | grep A7 | cut -c18} < 1}

big${else}LITTLE${endif}

The sample also shows, how to ex-
press an if-then statement in a conky
definition file. The caveat of this defini-
tion is that conky must be invoked with
sudo, because the /dev/bL_status file can
not be accessed without root privileges.

Conky itself offers functions such as
downspeedgraph for showing separately
Ethernet or wireless traffic of downlink
and of uplink. It is also possible to show
aggregated traffic. We chose to show eth
and wlan traffic separately. When one
configures custom definitions, it is use-
ful to look up the names that must be
used in the definition file with the
ifconfig command (for instance, eth0
and wlan6).

The background image is seen
through the Conky monitor, since the
own_window has been written into the
.conkyrc parameters file. If the moni-

Conky monitor displaying CPU,
temperature, and network information

Monitoring Conky on Xubuntu image
on ODOID XU with the big cluster in use

Example Conky Harmattan
configurations

CONKY

http://weather.yahoo.com/%0D
http://weather.yahoo.com/%0D
https://weather.yahoo.com/united-kingdom/england/london-44418/
https://weather.yahoo.com/united-kingdom/england/london-44418/

ODROID MAGAZINE	 35

Performance and weather monitors used
together on a Lubuntu image, showing
foggy weather and an idle processor

 background yes

cpu_avg_samples 2

net_avg_samples 2

out_to_console no

font 7x13

use_xft no

own_window yes

black own window monitor

own_window_transparent no

own_window_colour black

transparent background moni-

tor

#own_window_transparent yes

#own_window_type override

#own_window_hints

undecorate,sticky,skip_

taskbar,skip_pager,below

double_buffer yes # double buff-

ering removes flicker

on_bottom yes

update_interval 1

minimum_size 5 5

draw_shades no

draw_outline no

draw_borders no

stippled_borders 0

border_margin 10

border_width 2

default_color white

default_shade_color white

default_outline_color white

alignment bottom_right

gap_x 40 # 20

gap_y 100 # 20

use_spacer yes

no_buffers no

uppercase no

color2 CCCCCC

color8 888888

TEXT

${color8}${time %a %d.%b %y}

$alignr ${color green}${time

%k:%M:%S}

${color8}$sysname $kernel $alignr

$machine

Uptime $alignr $uptime

${color white}${hr 2}

${color green}cpu

${color slate gray}frequency

${color2}${freq_g } ${color slate

gray}GHz

conky -d -c ~/.conkyrc

sleep 5

conky -d -c ~/conky/.conkyrc_XU

exit

This definition invokes the weather
monitor 20 seconds after boot, and the
custom XU-specific conky monitor is in-
voked 5 seconds after that. Harmattan
uses the Internet to fetch weather fore-
cast data, therefore it is necessary to leave
enough time for the OS to start up and
establish a wireless or wired connection.

Multiple monitors
Several performance and metric

monitors can be added to a single desk-
top. For instance, we may be interested
in both weather and system performance
at the same time. One possible future
configuration might be to show all of the
data in a combined widget. If we decide
to use two windows instead, then we can
close the performance monitor when it’s
not needed.

Technical Notes
With transparent monitor painting,

the order of the desktop icons may be
hidden if the window settings are in-
correct. The hidden icons are visible
only when mouse is hovered over them,
which can be fixed by tuning the settings
and reducing the widget window size.

Sample
configuration file

Harmattan conky in use on the Debian Ezy
Wheezy image on ODROID U3

CONKY

method to find our own configuration.
The common tweaks that seems to

work on all platforms are show in the
following list:
double_buffer yes

update_interval 5

own_window yes

own_window_transparent yes

The double_buffer option is used to
reduce flicker, and we tuned the update
interval to be 5 seconds. In Xubuntu we
also used:

own_window_type override

For Debian and Lubuntu, the spe-
cialized additional definition is:

own_window_hints

undecorate,sticky,skip_

taskbar,skip_pager,below

With these configurations, we achieved
a stable and well behaving Harmattan, as
shown in the screenshot from Debian.

Startup
The Harmattan installation adds

a file to start at boot time into the file
~/.start_conky, and the custom perfor-
mance monitor can be invoked similarly.
The content of the file is as follows:

#!/bin/sh

sleep 20

ODROID MAGAZINE	 36

${color slate gray}governor

${color2}${exec cat /sys/devices/

system/cpu/cpu0/cpufreq/scal-

ing_governor}

${color slate gray}clus-

ter ${color2}${if_match

${exec cat /dev/bL_status | grep

A7 | cut -c18} < 1}big${else}

LITTLE${endif}

${color slate gray}temperature

${color2}${exec echo “scale=1;

$(cat /sys/class/thermal/thermal_

zone0/temp)/1000” | bc}${color

slate gray} C

${color slate gray}ulitization

${color2}${cpu}%

${color8}${cpugraph 25 ff0000

ff00ff}

core1 ${cpu cpu0}% ${cpubar

cpu0}

core2 ${cpu cpu1}% ${cpubar

cpu1}

core3 ${cpu cpu2}% ${cpubar

cpu2}

core4 ${cpu cpu4}% ${cpubar

cpu3}

${color green}wlan${color8} DOWN

${color2}${downspeed wlan6} 	

${color8}UP ${color2}${upspeed

wlan6}

${color8} ${downspeedgraph

wlan6 25,100 ff0000 0000ff}	

 ${color8}${upspeedgraph wlan6

25,100 0000ff ff0000}

${color8} TO-

TAL ${color2}${totaldown

wlan6}	 ${color8}TOTAL

${color2}${totalup wlan6}

${color green}eth${color8} DOWN

${color2}${downspeed eth0} 	

${color8}UP ${color2}${upspeed

eth0}

${color8} ${downspeedgraph

eth0 25,100 ff0000 0000ff}	

 ${color8}${upspeedgraph eth0

25,100 0000ff ff0000}

${color8} TO-

TAL ${color2}${totaldown

eth0}	 ${color8}TOTAL

${color2}${totalup eth0}

${color green}disk ${color2}

${diskiograph 30,220 fef7b2

CONKY

e18522}

${color8}root ${color2}${fs_

size /} ${color8}${fs_free_perc

/}% free ${fs_bar /}

${color8}boot ${color2}${fs_

size /media/boot} ${color8}${fs_

free_perc /media/boot}% free

${fs_bar /media/boot}

Harmattan conky in use on the Debian Ezy Wheezy image on an ODROID U3, showing network, system and software statistics in real time

ODROID MAGAZINE	 37

HARDKERNEL AT
ARM TECHCON 2014
SHOWING OFF THE XU3
by Rob Roy

ARM TECHCON

We featured a sneak peek of the magazine, along with an Angry Birds competition!

We had a lot of
fun at ARM Tech-
Con 2014! Several
members of Hard-
kernel made the trip
from South Korea,
and Mauro came all
the way from Brazil
for a 2-day technol-
ogy extravaganza in
Santa Clara, Cali-
fornia. We set up
games, demos, and
even had a cute An-
droid robot mas-
cot that sang and
danced for us. As
usual, the Hardker-
nel booth had lots

of visitors who were interested in seeing
exactly what the XU3 can do.

Mauro and Su-
riyan prepared a
demo XU3 version
of Ubuntu 14.04,
including a KVM
virtual machine that
ran Android inside
of Ubuntu while
also performing sev-
eral graphics demos
and a hardware-ren-
dered 3D skybox.

Thank you to ev-
eryone who stopped
by the booth! Make
sure to get your tick-
ets early next year to
hang out with the
Hardkernel team.

Left to right: Bo, Rob Roy, Justin, Mauro, Ryan and Lisa at the Hardkernel ARM TechCon 2014 booth

ODROID MAGAZINE	 38

Please tell us a little about yourself.
As I joked in the “About Me” from

Issue 1 of ODROID Magazine, I’m just
a regular guy! Like most of our readers,
I believe I’m a dude that looks forward
to knowing and using computers that are
not your regular Wintel machine.

But, I’m your average white collar
that works on the IT industry managing
Unix and Linux servers, SAN storage,
and database management. Before that,
I used to work as a photographer after
being a photographer’s assistant for a
couple of years, then before that worked
for quite some time in the magazine pub-
lishing area doing computer and games
magazines. That’s how I got involved in
the magazine: one day, Rob posted in
the forums asking if someone could give
him some help, I thought “well, that will
be fun to do”, and the rest you can read
since then around here. When I have
time while doing the magazine layout,
I like to insert the goofy/slapstick jokes

MEET AN
ODROIDIAN
BRUNO DOICHE:
ART EDITOR
OF ODROID MAGAZINE
edited by Rob Roy

you had a friend that had a Commodore
Amiga, another that had an IBM PC,
and another with an Apple -- it was a
ZOO! We tried to run each other’s soft-
ware and we were mostly frustrated until
we figured out that stuff.

By 1993 I had my first IBM PC, and
stood with it until I got into college,
where I went to study Computer Science,
and at the lab I worked with Macintoshes.
I dropped out of college and went straight
to work in design, and ended up gradu-
ating as a Photographer and Designer. I
was working with publishing mostly, and
it was always this organic thing doing art
and computer related stuff.

I got my current job and at last grad-
uated in Computer Science and worked
mostly with the IT industry. So I got
myself an IBM Power4 server, then an
IBM Power5, to get my AIX certificate.
But they are insultingly power consum-
ing and noisy to have them working for

From left to right, the 3 first computers
that I ever used: MSX Hotbit, TK3000
Apple II clone and MSX Expert

MEET AN ODROIDIAN

that you guys are probably used to read-
ing in every issue by now!

How did you get started with computers?
Well, when I was about 9 years old,

I visited a cousin and saw a computer
for the first time in my life. It was an
MSX hotbit, which is a Brazilian clone
of the Japanese Hitbit model, and I re-
member playing(and beating) the game
called Yie Ar Kung Fu. Then, in the next
school year I started having computer
classes with an Apple II clone called the
TK3000, using LOGO and BASIC.
And I nagged my parents until they got
me a computer for Christmas.

On the advice of a friend, I got my-
self an MSX. At the time, I didn’t un-
derstand the concept of different com-
puter platforms, and took me quite a
while to learn that my cousin’s computer
was in fact the same platform that I had.
Things were very different back then,

ODROID MAGAZINE	 39

and although I’m currently very focused
on an Atkins diet, I enjoy cooking a lot,
so my fiancé was not the most pleased
that I stopped cooking risotto for her.
I still like to photograph a lot, but just
as a hobby. And of course I spend a lot
of time looking into design publishing
material even today.

What improvements would you like to see
for future ODROIDs?

Well, a SATA controller and gigabit
ethernet are a no-brainer. I know the
Hardkernel guys and really, it’s not a
point of can vs. can’t. These guys are do-
ing a great product that really blows out
the competition, and there are different
ways to look at what to expect into the
next generation of ODROIDs:

• For a file server with high performance,
include SATA + 2 gigabit ethernets
• As a gaming machine, it needs a better
GPU and a VGA/DVI standard port
• To support virtualisation, include 2
physical processors, more RAM, and
Linux running PAE

Which ODROID is your favourite?
The X2 is my home server, running

my SMB file server and the Playstation
media server. It handles my torrents
and does pretty much anything that I
need server-wise. But once I had the
U3 hooked on a Motorola Atrix run-
ning OpenMSX, that made me think of
claiming the U3 to be my favourite but
it was just a U3’s trick to get attention!

One of my trusty bikes that I bought used
from a guy in Kansas for about $300,
then took to Brazil, which was a sweet
deal for a pro bike

Yie Ar Kung-Fu and pretty every MSX
game runs on one of my U3s, I’ll eventu-
ally fit a U3 on a hotbit case!

Above: This one was an IBM Power4 ma-
chine that I once owned, it had about half
the processing power that a ODROID XU3
but it weights 35.5 kg (78.0 lb) versus
100g (0.22 lb)!
Right: One storage array from the same
family of the Power4 with a whopping
540GB capacity, today you can fit 640GB
worth of eMMCs in your closed fist

you at home, and a friend of mine told
me about his ODROIDS, so I bought
one to use at home to do all the things
that I never wanted to leave my desktops/
laptops on for all the time. I bought an
X2, booted up with one of Rob Roy’s
Linux distros, and it is still running.
If not for the occasional power outage
when it rains or things like that, the X2
has been running smoothly since then.

What types of projects have you done with
your ODROIDs?

I can’t live without a home network,
so a personal file server is a must. Get-
ting the X2 to transcode video to my
playstation 3 was a fun project to do also.
Then, setting up Shairport to stream au-
dio from iTunes to a good stereo speaker
was another. Lately, I got a new Mac

and exported all my mp3s to the X2.
Now it also runs as an iTunes server with
thousands of songs.

I use the X2 as a torrent machine, and
run a program called Sick Rage to get all
the TV shows that I want to follow. I
also did a silly script with crontab to use
the program periscope to fetch all of my
downloaded shows’ subtitles. There are
some virtualisation involving containers
and KVM that I still want to have some
time to do. Openstack with my U3s is
another pet project, and I’m still looking
to put all my ODROIDs into a compact
computer case powered by a single ATX
power supply, but I’m not too engaged
with all of that, due to my steady job.
Hooking the U3 up to a Motorola Atrix
was a fun thing to do as well!

What other hobbies and interests do you
have besides computing?

I love to cycle! I have 3 bicycles, and
when I’m able to go biking on a regular
basis and listen to some music while do-
ing it I really get into my happy place. I
collect vinyl records, both old and new,

MEET AN ODROIDIAN

